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Abstract

The generalized Fibonacci cube Qd(f) is the graph obtained from the d-cube
Qd by removing all vertices that contain a given binary word f as a factor; the

generalized Lucas cube Qd(
↽Ð
f ) is obtained from Qd by removing all the vertices

that have a circulation containing f as a factor. In this paper the Wiener index

of Qd(1s) and the Wiener index of Qd(
↽Ð
1s) are expressed as functions of the order

of the generalized Fibonacci cubes. For the case Qd(111) a closed expression is
given in terms of Tribonacci numbers. On the negative side, it is proved that if for

some d, the graph Qd(f) (or Qd(
↽Ð
f )) is not isometric in Qd, then for any positive

integer k, for almost all dimensions d′ the distance in Qd′(f) (resp. Qd′(
↽Ð
f )) can

exceed the Hamming distance by k.
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1 Introduction

The Wiener index of a graph is one of the most studied graph invariants, the main rea-
son for this fact is its vast applicability in theoretical chemistry, cf. the comprehensive
surveys [2, 3] on the Wiener index of rather specific classes of graphs—trees and hexag-
onal systems. But this index is also extensively investigated elsewhere, [12, 17, 21, 23]
is just a selection of recent papers that indicates a wide variety of topics studied with
respect to the Wiener index. Moreover, it is an intrinsic indicator of a potential appli-
cability of (interconnection) networks. In this respect the average distance [1] is more
relevant, however the studies of the Wiener index and the average distance are equiva-
lent because for a given graph G, these invariants differ only by the factor (∣V (G)∣2

).
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In [15] it was demonstrated that each of the Wiener index of Fibonacci cubes and
Lucas cubes can be expressed in a closed form. The first of these classes of graphs was
introduced as a model for interconnection network [7] and received a lot of attention
afterwards, see the survey [11]. Lucas cubes [19] can be considered as a symmetrization
of Fibonacci cubes and have found their role in theoretical chemistry [24].

Fibonacci cubes and Lucas cubes were extended to generalized Fibonacci cubes [9]
and to generalized Lucas cubes [10], respectively. (We note that the term “generalized
Fibonacci cubes” was used in [8] (see also [18, 22]) for a restricted family of the graphs
from [9].) The main goal of this paper is to extend the results from [15] on the Wiener
index of Fibonacci (Lucas) cubes to those for generalized Fibonacci (Lucas) cubes that
admit isometric embeddings into hypercubes. Such potential classes were identified in
[9, 10].

We proceed as follows. In the rest of this section we formally introduce the con-
cepts needed in this paper. In the following section the Wiener index of Qd(1s) (Theo-
rem 2.3) and the Wiener index of Qd(

↽Ð
1s) (Theorem 2.5) are expressed as sums involving

∣V (Qd′(1s))∣ for some d′. In the case of Qd(111) it is shown how a closed expression
for its Wiener index can be obtained. In the final section we show that if Qd(f) or
Qd(
↽Ð
f ) is not isometric in Qd, then in almost all dimensions the distance function is

arbitrarily larger than the corresponding Hamming distance.
Graph considered here are finite, simple, and connected. For a (connected) graph

G, the distance dG(u, v) (or d(u, v) if G is clear from the context) between vertices u
and v is the usual shortest path distance. A subgraph H of a graph G is isometric if
dH(u, v) = dG(u, v) holds for all u, v ∈ V (H). The Wiener index, W (G), of a graph
G is defined as ∑d(u, v), where the summation runs over all unordered pairs {u, v} of
vertices of G.

Let B = {0,1} and call the elements of B bits. An element of Bd is called a (binary)
word of length d. We will use the product notation for words meaning concatenation.
For example, 1s0t is the word of length s + t whose first s bits are 1 and last t bits are
0. A word f is a factor of a word u if u = vfw for some words v and w.

The d-cube Qd is the graph whose vertices are all the binary words of length d, two
vertices are adjacent if they differ in exactly one bit. The Hamming distance H(u, v)
between binary words u and v (of equal length) is the number of bits in which they
differ. It is well-known that dQd

(u, v) = H(u, v) holds for any u, v ∈ V (Qd). If f is an
arbitrary binary word and d is a positive integer, then the generalized Fibonacci cube
Qd(f) is the graph obtained from Qd by removing all the vertices that contain f as a

factor. Similarly, the generalized Lucas cube Qd(
↽Ð
f ) is the graph obtained from Qd by

removing all the vertices that have a circulation containing f as a factor. The Fibonacci

cube Γd is the graph Qd(11) and the Lucas cube Λd is Qd(
↽Ð
11).

If b = b1 . . . bd is a binary word, then let b denote its binary complement and let
bR = bd . . . b1 be the reverse of b. It is easy to see (cf. [9, 10]) that if f is an arbitrary

binary word, then Qd(f) ≅ Qd(f) ≅ Qd(fR) and Qd(
↽Ð
f ) ≅ Qd(

↽Ð
f ) ≅ Qd(

↽Ð
fR), where ≅

stands for graph isomorphism. We will implicitly use these facts when considering all
possible words.
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2 The Wiener index of Qd(1s) and Qd(
↽Ð
1s)

In this section we extend results from [15] on the Wiener index of Qd(11) and Qd(
↽Ð
11)

to Qd(1s) and Qd(
↽Ð
1s), respectively. For this sake we will apply the following result

from [14] (see also [13] for its wide generalization). If G is a subgraph of Qd, then set
W(i,χ)(G) = {u = u1 . . . ud ∈ V (G) ∣ ui = χ} for 1 ≤ i ≤ d, 0 ≤ χ ≤ 1.

Theorem 2.1 [14] If G is an isometric subgraphs of Qd, then

W (G) =
d

∑
i=1
∣W(i,0)(G)∣ ⋅ ∣W(i,1)(G)∣ .

If d ≥ 1 and s ≥ 2, then let x
(s)
d = ∣V (Qd(1s))∣. For any s ≥ 2 we also set x

(s)
0 = 1 and

x
(s)
−1 = 1.

Lemma 2.2 Let d ≥ 1 and s ≥ 2. Then x
(s)
d = 2d for 1 ≤ d ≤ s − 1, x(s)s = 2s − 1, and

x
(s)
d = x(s)d−1 + x

(s)
d−2 +⋯ + x

(s)
d−s for d ≥ s + 1.

Proof. If d ≤ s − 1, then Qd(1s) = Qd, hence the first assertion follows. Qd(1s) is

obtained from Qd by deleting the vertex 1s, therefore x
(s)
s = 2s − 1. Let now d ≥ s + 1.

Then there are x
(s)
d−1 vertices u of Qd(1s) with u1 = 0. The other vertices can be

partitioned into those starting with 10 and with 11, respectively. The number of the

former ones is x
(s)
d−2, while the other vertices can be partitioned into those starting with

110 and with 111, respectively. Continuing in this manner, and having in mind that 1s

is not a factor of a vertex of Qd(1s), the last assertion follows. ◻

Theorem 2.3 For any d ≥ 1 and any s ≥ 2,

W (Qd(1s)) =
d

∑
i=1

⎛
⎝
x
(s)
i−1 x

(s)
d−i
⎛
⎝

s

∑
j=2

x
(s)
i−j
⎛
⎝

d−i−1
∑

k=(d−i−1)−(s−j)
x
(s)
k

⎞
⎠
⎞
⎠
⎞
⎠
.

Proof. From [9, Proposition 3.1] we know that Qd(1s) is an isometric subgraph of Qd,
hence Theorem 2.1 applies to Qd(1s).

We first observe that ∣W(i,0)(Qd(1s))∣ = x
(s)
i−1 x

(s)
d−i because the factors before and

after the i-th bit are arbitrary. This assertion also holds for i = 1 and for i = d since

we have set x
(s)
0 = 1. Consider now the set of vertices W(i,1)(Qd(1s)) and let u be an

arbitrary vertex with ui = 1. Suppose that ui is preceded with r ones, where 0 ≤ r ≤ s−2,
so that ui−r−1 = 0. Then the first i − r − 2 bits are arbitrary, that is, there are x

(s)
i−r−2

such factors for 0 ≤ r ≤ s − 2. For a fixed r, there can be t ones succeeding ui, where
0 ≤ t ≤ s − r − 2. Then the following bit to the right is 0, while the last d − i − t − 1 bits
are arbitrary. Putting these observations together and checking the initial conditions,
the result follows. ◻
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If s = 2, then Theorem 2.3 reduces to

W (Qd(11)) =
d

∑
i=1

x
(s)
i−1 x

(s)
d−i x

(s)
i−2 x

(s)
d−i−1 ,

which is [15, Theorem 3.1] after observing that x
(2)
i = Fi+2, where Fn are the Fibonacci

numbers.
We next have a closer look at the case where s = 3. In the following, let us simplify

the notation x
(3)
i to xi. Theorem 2.3 gives us

W (Qd(111)) =
d

∑
i=1
(xi−1 xd−i (xi−2 xd−i−1 + xi−2 xd−i−2 + xi−3 xd−i−1)) .

This expression can be rewritten as

W (Qd(111)) =
d

∑
i=1

xi−2 xi−1 xd−i−1 xd−i

+
d

∑
i=1

xi−2 xi−1 xd−i−2 xd−i

+
d

∑
i=1

xi−3 xi−1 xd−i−1 xd−i .

To obtain a closed expression for each of the above three sums, we invoke the fascinating
theory developed by Greene and Wilf in [4]. They have proved that if each of the
sequences {Gi(d)} satisfies a linear recurrence, then

d−1
∑
j=0

G1(a1d + b1j + c1)G2(a2d + b2j + c2)⋯Gk(akd + bkj + ck)

can be expresses in a closed form. Using the Mathematica package CFSum.nb [5] we
have obtained:

W (Qd(111)) =
1

484
((268 + 67d)x2d − (118 + 4d)xdxd+1 − (50 − 14d)xdxd+2−

(66 + 7d)x2d+1 + (90 + 16d)xd+1xd+2 − (18 + 6d)x
2
d+2) .

Denoting with Tn the Tribonacci numbers [20, Sequence A000073] and noting that
xd = Td+3, we have arrived at:

Theorem 2.4 For any d ≥ 0,

W (Qd(111)) =
1

484
((268 + 67d)T 2

d+3 − (118 + 4d)Td+3Td+4 − (50 − 14d)Td+3Td+5−

(66 + 7d)T 2
d+4 + (90 + 16d)Td+4Td+5 − (18 + 6d)T 2

d+5) .
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The first values of the sequence {W (Qd(111))}d≥0 are 0, 1, 8, 36, 164, 694, 2792,
11008, 42484, 161395.

Parallel to the above, it is possible to make a derivation of a closed expression for
W (Qd(1s)) for any s ≥ 4. However, the results are too long to be written down.

We now turn to the generalized Lucas cubes Qd(
↽Ð
1s) for which the derivation is

simpler than the above derivation for Qd(1s). Recalling that x
(s)
−1 = x

(s)
0 = 1, s ≥ 2, and

x
(s)
d = ∣V (Qd(1s))∣, d ≥ 1, s ≥ 2, we have:

Theorem 2.5 For any d ≥ 1 and any s ≥ 2,

W (Qd(
↽Ð
1s)) = {

d22d−2 ; d < s ,
dx
(s)
d−1∑

s−1
j=1 j x

(s)
d−j−2 ; d ≥ s .

Proof. If d < s then Qd(
↽Ð
1s) is isomorphic to Qd and it is well-known that W (Qd) =

d22d−2, see [6, Exercise 19.3].

Invoking [10, Proposition 2] which asserts that Qd(
↽Ð
1s) is isometric in Qd, we can

again make use of Theorem 2.1. To simplify the notation set Gs
d = Qd(

↽Ð
1s). If d = s,

then x
(s)
s = 2s − 1, ∣W(1,0)(Gs

s)∣ = 2s−1, and ∣W(1,1)(Gs
s)∣ = 2s−1 − 1, hence the theorem

holds in this case.
Assume d ≥ s + 1. For a fixed χ ∈ B, the number of vertices in W(i,χ)(Gs

d) is
independent of the selection of i. Therefore, W (Qd(Gs

d)) = d ⋅ ∣W(1,0)(G
s
d)∣ ⋅ ∣W(1,1)(G

s
d)∣.

Clearly, ∣W(1,0)(Gs
d)∣ = x

(s)
d−1. Consider next the set W(1,1)(G

s
d) and suppose that a word

u from it starts with 1r0, where 1 ≤ r ≤ s− 1. Then u ends with 01p, where r+ p ≤ s− 1,
that is, 0 ≤ p ≤ s− r − 1. Hence, for a fixed r, there are x

(s)
d−r−2 +x

(s)
d−r−3 +⋯+x

(s)
d−s−1 such

words. Summing over all r we get that

∣W(1,1)(Gs
d)∣ = x

(s)
d−3 + 2x

(s)
d−4 + 3x

(s)
d−5 +⋯ + (s − 1)x

(s)
d−s−1 ,

hence the result. ◻

If s = 2, then Theorem 2.5 reduces to W (Qd(
↽Ð
11)) = dx

(2)
d−1 x

(2)
d−3. Recalling that

x
(2)
i = Fi+2, where Fn are the Fibonacci numbers, we get W (Qd(

↽Ð
11)) = dFd+1 Fd−1,

which is [15, Theorem 3.4].

In Theorem 2.5, the values for W (Qd(
↽Ð
1s)) in the two cases appear much different.

The following result shows that this is actually not the case because d22d−2 can be

expressed as a sum of the values x
(s)
i as follows:

Proposition 2.6 If d ≥ 1, s ≥ 2, and d < s, then

d22d−2 = dx(s)d−1
⎛
⎝

s−1
∑
j=1

j x
(s)
d−j−2 + 1

⎞
⎠
.
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Proof. We know that x
(s)
d−1 = 2

d−1 as x
(s)
k = 2k for all k < s. Considering that x

(s)
k = 0

for k < −1 and x
(s)
−1 = 1, we get

s−1
∑
j=1

j x
(s)
d−j−2 + 1 =

d−1
∑
j=1

j x
(s)
d−j−2 + 1 =

d−2
∑
j=1

j x
(s)
d−j−2 + (d − 1)x

(s)
−1 + 1

=
d−2
∑
j=1

j x
(s)
d−j−2 + d .

Set A = ∑d−2
j=1 j x

(s)
d−j−2. Then as x

(s)
k = 2k for all k < s,

A =
d−2
∑
j=1

j 2d−j−2.

Hence

2A =
d−2
∑
j=1

j 2d−j−1 =
d−3
∑
j=0
(j + 1)2d−j−2

and therefore

2A −A =
d−3
∑
j=0

2d−j−2 − (d − 2) = 2(2d−2 − 1) − (d − 2) = 2d−1 − d .

Thus
s−1
∑
j=1

j x
(s)
d−j−2 + 1 = A + d = 2

d−1

and the result is proved. ◻

3 On distances in non-isometric families

We say that a binary word f is good if Qd(f) is an isometric subgraph in Qd for all d.
The word f is bad if it is not good. These concepts were introduced in [16], where it was
proved that if Gn is the set of words f of length n that are good, then limn→∞ ∣Gn∣/2n
exists and that it is close to 0.08. In other words, about eight percent of all binary
words are good.

Completely analogously we now also introduce good and bad words with respect
to the generalized Lucas cubes. In the following two results it will be clear from the
context whether we are talking about bad words w.r.t. generalized Fibonacci cubes or
generalized Lucas cubes, hence in both cases we will simply speak about bad words.

Theorem 3.1 Let f be a bad word. Then for any positive integer k there exist a
positive integer d and words x, y ∈ Qd(f) such that dQδ(f)(x, y) > H(x, y) + k holds for
any δ ≥ d.
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Proof. Note first that Qd(1) = K1, Qd(11) = Γd, and Qd(10) = Pd+1. If follows that
all words f of length at most two are good. Hence by the theorem’s assumption,
∣f ∣ ≥ 3. Since f is bad, there exist a dimension d′ and words u, v ∈ Qd′(f) such that
dQd′(f)(u, v) ≥H(u, v)+1. (Actually dQd′(f)(u, v) is at least H(u, v)+2, but H(u, v)+1
suffices and makes the presentation simpler.) Let z be a fixed word (to be explicitly
defined in each of the cases considered below) and set x = u(zu)k and y = v(zv)k. Hence
x and y are words of length d = k∣z∣ + (k + 1)d′. The word z is defined as follows.

Case 1. If f = 1s0t, s, t ≥ 1, s + t ≥ 3, then let z = 1s+1010t+1.
Case 2. If f ≠ 1s0t, f = 1 . . .0, then let z = 1∣f ∣+10∣f ∣+1.
Case 3. If f ≠ 1s0t, f = 0 . . .1, then let z = 0∣f ∣+11∣f ∣+1.
Case 4. If f ≠ 1s0t, f = 1 . . .1, then let z = 0∣f ∣+1.
Case 5. If f ≠ 1s0t, f = 0 . . .0, then let z = 1∣f ∣+1.

We claim that in each of the cases x, y ∈ V (Qd(f)).
Consider Case 1. By [9, Theorem 3.3], the word 1s0 is good for any s ≥ 1, hence so

is 10s. Thus we can assume s, t ≥ 2. Suppose on the contrary that f is a factor of x or
y, say of x. Since u ∈ V (Qd′(f)) and since f is not a factor of z, f must be a factor of
uz or a factor of zu. In the first case f must actually be a factor of u because f ends
with the bit 0. Similarly, in the second case f must also be a factor of u because f
starts with the bit 1. Since this is not possible, the claim is proved in Case 1.

For Case 2 note that since f starts with 1, ends with 0, and is not of the form 1s0t,
it must necessarily contain 01 as a factor. Therefore, if f is a factor of x, then the first
bit of f cannot be in any factor of z. It follows that then the first bit of f must start
in some u and, as f is not a factor of u, it must end in z. But this is not possible since
f ends with 0 and z starts with 1∣f ∣+1.

Arguments in the remaining three cases are similar to the ones just given for Case
2 and are left to the reader. This proves the claim.

Hence in any case we have x, y ∈ V (Qd(f)). Therefore, since x and y contain
k + 1 copies of u and v respectively, and since to get from one factor u in x to the
corresponding factor v in y at least H(u, v) + 1 changes of bits are required, we get

dQd(f)(x, y) ≥ (k + 1)dQd′(f)(u, v) ≥ (k + 1)(H(u, v) + 1) ≥H(x, y) + k + 1 .

Let now δ > d. If the first bit of f is 1, set x′ = 0δ−dx and y′ = 0δ−dy, otherwise (that is,
if the first bit of f is 0), set x′ = 1δ−dx and y′ = 1δ−dy. Then x′, y′ ∈ V (Qδ(f)) and we
have dQδ(f)(x

′, y′) ≥H(x′, y′) + k + 1. ◻

Theorem 3.2 Let f be a bad word. Then for any positive integer k there exist a

positive integer d and words x, y ∈ Qd(
↽Ð
f ) such that d

Qδ(
↽Ð
f )(x, y) > H(x, y) + k holds

for any δ ≥ d.

Proof. Words 1s are good by [10, Proposition 2]. Note also that Qd(
↽Ð
1s0) contains an

isolated vertex 1d (cf. [10, Proposition 10]). Hence 1s0 are bad words and the assertion
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of the theorem clearly holds (provided the distance function is naturally extended with
dG(x, y) =∞ for vertices x and y from different components ofG). Hence we can assume
in the rest that ∣f ∣ ≥ 3. This part of the proof is parallel to the proof of Theorem 3.1,
hence we just give a sketch of it.

Since f is bad, there exists a dimension d′ and words u, v ∈ Qd′(
↽Ð
f ) such that

d
Qd′(

↽Ð
f )(u, v) ≥H(u, v)+1. Let z be defined as in Theorem 3.1 and set x = (zu)k+1 and

y = (zv)k+1. Hence x and y are words of length d = (k + 1)(∣z∣ + d′).
Using [10, Proposition 10]) again, in Case 1 (it refers to the first case from the

proof of Theorem 3.1) we can assume s, t ≥ 2. As proved in Theorem 3.1, x and y are

in Qd(
↽Ð
f ) and we get

d
Qd(
↽Ð
f )(x, y) ≥ (k + 1)dQd′(

↽Ð
f )(u, v) ≥ (k + 1)(H(u, v) + 1) ≥H(x, y) + (k + 1) .

Let now δ > d. If the last bit of f is 1, set x′ = 0δ−dx and y′ = 0δ−dy, otherwise,

set x′ = 1δ−dx and y′ = 1δ−dy. Then x′, y′ ∈ V (Qδ(
↽Ð
f )) and we have d

Qδ(
↽Ð
f )(x

′, y′) ≥
H(x′, y′) + k + 1. ◻
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