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Introduction

THE WIENER INDEX

In this article, all graphs are finite, undirected, connected, without loops and multi-
ple edges. The vertex and edge sets of a graphG are V (G) and E(G). The numbers
of vertices and edges of G are denoted by p = pG and q = qG, respectively.

Under distance dG(u, v) between vertices u, v ∈ V (G) we mean the standard
distance of the simple graph G, i.e., the number of edges on a shortest path con-
necting these vertices in G ([4]). The distance of a vertex v ∈ V (G), dG(v), is the
sum of distances between v and all other vertices of G.

The Wiener index is a graph invariant based on distances in a graph. It is denoted
by W(G) and defined as the sum of distances between all pairs of vertices in G:

W(G) =
∑

{u,v}⊆V (G)
dG(u, v) = 1

2

∑
v∈V (G)

dG(v). (1)
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The name Wiener index or Wiener number for the quantity defined in Equa-
tion (1) is usual in chemical literature, since Harold Wiener [119], in 1947, seemed
to be the first to consider it. Wiener himself used the name path number, but
denoted his quantity by w. Wiener’s original definition was slightly different – yet
equivalent – to (1). The definition of the Wiener index in terms of distances between
vertices of a graph, such as in Equation (1), was first given by Hosoya [75].

Starting from the middle of the 1970s, the Wiener index gained much popular-
ity and, since then, new results related to it are constantly being reported. For a
review, historical details and further bibliography on the chemical applications of
the Wiener index see [69, 72, 97].

In the mathematical literature, W seems to have been first studied only in 1976
([39]). For a long time, mathematicians were unaware of the (earlier) work on W
done in chemistry (cf. the book [4]). Nevertheless, recent mathematical papers
devoted toW give due credit to Wiener and name W after him. Other names for W
found in the literature are distance of a graph ([39]) and transmission ([100]).
Several mathematical papers deal with a closely related invariant – the average
distance, defined as µ(G) = W(G)/

(
p

2

)
, cf. [10].

Two groups of problems can be distinguished in the theory of the Wiener index:
(a) how W depends on the structure of a graph and (b) how W can be efficiently
calculated (including the so-called ‘paper-and-pencil’ methods). Finding simple
conditions that provide the coincidence of the Wiener index for nonisomorphic
graphs is of interest both in theoretical investigations and in applications. The
greatest progress in solving the above problems was made for trees and hexagonal
systems. Results on the Wiener index of trees were summarized in [34, 38] and in
the recent review [30]. In the present paper, we outline the results achieved in the
theory of the Wiener index of hexagonal systems.

CHEMICAL CONNECTIONS

From what has been said in the preceding section, it is clear that chemical prob-
lems have much influenced the development of the theory of the Wiener index.
In fact, the Wiener index belongs to the molecular structure-descriptors, called
topological indices, that are nowadays extensively used in theoretical chemistry
for the design of so-called quantitative structure-property relations (QSPR) and
quantitative structure-activity relations (QSAR), where under ‘property’ are meant
the physico-chemical properties and under ‘activity’, the pharmacologic and bio-
logical activities of the respective chemical compounds. For details see the recent
books [11, 12, 14, 117] and the references quoted therein.

The Wiener index found its first, simplest and most straightforward applications
within modeling of the properties of acyclic molecules, so-called alkanes. This
stimulated the elaboration of the theory of Wiener indices of trees (for details,
see [30]).
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Figure 1. Two benzenoid hydrocarbons: chrysene (I) and benzo[a]pyrene (II) and the respec-
tive hexagonal systems; compound II is the carcinogenic constituent of tobacco smoke and
other stuff.

However, the vast majority of molecules of interest in chemistry are cyclic. A
plethora of types of cyclic molecules exist and, as a consequence, very few general
mathematical results are known for their Wiener indices (or, more generally, for
their topological indices). Mathematical research is of use only within classes of
(molecular) graphs having some common and uniform structural features.

Fortunately, there is such a class of molecules: the benzenoid hydrocarbons. The
carbon-atom skeleton of these hydrocarbons consists of mutually fused hexagons;
two self-explanatory examples are depicted in Figure 1, together with the respec-
tive hexagonal systems. Benzenoid hydrocarbons possess intriguing (and some-
what mysterious) electronic properties and have been attracting the interest of
theoretical chemists for well over 150 years. In addition, they are important raw
materials of the chemical industry (used, for instance, for the production of dyes
and plastics), but are also dangerous pollutants ([51, 120]). Around 1000 distinct
benzenoid hydrocarbons are known nowadays, some of which consist of more than
100 hexagons. For recent progress in their detection, synthesis, and identification,
see the reviews [74, 118].
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After the hexagonal systems is defined in the subsequent section it will im-
mediately become clear that the molecular graphs (or, more precisely, the graphs
representing the carbon-atom skeleton), of benzenoid hydrocarbons are hexagonal
systems. Because of this chemical connection (in addition to other reasons), the
mathematical theory of hexagonal systems is nowadays being greatly expanded
(see, for instance, [9, 43]). One direction of research along these lines is the study
of the Wiener index of hexagonal systems. The main results achieved are collected
in the present survey.

1. Hexagonal Systems and their Structure

1.1. HEXAGONAL SYSTEMS

In the existing (both mathematical and chemical) literature, there is considerable
non-uniformity and inconsistency in the terminology pertaining to (what we call
here) ‘hexagonal systems’. In order to avoid any confusion, we first define our
objects and their classification.

When consulting the respective literature, a neophyte in this areas may be amus-
ed and confused by the variety of names used for the species considered in this
article. Among these, we mention (in alphabetical order) benzenoid graph, ben-
zenoid system, fusene (perifusene, catafusene), hexagonal animal, hexagonal-cell
configuration, hexagonal-cell system, hexagonal net, hexagonal polyomino, hexan-
imal, hex carpet, honeycomb system, lattice animal, polygon, polyhex, wall. It has
already been explained in the Introduction why a considerable number of these
names are of chemical origin.

It should be noted that in some papers (e.g., in [106]) under ‘hexagonal system’
is meant what here we refer to as ‘simple hexagonal system’. In fact, the majority
of published studies of hexagonal systems is restricted to simple hexagonal sys-
tems and this is often tacitly understood without being explicitly mentioned. Those
hexagonal system which we describe here as ‘jammed’ are called ‘geometrically
nonplanar’ or ‘helicenic’ in the earlier literature.

We proceed now with defining our own vocabulary.
A vertex v of a graph G is said to be a cut-vertex if the subgraph obtained by

deleting v from G has more components than G.
In what follows, a six-membered cycle (a cycle embracing six vertices) will be

referred to as a hexagon. Hexagonal systems are a special type of plane graphs, in
which all interior regions (faces) are bounded by hexagons.

DEFINITION. A hexagonal system is a connected plane graph without cut-vertices
in which all inner faces are hexagons (and all hexagons are faces), such that two
hexagons are either disjoint or have exactly one common edge, and no three hexa-
gons share a common edge. The sets of all hexagonal systems and of all hexagonal
systems with h hexagons are denoted by HS and HSh, respectively.
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DEFINITION. A hexagonal system is said to be simple if it can be embedded
into the regular hexagonal lattice in the plane without overlapping of its vertices.
Hexagonal systems that are not simple are called jammed. The sets of all simple
and jammed hexagonal systems are denoted by sHS and jHS, respectively. The sets
of these species with h hexagons are sHSh and jHSh, respectively. Of course,

sHS ∩ jHS = ∅, sHSh ∪ jHSh = HSh, and sHS ∪ jHS = HS.

An alternative geometrical definition of simple hexagonal systems does not
include the notion of the lattice ([106]). Namely, simple hexagonal systems are
connected plane graphs with no cut-vertices in which every face is bounded by a
regular hexagon of length 1.

An example of a simple hexagonal system (G1) and a jammed hexagonal sys-
tem (G2) is depicted in Figure 2.

Hexagons sharing a common edge are said to be adjacent. Two hexagons of a
hexagonal system may have either two common vertices (if they are adjacent) or
none (if they are not adjacent). A vertex of a hexagonal system belongs to, at most,
three hexagons. A vertex shared by three hexagons is called an internal vertex of
the respective hexagonal system. The number of internal vertices is denoted by ni .

DEFINITION. A hexagonal system is said to be catacondensed if it does not
possess internal vertices (ni = 0). A hexagonal system is said to be pericondensed
if it possesses at least one internal vertex (ni > 0). The sets of all catacondensed
and pericondensed hexagonal systems are denoted by CHS and PHS, respectively.
The sets of these species with h hexagons are CHSh and PHSh, respectively. Of
course,

CHS ∩ PHS = ∅, CHSh ∪ PHSh = HSh, and CHS ∪ PHS = HS.

In Figure 2, G1 and G2 are catacondensed hexagonal systems; G3 has two
internal vertices and is therefore pericondensed.

By construction, the vertices of a hexagonal system are either of degree 2 or of
degree 3. (The degree of a vertex u is denoted deg(u).) Every hexagonal system
with h hexagons and ni internal vertices has p = 4h + 2 − ni vertices and q =
5h + 1 − ni edges. The number of vertices of degree 2 and 3 is then 2h + 4 − ni
and 2h− 2, respectively.

The difference between systems of the above two classes can be visually de-
scribed by means of their characteristic graphs. The characteristic graph (or dual-
ist, or inner dual) of a given hexagonal system consists of vertices corresponding to
hexagons of the system; two vertices are adjacent if and only if the corresponding
hexagons are adjacent.

Now, the characteristic graph of G ∈ HS is a tree if and only if G ∈ CHS.
Clearly, this tree has h vertices and none of its vertices has degree greater than 3.
The characteristic graph of a pericondensed hexagonal system contains at least one
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Figure 2. Simple hexagonal system G1, jammed hexagonal system G2, pericondensed
hexagonal system G3, and their characteristic graphs.

cycle (a triangle). Hexagonal systems and their characteristic graphs are also shown
in Figure 2.

A hexagon r of a catacondensed hexagonal system has either one, two or three
neighboring hexagons. If r has one neighboring hexagon, then it is said to be
terminal, and if it has three neighboring hexagons, to be branched. Hexagons
being adjacent to exactly two other hexagons are classified as angularly or linearly
connected (mode A or L). A hexagon r adjacent to exactly two other hexagons
possesses two vertices of degree 2. If these two vertices are adjacent, then r is
angularly connected, for short we say that r is of mode A. If these two vertices are
not adjacent, then r is linearly connected, and we say that r is of mode L.

DEFINITION. A catacondensed hexagonal system possessing at least one branch-
ed hexagon is said to be a branched catacondensed hexagonal system. A catacon-
densed hexagonal system without branched hexagons is called a hexagonal chain.
The sets of all hexagonal chains and of all hexagonal chains with h hexagons are
denoted by HC and HCh, respectively.

Each of the above defined types of hexagonal systems can be either simple or
jammed. Consequently, the sets CHS, CHSh, PHS, PHSh, HC, HCh are partitioned
into sCHS, sCHSh, sPHS, sPHSh, sHC, sHCh and jCHS, jCHSh, jPHS, jPHSh, jHC,
jHCh, respectively.

In what follows, and where no confusion is possible, the descriptor ‘hexagonal’
will often be omitted. For instance, instead of ‘catacondensed hexagonal system’
and ‘zigzag hexagonal chain’ we shall say ‘catacondensed system’ and ‘zigzag
chain’, respectively.

1.2. SEGMENTS OF CATACONDENSED HEXAGONAL SYSTEMS

Each branched and angularly connected hexagon in a catacondensed hexagonal
system is said to be a ‘kink’, in contrast to the terminal and linearly connected
hexagons. In the system G4 shown in Figure 3 the kinks are marked by K.

The linear chain Lh with h hexagons is the catacondensed system without
kinks. (Thus, for h � 2, Lh possesses two terminal and h− 2 L-mode hexagons.)
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Figure 3. Kinks of a hexagonal system and types of segments.

A segment is a maximal linear chain in a catacondensed system, including the
kinks and/or terminal hexagons at its end. A segment including a terminal hexagon
is a terminal segment. The number of hexagons in a segment S is called its length
and is denoted by �(S). For any segment S of G ∈ CHSh, 2 � �(S) � h. We
say that G consists of the set of segments S1, S2, . . . , Sn with lengths �(Si) = �i
for some n � 1. Since two neighboring segments have always one hexagon in
common, the number of hexagons of G ∈ CHSh is equal to hG = �1 + �2 + · · · +
�n − n+ 1.

For example, the hexagonal system G4 of Figure 3 consists of one segment of
length 4 and five segments of length 2.

For simple hexagonal chains or chain-like parts of other elements of HS, we
distinguish two kinds of segments. Consider a nonterminal segment S with its two
neighboring segments embedded into the regular hexagonal lattice in the plane
and draw a line through the centers of the hexagons of S (see Figure 3). If the
neighboring segments lie on different sides of the line, then S is called a zigzag
segment. If these segments lie on the same side, then S is said to be a nonzigzag
segment. It is convenient to consider that also the terminal segments are zigzag
segments.

2. Hexagonal Systems Extremal with Respect to the Wiener Index

Several classes of hexagonal systems are considered in this section. For each of
them, we specify its extremal element(s) with respect to W .

The helix Hh is a hexagonal chain whose all nonterminal segments are non-
zigzag and have length 2 (see Figure 4). Note that H1 = L1 and H2 = L2.

2.1. HEXAGONAL CHAINS, HCh

Inclusions: HCh ⊂ CHSh.
The extremal elements of this class are the linear chain Lh and the helixHh (see

Figure 4).
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Figure 4. Some extremal hexagonal systems.

This pair of classes of graphs plays an important role in the theory of hexagonal
systems (cf. [73]). Their Wiener indices are cubic polynomials in h and for any
G ∈ HCh \ {Lh,Hh}, h � 4 ([3, 41, 67]),

W(Hh) < W(G) < W(Lh),

where

W(Lh) = 1
3 (16h3 + 36h2 + 26h+ 3),

and

W(Hh) = 1
3(8h

3 + 72h2 − 26h + 27).

Recall that for h � 3, HCh \ {Lh,Hh} = ∅.
Distances of vertices in the terminal hexagons of these systems are also ex-

tremal. For vertices v1, v2 of the linear chain Lh and u1, u2, u3, u4 of the helix Hh

(see Figure 4), one has ([17])

d(v1) = 4h2 + 4h+ 1, d(v2) = 4h2 + 5

and

d(u1) = 2h2 + 6h+ 1, d(u2) = 2h2 + 10h − 3,

d(u3) = 2h2 + 10h− 7, d(u4) = 2h2 + 14h− 11.
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2.1.1. Simple Hexagonal Chains, sHCh

Inclusions: sHCh = HCh ∩ sHSh.
The maximum and minimum Wiener indices are realized on the linear chain Lh

and the serpent Sh, respectively. The structure of the serpent should be clear from
the example G5 depicted in Figure 4 ([19]). Note that Sh = Hh for 1 � h � 5. For
these graphs

W(Sh) = 1
9 (32h3 + 168h2 + φ(h)),

where

φ(h) =
{−6h+ 81, if h = 3m, m = 1, 2, 3, . . . ,

−6h+ 49, if h = 3m+ 1, m = 0, 1, 2, . . . ,
−6h+ 161, if h = 3m+ 2, m = 0, 1, 2, . . . .

2.1.2. Jammed Hexagonal Chains, jHCh

Inclusions: jHCh = HCh \ sHCh.
Elements of jHCh exist for h � 6. The extremal elements are the helix Hh and

the hook (cf. G2 in Figure 2) for which

W(G2) = 1
3(16h3 + 36h2 − 358h + 1587) + C,

where C = 8 if h = 8 and C = 0 otherwise [19]. Exceptionally, for h = 8 the
jammed chain with maximum Wiener index is G6, depicted in Figure 4; W(G6) =
3081 while the Wiener index of the hook is equal to 3073.

2.1.3. Zigzag Hexagonal Chains, ZHCh

Inclusions: ZHCh ⊂ sHCh.
A graph of this class has zigzag segments only. By definition of the zigzag

segment, the linear chain Lh belongs to ZHCh. If all segments of a system G are of
length 2, then this unique system has minimum Wiener index among all elements
of ZHCh. Its W -value was determined in [3]:

W(G) = 1
3 (16h3 + 24h2 + 62h − 21).

2.1.4. Fibonacenes, FHCh

Inclusions: FHCh ⊂ HCh.
A fibonacene is a hexagonal chain in which all hexagons, apart from the two

terminal ones, are angularly connected, for instance, the graphs Hh and G5 of
Figure 4. The name of these chains comes from the fact that the number of perfect
matchings of any G ∈ FHCh is equal to the (h + 1)th Fibonacci number. (This
result is of some significance in chemical applications, see [51].)
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The helix Hh, h � 3, has the minimal Wiener index in this class, whereas the
element G of FHCh with maximum W -value coincides with the element of ZHCh
with the minimum W -value. This fact and the expressions for the Wiener index of
the next two subsections easily follow from the results of Section 5.

2.1.5. Chains with Given Number of A-Mode Hexagons, HCAh,a

Inclusions: HCAh,a ⊂ HCh.
A hexagonal system from HCAh,a has exactly a hexagons of mode A, h−a−2

hexagons of mode L, and two terminal hexagons. This class contains some of the
above-described classes for the corresponding values of a. For example, FHCh =
HCAh,h−2. A number of elements of HCAh,a have the maximal Wiener index (this
fact is explained in Section 5). One such system with a = 5 is G8, shown in
Figure 4, and

W(G8) = 1
3(16h3 + 36h2 − 2h(12a − 13)− 4a3 + 12a2 + 40a + 3).

The graphG7 with minimal Wiener index consists of the helixHa and two equal
linear chains L�(h−a)/2� and L�(h−a)/2� attached to the terminal hexagons of Ha as
shown in Figure 4 for a = 4 (G7 coincides with Hh for h � 6). This system is
unique and

W(G7) = 1
3 (16h3 − 6h2(2a − 7)+ 2h(18a + 1) +
+ 4a3 − 6a2 − 28a + 27)+ φ(h, a),

where φ(h, a) = 2(2a − 1) if h− a is even and φ(h, a) = 0, otherwise.

2.1.6. Hexagonal Chains with Equal Segments, EHCh

Inclusions: FHCh ⊂ EHCh ⊂ HCh.
The number of segments n and their length � define the number of hexagons

in these chains: h = n(� − 1) + 1. A condition for the existence of such systems
is that the number of segments n = (h − 1)/(� − 1) must be an integer. The
number of hexagons of mode A is equal to a = n− 1. The structure of the unique
extremal systems is obvious. The systemG′ with minimal Wiener index is the chain
in which all segments (except the two terminal) are nonzigzag. The systemG′′ with
maximal W has all segments in zigzag arrangement. Further,

W(G′) = 1

3(�− 1)
(8h3(2�− 3)+ 24h2(2�− 1)+ 2h(2�2 − 5�+ 15) +

+ 4�2 + 7�− 3),

W(G′′) = 1
3

(
16h3 + 24h2 + 2h(6�+ 19)− 12� + 3

)
.
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2.2. CATACONDENSED HEXAGONAL SYSTEMS, CHSh

The linear chain Lh has the maximum Wiener index. For branched catacondensed
systems, the extremal graph G1 is the one depicted in Figure 2. We have ([26]):

W(G1) = 1
3(16h3 + 36h2 − 118h + 411).

The system having the minimum Wiener index is clear (see graph G9 in Figure 4
for h = 10), but an analytic expression for its W -value is not known. Every
nonterminal hexagon (maybe except one) of such a system must be branched.

2.2.1. Simple Catacondensed Hexagonal Systems, sCHSh

The linear chain Lh has the maximum Wiener index. The system with minimumW

has the same structure as for catacondensed systems up to h = 10 hexagons. An
analytic expression for W of the system with the minimal W is not known.

2.3. PERICONDENSED HEXAGONAL SYSTEMS, PHS

2.3.1. Simple Pericondensed Hexagonal Systems, sPHS

Since the number of hexagons and the number of vertices do not directly depend,
it is worth considering two subclasses of sPHS.

(a) Simple pericondensed systems with a fixed number h of hexagons, sPHSh.
The structure of a system with maximal W depends on the number ni of internal
vertices. If ni = 1, then the respective system (denoted by G′), contains Lh−1 and
its hth hexagon is adjacent to the first and second hexagons of Lh−1. If ni = 2,
then G′′ contains Lh−2 and every terminal hexagon of Lh−2 has an internal vertex
in G′′. For these cases ([3]),

W(G′) = 1
3 (16h3 + 24h2 − 70h + 192)

and

W(G′′) = 1
3 (16h3 + 12h2 − 160h + 438).

The hexagonal system C2 shown in Figure 4 is referred to as the coronene
(a name borrowed from chemistry). Circumscribing C2 by hexagons, we obtain
the circumcoronene (see C3 in Figure 4). The structure of the further members
C4, C5, . . . of the circumcoronene series is evident. For basic properties of circum-
coronenes see [53].

The circumcoronene-like systems have minimal W -values. These systems can
be obtained from circumcoronenes Ck by deleting their peripheral hexagons. The
number of hexagons of Ck is h = 3k2 − 3k + 1 and [61, 108]

W(Ck) = 1
5(164k5 − 30k3 + k). (2)
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(b) Simple pericondensed systems with a fixed number p of vertices sPHSp.
Such classes are considered in chemical applications. Circumcoronene Ck has p =
6k2 vertices and it has minimum Wiener index for systems with this order. The
structure of a system with maximal W also depends on the number of internal
vertices. Graphs of this class may have a different number of hexagons. For two
arbitrary systems G1 and G2 of PHSp, the relation 4(h1 − h2) = ni1 − ni2 holds,
i.e., the numbers of their internal vertices are congruent modulo 4. Thus, the above
system G′ with h′ hexagons and one internal vertex has maximum W among all
simple pericondensed systems Gwith h = h′+(ni−1)/4 hexagons and ni internal
vertices.

2.3.2. Pericondensed Hexagonal Systems, PHS

The extremal systems are the same as for simple pericondensed systems.

3. Algorithms for Computing the Wiener Index

Let G be a graph. To compute the Wiener index of a graph, it clearly suffices to
compute the distances between all pairs of vertices of G. Floyd and Warshall’s
algorithm and the BFS algorithm are two standard algorithms for this task that
can be found in (almost) any textbook on (graph) algorithms. They run in O(p3)

and O(pq) time, respectively. Since in hexagonal systems q = O(p) we can thus
compute the Wiener index of a hexagonal system in O(p2) time (cf. [96]). In this
section we show that the complexity of computing the Wiener index of a hexagonal
system can be reduced to O(p). Moreover, one can even develop a sublinear time
algorithm for simple hexagonal systems. Before presenting these algorithms, some
preparation from the metric graph theory is needed.

3.1. ISOMETRIC EMBEDDINGS OF HEXAGONAL SYSTEMS

Let G be a connected graph. Then its subgraph H is said to be isometric if, for any
pair of vertices u, v ofH , we have dG(u, v) = dH (u, v). For instance, any hexagon
of a hexagonal system is its isometric subgraph.

The n-cubeQn is the graph constructed as follows. The vertex set ofQn consists
of all strings of length n over {0, 1} and two such strings are adjacent if they differ
in exactly one position. A graph is called a hypercube if it is isomorphic to some
n-cube. Clearly, Qn has 2n vertices, is n-regular, and has diameter n. The starting
point for investigations in this direction is the following result:

THEOREM 3.1. Any hexagonal system is an isometric subgraph of a hypercube.

Theorem 3.1 is given in [85] for simple hexagonal systems but holds for the
general case as well. We now briefly describe how one can construct such an
embedding.
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Let G be a hexagonal system. We partition the edge set of G into edge-subsets
E1, E2, . . . , Ek as follows. Let e be an edge of G and f an opposite edge of a
hexagon to which e belongs. Then both e and f belong to the same class Ei .
Inductively filling the edge-subsets in this way, we end up with a partition of
the edge set of G. For instance, for the graph C2 of Figure 4, the corresponding
partition consists of 9 edge-subsets while for the graph G6 of the same figure,
k = 17. Consider the graphs Gi = G \ Ei for i = 1, 2, . . . , k. They consist of two
connected components, say G0

i and G1
i . We now assign a string s(u) of length k

to a vertex u of G as follows. Set the ith digit of s(u) to 0 if u ∈ G0
i and to 1 if

u ∈ G1
i . In this way, to every vertex u of G we have assigned a vertex s(u) of Qk.

Now it can be shown that in this way G is represented as an isometric subgraph
of Qk. We will use this embedding later in this section and also in Section 5 where
it will be applied to obtain formulas for classes of hexagonal systems.

We next describe another isometric embedding of a hexagonal system that is
essential for rapid computation of the Wiener index. For this purpose, the following
concept is needed.

The Cartesian product G�H of graphs G and H is the graph with vertex set
V (G) × V (H) and ((a, x), (b, y)) ∈ E(G�H) whenever (a, b) ∈ E(G) and
x = y, or a = b and (x, y) ∈ E(H). The Cartesian product is commutative
and associative. Hence, we may write G = G1 �G2 � · · ·�Gk for the Cartesian
product of graphs G1,G2, . . . ,Gk. In this case, the vertex set of G is V (G1) ×
V (G2) × · · · × V (Gk) and two vertices (u1, u2, . . . , uk) and (v1, v2, . . . , vk) are
adjacent if they differ in exactly one position, say in ith, for which (ui, vi) is an
edge ofGi . Note that the n-cube Qn is just the Cartesian product of n copies of the
complete graph on two vertices K2. For more information on the Cartesian product
of graphs and isometric subgraphs, see the book [79].

Let G be a hexagonal system and let the edge set of G be partitioned into
edge-subsets E1, E2, . . . , Ek as described above. We combine some of these edge-
subsets in order to obtain three edge-subsets F1, F2, F3 as follows. Consider a
hexagon u1u2u3u4u5u6u1 ofG and let it be adjacent to a hexagon u1u2u7u8u9u10u1

(via the edge (u1, u2)). Suppose that the edge (u3, u4) belongs to Ei (as well as it
does the edge (u1, u6)) and that the edge (u2, u7) belongs to Ej (as well as it does
the edge (u9, u10)). Then combine Ei ∪Ej to the same F�. Inductively completing
this construction, we end up with a partition of the edge set of G into three edge-
subsets F1, F2, F3. Let Gi = G \ Fi , i = 1, 2, 3, and let Ti be the graph whose
vertices are connected components of Gi , two vertices of Ti being adjacent if there
is an edge in G between the corresponding components of Gi . It turns out that Ti ,
i = 1, 2, 3, is a tree. This construction is illustrated in Figure 5.

Define a mapping α:G → T1 � T2 � T3 as follows. For a vertex v of G set
α(v) = (v1, v2, v3), where vi is the vertex of Ti corresponding to v. Now we
have [6]:

THEOREM 3.2. Let G be a hexagonal system. Then α(G) is an isometric sub-
graph of T1 � T2 � T3.
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Figure 5. Hexagonal system G, graphs Gi = G \ Fi , and trees Ti , i = 1, 2, 3.

3.2. LINEAR AND SUBLINEAR ALGORITHM

Theorem 3.2 is the starting point for a linear algorithm for computing the Wiener
index of hexagonal systems. We first observe ([6]) that the trees Ti and the corre-
sponding labels of the vertices of a hexagonal system G can be computed in O(p)
time.

We need yet another concept. A weighted graph (G,w) is a graph G together
with a weight function w:V (G) → N

+. The Wiener index W(G,w) of a weighted
graph (G,w) is defined as [84]:

W(G,w) =
∑

{u,v}⊆V (G)
w(u)w(v)dG(u, v).

Note that if all the weights are 1, then W(G,w) = W(G).
Let G be a hexagonal system, and T1, T2, T3 the trees as in Theorem 3.2. For a

vertex u of a tree Ti let the weight wi(u) be the number of vertices x of G, whose
ith position in the label α(x) is equal to u. An example is given in Figure 6.

The second step for our algorithm is ([7]):

THEOREM 3.3. LetG be a hexagonal system, and (T1, w1), (T2, w2), and (T3, w3)

the corresponding weighted trees. Then

W(G) = W(T1, w1)+W(T2, w2)+W(T3, w3).

By Theorem 3.3, a linear algorithm for computing W(G) will be provided by a
linear algorithm for computing the Wiener index of a weighted tree. This task was
done implicitly in [96] and explicitly in [7]. We thus get:
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Figure 6. Hexagonal system G and the corresponding weighted trees (Ti , wi).

THEOREM 3.4. The Wiener index of a hexagonal system on p vertices can be
computed in O(p) time.

For the case of simple hexagonal systems, the Wiener index can be computed
even faster. Consider a simple hexagonal system G embedded into the regular
hexagonal lattice in the plane. Then G is formed by the vertices and edges of the
lattice lying on a bounding circuit Z and in the interior of the region bounded
by Z. Thus, G is completely determined by Z. We are going to briefly describe
how W(G) can be computed in O(|Z|) time (for details see [8]).

The main idea is that we can construct the weighted trees (T1, π1), (T2, π2), and
(T3, π3) without an explicit definition of the facial structure ofG. Let D denote the
region of the plane bounded by Z. The algorithm is based on the Chazelle algo-
rithm [5] for computing all vertex-edge visible pairs of edges of a simple polygon
with n vertices. Applying the algorithm of Chazelle we find the subdivisions D1,



262 ANDREY A. DOBRYNIN ET AL.

Figure 7. The subdivisions D1, D2, and D3, weighted trees (0i, wi), and weighted trees
(Ti , wi), i = 1, 2, 3.

D2, and D3 of the region D into strips; see Figure 7 for an illustration (some of
strips can represent triangles).

Let Ci be the set of cuts participating in the subdivision Di . Define a new
graph 0i whose vertices are the cuts of Ci (including the degenerated cuts con-
sisting of single points) and two vertices of 0i are adjacent if they belong to a
common strip of Di . The width of strips of Di takes only two values, 1 and 1/2.
An edge of 0i is called thick if it is defined by a strip of width 1 and thin otherwise
(cf. Figure 7 again). Every cut of Ci is incident in 0i to exactly one thick edge, all
remaining vertices of Ci being incident only to thin edges. If we remove the thick
edges of 0i, we will get the connected subgraphs of 0i spanned by thin edges (we
will call them thin components). Every thin component of 0i has the same vertices
of G as some connected component of the graph Gi. Hence, if we contract all thin
edges of Ci , we obtain the tree Ti .

4. Wiener Index of Growing Hexagonal Systems

By growth of a hexagonal system we mean a process of sequential increasing of the
number of its hexagons. This may lead to increasing segment lengths or a number
of segments. In this section several operations of this kind will be considered.
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4.1. WIENER INDEX UNDER SUBGRAPH ATTACHMENT

Any hexagonal system can be regarded as being constructed by a recursive proce-
dure of joining a hexagon to the previously constructed system. Thus, beginning
from one hexagon, it is possible to obtain all elements of HS. For catacondensed
systems this operation is quite simple ([67]):

THEOREM 4.1. Let G ∈ HSh and e = (v, u) ∈ E(G). If the system G1 ∈ HSh+1

is constructed from the G by identifying the edge e with an edge of a hexagon, then

W(G1) = W(G)+ 2[dG(u)+ dG(v)] + 6pG + 10. (3)

Many results in the theory of the Wiener index of hexagonal systems were
derived by making use of Equation (3). Among them, we mention the basic congru-
ence relation between W -values of catacondensed systems and numerous explicit
expressions for the Wiener index of specific series of hexagonal systems [3, 41, 42,
58, 59, 65, 67, 77, 78, 86, 103, 109–113].

COROLLARY 4.1.1 If G ∈ CHSh, then

W(G1) = W(G)+ 2[dG(u)+ dG(v)] + 2(12h + 11).

If a hexagon joins with a terminal hexagon of G and v is adjacent with a vertex of
degree 3, then

W(G1) = W(G)+ 4dG(v)+ 2(16h + 7).

If an element of HS is a result of joining via an edge of two other systems with
smaller number of hexagons (see G1 in Figure 8), then the Wiener index of the
new system can be expressed through W of the initial systems and the distances of
vertices incident to the identified edges [101].

THEOREM 4.2. Let G1, G2 be arbitrary hexagonal systems and e1 = (v1, u1) ∈
E(G1), e2 = (v2, u2) ∈ E(G2). If the system G is constructed from G1 and G2 by
identifying the edges e1 and e2 so that the vertex v1 is identified with the vertex v2,
then

W(G) = W(G1)+W(G2)+ 1
2{(pG2 − 2)[dG1(v1)+ dG1(u1)] +

+ (pG1 − 2)[dG2(v2)+ dG2(u2)] − [dG1(v1)− dG1(u1)] ×
× [dG2(v2)− dG2(u2)] − pG1pG2} + 1. (4)

For an edge e = (v, u), denote by nv(e) the number of vertices of the graph
considered lying closer to v than to u, and by nu(e) the number of vertices lying
closer to u than to v. For catacondensed systems, it is useful to apply Equation (4)
written in the following form [16]:
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Figure 8. Attachment of hexagonal systems.

COROLLARY 4.2.1. Let G1 ∈ CHSh1 , G2 ∈ CHSh2 and e1 = (v1, u1) ∈ E(G1),
e2 = (v2, u2) ∈ E(G2). If a hexagonal system G is obtained from G1 and G2 by
identifying the edges e1 and e2 (v1 is identified with v2), then

W(G) = W(G1)+W(G2)+ 4h2dG1(v1)+ 4h1dG2(v2)+
+ 2[nu1(e1)+ nu2(e2)− nu1(e1)nu2(e2)] −
− 4(h1 + h2 + 1)+ 1. (5)

Suppose that G1 and G2 are constructed from the same pair of hexagonal sys-
temsG′ andG′′ by identifying e1 = (v1, u1) ∈ E(G′)with e2 = (v2, u2) ∈ E(G′′).
Let the vertex v1 be identified with v2 in G1, while in G2 the vertex v1 is identified
with u2 (see Figure 8). Then the changes of the Wiener index can be presented in a
simple way.

COROLLARY 4.2.2. For the above described systems G1 and G2,

W(G1)−W(G2) = [nv1(e1)− nu1(e1)][(nv2(e2)− nu2(e2)].

It follows that W(G1) = W(G2) if and only if hA = hB or hC = hD. The
smallest example of such nonisomorphic systems obviously has seven hexagons.
The change ofW under other similar transformations is described in [3, 15, 16, 49,
50, 57, 101, 102].

In order to construct a catacondensed system, one can recursively join lin-
ear chains of different sizes instead of hexagons. Two edges (vertices) are called
equivalent if there exists an automorphism that moves one edge (vertex) into other.
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COROLLARY 4.2.3. Let G ∈ CHSh and e = (v, u) ∈ E(G) be an edge of a
terminal hexagon. Let the hexagonal system G1 be constructed by identifying the
edge e and a terminal edge of the linear chain Lk. If the edge of Lk has equivalent
incident vertices of degree 2, then

W(G1) = W(G)+W(Lk)+ 4kdG(v)− 4knu(e)+ 16hk(k + 1)− 1

(the vertices v and u can be interchanged). If the edge e has one vertex of degree 3
(say, the vertex v), then

W(G1) = W(G)+W(Lk)+ 4kdG(v)+ 16hk(k + 1)− 12k − 1.

As an illustration, consider the following problem: given a hexagonal system G,
does there exist a pair of hexagonal systems with the same W that contain G as
subgraphs? Applying formula (5) to the graph G3 depicted in Figure 8 and to G,
one can conclude that such a pair exists for every h � hG+4. Indeed, G3 has equal
vertex distances of nonequivalent edges e1 and e2 for all hG3 � 4. Namely,

d(v1) = d(v2) = 4h2 + 4h + 1,

d(u1) = d(u2) = 4h2 + 5

and

nu1(e1) = nu2(e2) = pG3 − 3.

Any edge of a terminal hexagon of G can be chosen for identifying.

4.2. KINK TRANSFORMATIONS OF HEXAGONAL SYSTEMS

Consider two graph operations of a catacondensed system G that consist in decom-
posing a terminal segment of G into new segments S1 and S2 as shown in Figure 9.
In other words, a terminal part of S is displaced from its initial location in G1 to
another one making new kinks in the resulting graph G2. Here A and B stand for
arbitrary fragments; in particular, they may be absent. An inverse operation fuses
the segments S1 and S2 into the terminal segment S (the lower arrows in Figure 9).
These operations are called kink transformations [25].

THEOREM 4.3. Let G be arbitrary element of CHSh. Then G can always be
obtained from the linear chain Lh by a sequence of kink transformations.

Starting from the linear chain, two different systems G1 and G2 can be con-
structed. Then, making use of inverse kink transformation, it is always possible to
realize the following transformations: G1 → Lh → G2.
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Figure 9. Kink transformations of hexagonal systems.

COROLLARY 4.3.1 Let G1 and G2 be arbitrary elements of CHSh. Then G2 can
always be obtained from G1 by a sequence of kink transformations.

Using Corollary 4.2.1, the change of the Wiener index can be expressed through
simple structural parameters of graphs under these operations ([25]). Let �1 =
�(S1) and �2 = �(S2).

THEOREM 4.4. For the first kink transformation shown in Figure 9,

W(G1)−W(G2) = 16(�2 − 1)hB + 8(�1 − 1)(�2 − 1).

For the second kink transformation shown in Figure 9

W(G1)−W(G2) = 16(�2 − 1)[2(�1 − 1)(hG − �1)+ hA − hB] +
+ 8(�1 − 1)(�2 − 1).

Let G and G′ be arbitrary elements of CHSh. By Corollary 4.3.1, G′ may be
obtained from G by a sequence of kink transformations:

G = G1 → G2 → · · · → Lh → · · · → Gm−1 → Gm = G′.

Therefore,

W(G′)−W(G) =
m∑
i=2

[W(Gi)−W(Gi−1)].

As a rule, the analysis of the difference W(Gi) − W(Gi−1) for neighboring
systems in the sequence is a simpler problem than the evaluation ofW(G′)−W(G)
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at once. Using this approach various results described in the next sections were
obtained [25–29].

4.3. RANDOM GROWTH OF HEXAGONAL CHAINS

If HC∗
h is the set of some (not necessarily all) hexagonal chains with h hexagons,

then the average value of the Wiener index (with respect to HC∗
h) is

Wavr(HC∗
h) = 1

|HC∗
h|

∑
G∈HC∗

h

W(G).

A random hexagonal chain, Rh with h hexagons, h > 2, is a hexagonal chain
obtained by stepwise addition of terminal hexagons. At each step k = 2, 3, . . . , h,
a random selection is made from one of the three possible constructions (see Fig-
ure 10):

Rk−1 → R1
k , with probability p1,

Rk−1 → R2
k , with probability p2,

Rk−1 → R3
k , with probability q = 1 − p1 − p2.

It is assumed that the probabilities p1 and p2 are constants, independent of the
step k.

Random hexagonal chains offer a good model for a class of conjugated poly-
mers (large benzenoid hydrocarbons in particular) ([90]).

The above described construction of the random chain Rh was put forward by
Gutman, Kennedy and Quintas [58]. In what follows we refer to it as the GKQ-
algorithm. The quantity W(Rh) is a random variable. If Rh is constructed by means
of the GKQ-algorithm, then the expected value Wh of W(Rh) depends only on p1,
p2 and h. The following result has been obtained for Wh [58]:

THEOREM 4.5. Let a random hexagonal chain Rh be obtained by means of the
GKQ-algorithm. Then W1 = 27, W2 = 109, W3 = 271 + 8q and for h � 4,

Wh = 4h3 + 16h2 + 6h+ 1 + 4
3q(h

3 − 3h2 + 2h)−
− 4

3 (p1 − p2)
2F(h, q), (6)

where

F(h, q) =
h−3∑
k=1

k(k + 1)(k + 2)qh−3−k .

The nonpolynomial function F(h, q) monotonically increases when q belongs
to the open interval (0, 1). Thus F(h, 0) � F(h, q) � F(h, 1) with

F(h, 0) = (h− 1)(h− 2)(h− 3)
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Figure 10. Growth of a random hexagonal chain Rh.

and

F(h, 1) = h(h− 1)(h − 2)(h− 3)/4.

If h → ∞ and q �= 1, then

lim
h→∞

F(h, q)/h3 = 1/(1 − q)

and

Wh ∼ [4 + 4q/3 − 4(p1 − p2)
2/3(1 − q)]h3,

i.e., Wh is asymptotically cubic in h.

5. Formulas for Classes of Hexagonal Systems

In this section we provide more expressions for the Wiener index of catacondensed
systems and hexagonal chains. For these classes, formulas for calculating W reflect
the pattern of branching. Some conditions for the coincidence of Wiener indices are
also established.

5.1. HEXAGONAL CHAINS

A hexagonal chain G consists of an ordered sequence of segments S1, S2, . . . , Sn,
n � 1, of lengths �(Si) = �i , where hG = �1 + �2 + · · · + �n − n + 1. Let the
hexagonal systemsG1 andG2 be obtained from a chainG by deleting a segment S,
that is,G1 andG2 are the connected components ofG\S. The number of hexagons
of G1 and G2 will be denoted by h1 = h1(S) and h2 = h2(S), respectively. For
every segment S, hG = h1 + h2 + �(S).

A type of segment will be coded by a binary indicator that describes the mutual
relation of the segments. An element zi = z(Si), either 0 or 1, is assigned to every
segment Si . We first set z1 = zn = 0. If Si , 2 � i � n − 1, is a zigzag segment,
then zi = 1, otherwise zi = 0. The system G in Figure 11 has one nonterminal
zigzag segment of length 4 and indicators 0, 0, 1, 0, 0. The set of all nonzigzag
segments of a hexagonal chain G is denoted by 5(G).
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Figure 11. Hexagonal chain G withW(G) = 13123.

Let G be an arbitrary chain from HCh described by parameters

L(G) = (�1, �2, . . . , �n) and Z(G) = (z1, z2, . . . , zn).

It is clear that these uniquely determine a system having n segments. Then the
Wiener index of G may be calculated from these structural parameters [24].

THEOREM 5.1. Let G be a hexagonal chain with segment lengths �1, �2, . . . , �n
and parameters z1, z2, . . . , zn. Then

W(G) =
n∑
i=1

W(L�i )− 27(n− 1)+

+ 16
n∑
i=1

(
(�i − 1)

n∑
k=i+1

[
(�i + �k + 1)(�k − 1)+

+ (2�k − 3 + zk)

n∑
j=k+1

(�j − 1)

])
. (7)

Segments may be regarded as elementary bricks of a chain. Equation (7) sum-
marizes the contribution of all these bricks to the Wiener index. If a chain has
a large number of segments then the calculation of W by means of this formula
becomes tedious. The above result was used for establishing a congruence relation
between W -values of hexagonal chains ([23]).

The next formula shows that zigzag and nonzigzag segments make different
contributions to the Wiener index.

THEOREM 5.2. Let G be an arbitrary element of HCh with segment lengths
�1, �2, . . . , �n. Then

W(G) = W(Lh)− 16
∑

S∈5(G)
h1h2 − 4

(
h2 + n− 1 −

n∑
i=1

�2
i

)
, (8)

where the first summation goes over all nonzigzag segments of G.
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Consider, for instance, the hexagonal chain G depicted in Figure 11. This chain
has h = 13 hexagons and n = 5 segments with lengths 3, 6, 4, 2, 2. Two nonzigzag
segments have lengths 6 and 2. Since W(L13) = 13859, we immediately arrive at

W(G) = 13859 − 16(2 · 5 + 10 · 1)− 4[169 + 5 − 1 −
− (9 + 36 + 16 + 4 + 4)] = 13123.

Equation (8) can be applied to completely describe the Wiener index of chains
having n segments (say, n = 4) of equal length �, � � 2. The class EHCh consists
of three systems with h = 4� − 3 hexagons (cf. Section 2). After elementary
calculation, we obtain

W(G1) = (16h3 + 27h2 + 44h − 6)/3,

W(G2) = (16h3 + 21h2 + 56h − 12)/3,

W(G3) = (16h3 + 15h2 + 68h − 18)/3.

Using formula (8), one can easily derive the extremal values of the Wiener index
of fibonacenes, hexagonal chains with equal segments, and hexagonal systems with
a given number of angularly connected hexagons given in Section 2. For example,
5(G) = 0 for a fibonacene G with maximumW ; a zigzag chain with minimumW

has segments of lengths �i = 2 for all i.
Equation (8) also implies simple necessary and sufficient conditions for certain

hexagonal chains to have the same Wiener index. Let ZHCh,n be the subset of
ZHCh in which every element (a zigzag chain) consists of n segments. Denote a
sequence of segment lengths of hexagonal chains G and G′ by (�1, �2, . . . , �n) and
(�′

1, �
′
2, . . . , �

′
n′), respectively.

COROLLARY 5.2.1 LetG andG′ be arbitrary hexagonal chains with n segments.
Then W(G) = W(G′) if and only if

∑n
i=1 �

2
i = ∑n

i=1 �
′2
i .

Consider two sequences of segment lengths (k + 2, k + 5, k + 5) and (k +
3, k + 3, k + 6), where k � 0. These sequences generate an infinite number of
pairs of hexagonal chains satisfying the above condition. Indeed, the corresponding
chains have h = (3k + 12) − 3 + 1 = 3k + 10 hexagons and the equalities∑3

i=1 �
2
i = ∑3

i=1 �
′2
i = 3k2 + 24k + 54 hold. It is easy to find chains having

even number of segments and the same W , for instance, (k − 5, k, k, k + 5) and
(k − 4, k − 3, k + 3, k + 4) for k � 7.

If chains contain different number of segments, then the coincidence of W
depends on the relation between the number of segments and their lengths.

COROLLARY 5.2.2 Let G ∈ ZHCh,n and G′ ∈ ZHCh,n′ . Then W(G) = W(G′)
if and only if

∑n
i=1 �

2
i −∑n′

i=1 �
′2
i = n− n′.

An example of elements of ZHC7,2 and ZHC7,3 can be obtained from the se-
quences of segment lengths (4, 4) and (2, 2, 5). The sequences (3, k, k) and (2, 2,
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k− 1, k+ 1) define an infinite family of hexagonal chains satisfying the last corol-
lary. For these systems, h = 2k + 1 and

∑4
i=1 l

2
i − ∑3

i=1 l
′2
i = (2k2 + 10) −

(2k2 + 9) = 1.
The following method allows the construction of more systems having the same

Wiener index.

COROLLARY 5.2.3 Let G,G′ ∈ HCh where G′ is obtained from G by inter-
changing two neighboring zigzag segments. Then W(G) = W(G′).

The smallest chains to which Corollary 5.2.3 is applicable have five hexagons
and the sequences of segment lengths (2, 2, 3) and (2, 3, 2). Suppose that all seg-
ments of an element of ZHCh,n have mutually different lengths. Applying Corol-
lary 5.2.3, one can obtain n!/2 nonisomorphic chains having equal W . It should be
noted that it is also admissible to change the position of zigzag segments between
any neighboring nonzigzag segments in a hexagonal chain.

5.2. CATACONDENSED HEXAGONAL SYSTEMS

In this section, we consider hexagonal systems from CHS. These, by definition,
may possess branched hexagons, i.e., hexagons having three neighboring hexagons.

We distinguish between two types of branchings in a catacondensed hexagonal
system. The first type of branching pertains to a single branched hexagon. The
corresponding configuration may be described by three subgraphs G1, G2 and G3

attached to the branching hexagon r, as shown in Figure 12. We associate with the
hexagon r three quantities h1, h2 and h3 that are the number of hexagons in the
subgraphs G1, G2 and G3, respectively.

The below considerations can be directly extended to the case when one of the
subgraphs Gi , i = 1, 2, 3, is empty (when, of course, the hexagon r is not branched
whereas the respective catacondensed system may, but need not, be branched). It
just has to be assumed that hi = 0 if the subgraph Gi is empty.

Denote by B(G) the set of all hexagons of mode A and all branched hexagons
in a catacondensed hexagonal system G.

The second type of branching is defined by two hexagons r and r ′ of B(G), such
that no hexagon of G being between r and r ′ belongs to B(G). The corresponding
configuration includes four subgraphs G4,G5 andG′

4,G′
5 as depicted in Figure 12;

any of these subgraphs may also be empty. Let h4, h5, h′
4 and h′

5 be the number of
hexagons of these subgraphs. Note that G4 and G5 are assumed to lie on the same
side of the line crossing the centers of the hexagons between r and r ′.

The following result shows that the Wiener index for every G ∈ CHSh can be
calculated through W(Lh) and configurations of branching in G [26].

THEOREM 5.3. Let G ∈ CHSh. Then

W(G) = W(Lh)− 8

(
5
∑
r∈B(G)

h1h2h3 −
∑
r∈B(G)

(h1 − 1)(h2 − 1)(h3 − 1)+
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Figure 12. Types of branching in hexagonal systems of CBh.

Figure 13. Hexagonal system G and its branchings.

+
∑

r,r ′∈B(G)
(h4 − h′

4)(h5 − h′
5)+ |B(G)|(h− 2)

)
, (9)

where the last summation goes over all neighboring hexagons of B(G) in G.

Since branching hexagons can easily be recognized in a hexagonal system, for-
mula (9) provides a convenient paper-and-pencil method for the calculation of the
Wiener index.

As an illustration consider G ∈ CHS16 depicted in Figure 13. This system has
two branched hexagons and two hexagons of mode A marked by heavy dots, i.e.
|B(G)| = 4. Configurations of all branchings are also given in Figure 13. Since
W(L16) = 25057, we immediately arrive at

W(H) = W(L16)− 8[5(1 · 2 · 12 + 2 · 5 · 8)− (1 · 4 · 7 + (−1) · 1 · 12)+
+ (1 − 2)(5 − 2)+ (0 − 2)(8 − 2)+ (13 − 0)(1 − 0)+ 4 · 14]

= 25057 − 8[520 − 16 − 3 − 12 + 13 + 56] = 20593.

A hexagonal star is a branched catacondensed system having a single branched
hexagon to which three (linear) segments are attached. Using Equation (9), the
search for hexagonal stars with equal Wiener indices is reduced to numeric com-
putation. If a hexagonal star S has segment lengths �i + 1, i = 1, 2, 3, then

W(S) = W(Lh)− 8(4�1�2�3 + �1�2 + �1�3 + �2�3).
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Figure 14. Hexagonal system with interchanged segments.

For h � 40, there are exactly 12 pairs of hexagonal stars with coinciding Wiener
indices. The minimal systems have h = 26 and and have segment lengths 2, 5, 21
and 3, 3, 22.

For hexagonal chains, the above formula reduces to

COROLLARY 5.3.1 Let G ∈ HCh. Then

W(G) = W(Lh)− 8

( ∑
r∈B(G)

h1h2 +
∑

r,r ′∈B(G)
(h4 − h′

4)(h5 − h′
5)

)
.

We do not know simple conditions for the coincidence of Wiener indices for
branched catacondensed systems. However, a coincidence can be deduced in some
special cases. Consider, for instance, systems G1 andG2 with segments of length a
and b, a �= b, shown in Figure 14. These systems have the same structure except
the position of two segments. Applying Equation (9), we have

W(G1)−W(G2) = 2(a − b)(hA − hC),

i.e., this difference does not depend on the subgraphs B and D. Therefore, W(G1)

= W(G2) if and only if hA = hC . If hA = hC = 0, then the segments are zigzag
ones.

COROLLARY 5.3.2 Let G1, G2 ∈ CHSh and G2 be obtained from G1 by inter-
changing two neighboring zigzag segments. Then W(G1) = W(G2).

Note that the Wiener index of the linear chain Lh with p = 4h+ 2 vertices may
be presented as follows

W(Lh) = 1

2

(
4h+ 4

3

)
− 1 = 1

2

(
p + 2

3

)
− 1

= 1

2

[(
p

3

)
+ 2

(
p

2

)
+
(
p

1

)]
− 1.

This implies some analogy between Equation (9) of hexagonal systems and a
combinatorial formula for calculating W of trees in [44].
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5.3. PERICONDENSED HEXAGONAL SYSTEMS

It seems that the first explicit formulas for series of simple pericondensed systems
were derived in [3]. On the other hand, Theorem 3.1 enables us to derive a general
method by means of which many explicit formulas can be derived.

LetG be a hexagonal system. Recall (see the text after Theorem 3.1) that we can
partition the edge set of G into edge-subsets E1, E2, . . . , Ek such that the graphs
Gi = G \ Ei , i = 1, 2, . . . , k, consist of two connected components G0

i and G1
i .

Let p0
i = |G0

i | and p1
i = |G1

i |. Then, based on Theorem 3.1, we can derive [61]:

THEOREM 5.4. Let G be a hexagonal system. Then W(G) = ∑k
i=1 p

0
i p

1
i .

This theorem was applied in [61] to the members Ck of the circumcoronene se-
ries, resulting in the earlier-mentioned formula (2). The same formula was indepen-
dently, and by completely other means, obtained in [108]. Based on Theorem 5.4,
formulas were derived for the Wiener index of a variety of families of symmet-
ric pericondensed hexagonal systems: parallelograms, trapeziums, bitrapeziums,
triangles, several parallelogram-like and hexagon-like hexagonal systems, . . . [86].
For instance, if T (n, k) denotes the trapezium hexagonal system with n columns
and k rows of hexagons, then we have

W(T (n, k))

= 4n3(k2 + 2k + 1)

3
− 2n2(k + 1)(2k2 − 8k − 3)

3
+

+ 2n(k4 − 4k3 + 6k2 + 9k + 1)

3
− k(8k4 + 35k2 − 45k − 28)

30
.

After the publication of Theorem 5.4 (in [61]) Shiu and Lam arrived at an equiv-
alent result [109] which they also used for obtaining formulas for W of various
classes of pericondensed hexagonal systems. Some other aspects and applications
of Theorem 5.4 are outlined in [52, 68, 82, 88, 121].

6. Properties of Values of the Wiener Index

Searching for nonisomorphic graphs with the same values of a graph invariant is a
traditional direction of research in graph theory. In chemical graph theory the set
of W -values of hexagonal systems have been subject to detailed investigation of
this kind since a good ability of an invariant to distinguish between nonisomorphic
graphs is important for applications.

6.1. CONGRUENCE RELATIONS FOR THE WIENER INDEX

In this section we consider catacondensed systems. Let G be a connected bipartite
graph with parts A and B. Clearly, d(u, v) is even if both vertices u and v belong to
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the same part; otherwise d(u, v) is odd. This immediately implies that dG(v) ≡ 1
(mod 2) if and only if either v ∈ B and |A| is odd or v ∈ A and |B| is odd. Further,
W(G) ≡ 1 (mod 2) if and only if both |A| and |B| are odd. For any catacondensed
hexagonal system, both |A| and |B| are odd ([2]). By this, we have the first result
restricting the possible values of the Wiener index ([41, 42]).

THEOREM 6.1. If v is a vertex of a catacondensed system G, then dG(v) ≡ 1
(mod 2). For any catacondensed system G, W(G) ≡ 1 (mod 2), i.e., W(G) is an
odd number.

This result eliminates half of possible values of the Wiener index. However, a
much stronger result applies ([41, 42]):

THEOREM 6.2. Let G1,G2 ∈ CHSh. Then W(G1) ≡ W(G2) (mod 8), i.e., the
difference W(G1)−W(G2) is divisible by 8.

Examples show that the above result is the best possible unconditional congru-
ence relation for systems of this class. Some relations with stronger conditions have
been derived from Equation (7) of Theorem 5.1 for some subclasses of hexagonal
chains ([24]). A typical such statement is

THEOREM 6.3. If hexagonal chains G1 and G2 have coinciding sets of segment
lengths {�1, �2, . . . , �n} and �i = kci + 1 for all i = 1, 2, . . . , n (k � 1, ci � 1),
then W(G1) ≡ W(G2) (mod 16k2).

COROLLARY 6.3.1 Let G1,G2 ∈ EHCh with segments of length �. Then W(G1)

≡ W(G2) (mod 16(�− 1)2).

Since FHCh ⊂ EHCh, the relation W(G1) ≡ W(G2) (mod 16) in particular
holds for arbitrary fibonacenes G1 and G2 with equal number of hexagons.

Let n(G) be the number of all segments in G ∈ CHSh. Then n(G) = no(G) +
ne(G), where no(G) and ne(G) denote the number of segments of odd and even
length, respectively. If a segment has odd or even length, then it is said to be
even or odd, respectively. The following congruence relation was obtained from
Equation (7) for hexagonal chains having equal number of segments ([23]).

THEOREM 6.4. Let G1 and G2 be hexagonal chains with the same number of
segments. Then W(G1) ≡ W(G2) (mod 16) if and only if no(G1) ≡ no(G2)

(mod 4).

The next result shows the main role of even segments in the case of general
catacondensed systems. Namely, new necessary and sufficient conditions for mod-
ulo 16 rule have been formulated in terms of even segments ([25]). The number of
odd segments does not influence this property of W (the previous theorem can be
equivalently reformulated in terms of even segments).
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THEOREM 6.5. Let G1,G2 ∈ CHSh. Then W(G1) ≡ W(G2) (mod 16) if and
only if ne(G1) ≡ ne(G2) (mod 4).

The number of hexagons h and the number of even segments ne(G) always
have different parity. Indeed, suppose that segments S1 and S2 are obtained from
a segment S by a kink transformation, S → S1S2. Then the change of segments’
parity is described by one of the cases E → EO, E → OE, O → OO or
O → EE, where E andO indicate the parity of the segments. A hexagonal system
with an even number of hexagons has at least one even segment.

The above congruence relation immediately leads to a necessary condition for
the coincidence of W -values of catacondensed hexagonal systems.

COROLLARY 6.5.1. Let G1,G2 ∈ CHSh. If W(G1) = W(G2), then ne(G1) −
ne(G2) is divisible by 4.

The obtained congruence relation induces decomposition of the set CHSh into
four disjoint subsets C0, C1, C2, and C3, such that an element of Ci contains 4k+ i,
k � 0, even segments. Then W(G1) �= W(G2) if G1 ∈ Ci and G2 ∈ Cj with
i �= j .

If the systems considered have segments with prescribed lengths, then the con-
gruence relation may be strengthened.

THEOREM 6.6. Let the systemsG1,G2 ∈ CHSh have segment length {�1, �2, . . . ,

�n} and {�′
1, �

′
2, . . . , �

′
n}, where �i = kai + 1 and �′

i = kbi + 1, i � 1, k � 2. Then
W(G1) ≡ W(G2) (mod 8k2).

Note that this result does not contain conditions on the number of even segments
(but it also does not provide congruence modulo 16). The congruence modulo 32 is
valid for subclasses of hexagonal systems corresponding to even values of k [25].

COROLLARY 6.6.1. Let G1,G2 ∈ CHSh and let all their segments be odd (when
also h must be odd). Then W(G1) ≡ W(G2) (mod 32).

There are no known congruence relations for pericondensed hexagonal systems.

6.2. NONREALIZABLE VALUES OF THE WIENER INDEX

The determination of the ranges of nonrealizable values of a graph invariant may
prove useful in applications, namely, for solving the inverse problem in predic-
tion of properties of chemical compounds and design of compounds with desired
properties; for details, see [115].

In this section we restrict our considerations to hexagonal chains and simple
hexagonal chains. First consider graphs from HCh (for graphs of sHCh, we must
take the snake instead of the helix).
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In view of Theorem 6.2 and the fact that linear chains and helixes are ex-
tremal for hexagonal chains, define a set of possible values of the Wiener index
of hexagonal chains with h hexagons as

Ph = P(HCh) = {W(Hh)+ 8n | n = 0, 1, . . . , 1
8 [W(Lh)−W(Hh)]}.

The set Ph is a discrete interval of odd numbers of cardinality |Ph| = h(2h2 −9h+
13). Denote by

Wh = W(HCh) = {W(G) | G ∈ HCh}
the set of W -values for all elements of HCh. Then the set of nonrealizable values
of W is defined as

Eh = E(HCh) = Ph \Wh.

It is known that {2, 3, 5, 6, 7, 11, 12, 13, 15, 17, 19, 33, 37, 39} is the set of
non-realizable values of bipartite graphs ([71]). The following result shows that
(except in the trivial cases of h = 1 and h = 2) there are nonrealizable values in
the case of the Wiener index of hexagonal systems ([17, 19]).

THEOREM 6.7. For every h � 4,Eh �= ∅. The set of nonrealizable values from Ph
may be represented as Eh = ⋃

i[ai, bi], where some of these discrete subintervals
have cardinalities linear in h.

The longest intervals of nonrealizable values are placed at the ends of Ph. Their
lengths are equal to h− 3 and h− 5 (at the left end of Ph) and 2h− 12 and 2h− 7
(at the right end of Ph).

Tables I and II contain data on intervals of possible and nonrealizable values
of the Wiener index for elements of HCh and sHCh, respectively (Sh denotes the
serpent with h hexagons). The first number in the sixth column is equal to |Eh|
and the second number #Ih counts the number of intervals of nonrealizable values,
i.e., this ratio is equal to the average cardinality of such intervals. By definition,
|Wh| = |Ph| − |Eh|. Detailed numeric information for all nonrealizable intervals
of Ph for h � 16 can be found in [17].

Because of the existence of nonrealizable values, the following question arises:
can a value of Ph be realized by a hexagonal system with different number of
hexagons? It was shown that the numbers of hexagons must satisfy the following
relation ([18]).

THEOREM 6.8. Let G1 ∈ HCh1 , G2 ∈ HCh2 and h1 �= h2. If W(G1) = W(G2),
then hG1 ≡ hG2 (mod 4).

Combining the above result with the expressions for the extremal values of the
Wiener index, one obtains an additional restriction on h.
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Table I. Structure of W -values for hexagonal chains

h |HCh| W(Hh) W(Lh) |Ph| |Eh|/#Ih |Wh|
1 1 27 27 1 0 1

2 1 109 109 1 0 1

3 2 271 279 2 0 2

4 4 529 569 6 2/2 4

5 10 899 1011 15 6/3 9

6 25 1397 1637 31 13/6 18

7 70 2039 2479 56 21/9 35

8 196 2841 3569 92 25/7 67

9 574 3819 4939 141 36/10 105

10 1681 4989 6621 205 45/13 160

11 5002 6367 8647 286 56/15 230

12 14884 7969 11049 386 67/16 319

13 44530 9811 13859 507 80/19 427

14 133255 11909 17109 651 93/19 558

15 399310 14279 20831 820 113/23 707

16 1196836 16937 25057 1016 128/28 888

Table II. Structure of W -values for simple hexagonal chains

h |sHCh| W(Sh) W(Lh) |Ph| |Eh|/#Ih |Wh|
1 1 27 27 1 0 1

2 1 109 109 1 0 1

3 2 271 279 2 0 2

4 4 529 569 6 2/2 4

5 10 899 1011 15 6/3 9

6 24 1445 1637 25 8/5 17

7 67 2135 2479 44 12/7 32

8 182 2985 3569 74 17/4 57

9 520 4107 4939 105 17/6 88

10 1474 5241 6621 151 23/9 128

11 4248 6943 8647 214 33/10 181

12 12196 8833 11049 278 32/12 246

13 35168 10963 13859 363 41/15 322

14 101226 13349 17109 471 51/13 420

15 291565 16199 20831 580 54/16 526

16 838764 19337 25057 716 61/17 655
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Table III. Nonempty common intervals of the Wiener index

h− 4 h |HCh−4| |HCh| |Ph−4| |Ph| |Ph−4 ∩ Ph|
23 27 2615147350 212822683802 3312 5526 211

24 28 7845353476 635467254244 3796 6202 467

25 29 23535971854 1906400965570 4325 6931 760

26 30 70607649841 5719200505225 4901 7715 1092

27 31 211822683802 17157599124190 5526 8556 1465

28 32 635467254244 51472790198116 6202 9456 1881

29 33 1906400965570 154418363419894 6931 10417 2342

30 34 5719200505225 463255068736321 7715 11441 2859

COROLLARY 6.8.1 Let two arbitrary hexagonal chains belong to the classes
HCh and HCh+4. If h � 22 then Ph ∩Wh+4 = ∅ and, therefore, these systems have
distinct Wiener indices.

This result demonstrates that in order to obtain intervals of nonrealizable values
for hexagonal chains up to 22 hexagons, we need simply to join all such intervals
for each h � 22.

COROLLARY 6.8.2 Let two arbitrary hexagonal chains belong to the classes
sHCh and sHCh+4. If h � 23 then Ph ∩Wh+4 = ∅ and these chains have distinct
Wiener indices. For elements of jHCh and jHCh+4, the corresponding bound is
h � 33.

Since the Wiener index of a graph considerably depends on the number of ver-
tices, a greater number of hexagons of an element of HCh+4 should be compensated
by smaller distances between its vertices than those in a system from the class HCh.
So we can expect a system from HCh+4 to be similar to the helixHh+4 and a system
from HCh to be similar to the linear chain Lh.

If the cardinality of the set Ph∩Ph+4 is small, then systems whose Wiener index
belongs to this set may not exist at all, since the set may be contained in the set of
nonrealizable elements. Table III contains information about smallest nonempty
intervals Ph−4 ∩ Ph. By means of computer calculation, several pairs of hexagonal
chains of different size having the same W were found. Minimal known hexagonal
systems with the same Wiener indices belong to sHC25 and jHC29 (see systems G1

and G2 in Figure 15) and W(G1) = W(G2) = 89059. The simple systems G3

and G4 from sHC40 and sHC36 withW(G3) = W(G4) = 262057 are also depicted
in Figure 15. Other examples can be found in [17–19].

Graph invariants encountered in chemical studies generally reflect the structure
of molecules and are regarded as structure-descriptors. Therefore it is desirable to
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Figure 15. Hexagonal chains with equal W and different number of hexagons.

have a high isomer-discriminating power, namely that for nonisomorphic molecu-
lar graphs with a constant number of vertices and edges, the invariant in question
assumes different numerical values ([91, 104, 105]). The ability of a graph invariant
to discriminate between isomers is called its discriminating ability. One can always
find families of graphs with fixed numbers of vertices and edges such that their
Wiener index has the same value for all members of the family [70].

The discriminating ability of a graph invariant GI on a set of graphs U is usually
expressed in terms of its mean isomer degeneracy,

I = |U |
|{GI(G) | G ∈ U }| .

Another, equivalent, way of expressing the same property is by means of the isomer-
discriminating power which is equal to 1/I .

By a degeneracy class of a number from Ph we will mean the subset of HCh

consisting of all graphs with this number. The quantity I may be regarded as the
average size of the degeneracy classes. The cardinality of the set HCh grows as 3h,
while the number of possible elements of Ph grows only as h3. Therefore, for each
possible value of Ph, the average cardinality of the corresponding degeneracy class
has exponential growth. Since the set Ph contains nonrealizable values, the ratio
|HCh|/|Ph| is the lower bound for the size of real average class I = |HCh|/|Wh|.
The discriminating ability of the Wiener index for hexagonal systems was studied
in [17, 65, 91, 92, 114]. Diagrams of hexagonal chains up to h = 12 hexagons
from the maximal degeneracy classes can be found in [17].
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Figure 16. Hexagonal systems G for which W(G) = Wh = Wavr.

6.3. PROPERTIES OF THE WIENER INDEX OF FIBONACENES

In this section two unexpected properties of fibonacenes will be explained [35].
Define the average value of the Wiener index with respect to FHCh as

Wavr(FHCh) = 1

|FHCh|
∑

G∈FHCh

W(G).

The number of fibonacenes |FHCh| is equal to 2h−4 + 2�(h−4)/2�.

THEOREM 6.9.
∑

G∈FHCh
W(G) ≡ 0 (mod |FHCh|), i.e., the sum of all the

Wiener indices of all h-hexagon fibonacenes is divisible by the number of these
systems.

The above result does not reflect the property of Wiener index of any particular
fibonacene, but a collective property of all such chains.

This also implies that Wavr(FHCh) is an integer. Recall that fibonacenes are
generated by means of the GKQ-algorithm for the case q = 0 (see Section 2).
Denote by Wh the expected value of the Wiener index of the random hexagonal
chain under such generation. Then we have another unexpected result:

COROLLARY 6.9.1 For the class of fibonacenes, the two averages Wavr and Wh

coincide

Wavr(FHCh) = Wh = 4h3 + 16h2 + 6h+ 1.

Examples of the corresponding systems for odd h are shown in Figure 16. The
Wiener index of these systems was found a long time ago ([67]). For some even h,
Wavr(FHCh) is a nonrealizable value (at least for h = 4, 6, 8, 12, 16 ([35])).

7. Decomposition of the Wiener Index

A number of decompositions of the Wiener index were used to establish corre-
lations between properties of chemical compounds and the parts of this index
[40, 93–95].
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7.1. DECOMPOSITION WITH RESPECT TO VERTEX DEGREE

We consider decomposition ofW into sums of vertex distances defined by vertices’
degree for catacondensed systems. The set of vertices of such a system can be
divided into two disjoint subsets V2 = {v ∈ V (G)| deg(v) = 2} and V3 = {v ∈
V (G)| deg(v) = 3}, where |V2| = 2(h+ 2) and |V3| = 2(h− 1). Then the Wiener
index of a hexagonal system G can be decomposed into two parts:

W(G) = 1
2

(∑
v∈V2

dG(v)+
∑
v∈V3

dG(v)

)
= 1

2(D2(G)+D3(G)). (10)

For the linear chain Lh, this decomposition yields

D2(Lh) = 2
3(8h

3 + 36h2 + 31h + 6) and D3(Lh) = 2
3(8h

3 − 5h − 3).

The following far-reaching result has been established in [27]:

THEOREM 7.1. Let G be an arbitrary catacondensed hexagonal system with h
hexagons. Then D2(G) = D2(Lh)−<(G) and D3(G) = D3(Lh)−<(G), where
<(G) > 0 depends only on G.

The quantity <(G) is determined by the changes of vertex distances under kink
transformations transferring the linear chain to the graph G. If W(G1) = W(G2),
thenW(G1)−W(G2) = <(G2)−<(G1) = 0, implying<(G2) = <(G1). We thus
arrive at a Corollary 7.1.1 which, earlier, was put forward as a conjecture ([20, 37]).

COROLLARY 7.1.1 If W(G1) = W(G2) for catacondensed systems G1 and G2,
then D2(G1) = D2(G2) and D3(G1) = D3(G2).

COROLLARY 7.1.2 In order to check the coincidence of the Wiener index of
catacondensed systems, it is sufficient to compare distance sums for vertices of
degree 2 or of degree 3.

Theorem 7.1 was used for establishing the relationship between the Wiener
index and molecular topological index (see Section 8). It should be noted that
Corollary 7.1.1 cannot be extended to pericondensed systems.

Consider another decomposition of the Wiener index into three parts for G ∈
CHS:

W(G) = 1
2

( ∑
v,u∈V2

d(v, u)+
∑
v,u∈V3

d(v, u)+
∑

v∈V2,u∈V3

d(v, u)+

+
∑

v∈V3,u∈V2

d(v, u)

)

= 1
2 (D22(G)+ 2D23(G)+D33(G)).

Computer calculations support the following conjecture [20, 37].
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CONJECTURE 7.2. If W(G1) = W(G2) for G1,G2 ∈ CHSh, then D22(G1) =
D22(G2), D23(G1) = D23(G2), and D33(G1) = D33(G2).

7.2. HOSOYA POLYNOMIAL

There is a natural decomposition of the Wiener index into groups of equidistant
vertices. Denote by d(G, k) the number of pairs of vertices of a graph G that are at
distance k apart. Let D(G) be the diameter of a graph G. Then the Wiener index
of a (connected) graph G can be written in the form

W(G) =
D(G)∑
k=1

kd(G, k).

The sequence (d(G, 0), d(G, 1), . . . , d(G,D)) is a well-known invariant in graph
theory ([4]). Hosoya [76] proposed to consider this sequence in a polynomial form,
that is now called the Hosoya polynomial of G:

H(G, x) =
D(G)∑
k=1

d(G, k)xk.

Note that by the definition d(G, 0) = p and d(G, 1) = q. The above two rela-
tions also immediately imply the main property (for our purposes) of the Hosoya
polynomial: H ′(G, 1) = W(G), where H ′ denotes the first derivative of H .

In [64] expressions for the Hosoya polynomial for a number of periodic hexag-
onal chains are obtained and consequently also for their Wiener indices. In the
sequel we describe the corresponding approach.

For a graph G, k � 0, and a vertex v ∈ V (G), let d(G, v, k) be the number
of vertices of G at distance k from v. We set d(G, v, 0) = 1, and for k < 0,
d(G, v, k) = 0. Define H(G, v, x) as

H(G, v) ≡ H(G, v, x) =
∑
k�0

d(G, v, k)xk.

Now we can state:

THEOREM 7.3. Let the graph G be obtained by annelating a 6-cycle to the
graph G0 over an edge (u, v). Then

H(G, x) = H(G0, x)+ (x + x2)H(G0, u, x) + (x + x2)H(G0, v, x)+
+ 4 + 3x + 2x2 + x3.

Theorem 7.3 provides a recursion that can be used for computing the Hosoya
polynomial of catacondensed hexagonal systems. In order to do it, one also needs
to recursively express the terms H(G0, u, x) and H(G0, v, x).
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Figure 17. Three possible ways of attaching a hexagon to a hexagonal chain.

In the particular case of hexagonal chains Theorem 7.3 reduces to the follow-
ing. Let Gh be a hexagonal chain with h hexagons obtained by adding a hexagon
to Gh−1 over an edge (uh−1, vh−1). Furthermore, let (uh, vh) be the edge that will
be used in the subsequent annelation, that is, in the process Gh → Gh+1. There are
three possibilities for the edge (uh, vh) and these are shown in Figure 17.

Setting αh ≡ H(Gh, x), βh ≡ H(Gh, uh, x), and γh ≡ H(Gh, vh, x) we have

COROLLARY 7.2.1 Let Gh be a hexagonal chain with h hexagons. Then the
Hosoya polynomial αh of Gh satisfies the following recurrence

αh = αh−1 + (x + x2)(βh−1 + γh−1)+ 4 + 3x + 2x2 + x3,

where α0 = 2 + x, β0 = γ0 = 1 + x. Moreover, βh and γh obey the following
recurrences, depending on the cases shown in Figure 17:

Case 1: βh = xβh−1 + 1 + x + x2 + x3; γh = x2βh−1 + 1 + 2x + x2.

Case 2: βh = x2βh−1 + 1 + 2x + x2; γh = x2γh−1 + 1 + 2x + x2.

Case 3: βh = x2γh−1 + 1 + 2x + x2; γh = xγh−1 + 1 + x + x2 + x3.

A hexagonal chain consisting of n � 1 hexagons can be constructed by a
sequence of n annelations that can be straight, a 60-degree turn to the left, or a
60-degree turn to the right (relatively to the previous step); cf. Section 4.3 and
Figure 10. This can be encoded by a string of length n over the alphabet {1, 2, 3}
where 1, 2, and 3 mean ‘turn left’, ‘go straight’, and ‘turn right’, respectively. Take
any nonempty finite string s over {1, 2, 3}, and repeat it infinitely often to obtain the
infinite string S = sss . . . . Then S represents an infinite periodic hexagonal chain
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and the finite initial substrings of S represent an infinite family of finite periodic
hexagonal chains. In [64], the Hosoya polynomial (and consequently the Wiener
index) was explicitly computed for the following families of periodic hexagonal
chains:

the linear chain: s = 2;
the helicene chain: s = 1;
the zigzag chain: s = 13;
the double-step zigzag chain: s = 2123;
the triple-step zigzag chain: s = 221223;
the double-step helicene: s = 21;
the triple-step helicene: s = 221; and
the no-name chains s = 1133, s = 111333, s = 1122, and s = 111222.

We list two examples. In the case of the helicene chain (s = 1), let Gn be the
hexagonal chain represented by a string of n ones. Then Gn = Hn and we have

H(Hn, x) = 1

(x − 1)2
((x + 1)4xn+2 + x8 − 4x6 − 4x5 −

− 3x4 − 3x3 − 2x2 − 3x −
− n(x − 1)(x2 + 1)(x5 + 2x4 + x3 − x2 + x + 4)+ 2).

From here we deduce

W(Hn) = H ′(Hn, 1) = 1
3(8n

3 + 72n2 − 26n+ 27)

a result already listed before. For the double-step zigzag chain (s = 2123), let Gn

be the hexagonal chain represented by a string of n copies of 2123, so that Gn

has 4n hexagons. For n � 2 we have:

H(Gn, x) = 1

4(x − 1)2
(4(x + 1)2x2n+1 − 5x9 + 11x7 − 3x5 +

+ (−1)n(x − 1)3(x + 1)3x3 − 7x3 − 8x2 − 12x +
+ 2n(x − 1)(x2 − 2)(x2 + 1)(x4 + x3 + x2 + x + 4)+ 8),

and therefore

W(Gn) = H ′(Gn, 1) = 1
3 (16n3 + 24n2 + 74n+ 6(−1)n − 51).

8. Relations Between Wiener Index and Other Invariants

8.1. MOLECULAR TOPOLOGICAL INDEX

The molecular topological index of a chemical graphGwas put forward by Schultz
[107]. It is defined as

MTI(G) =
p∑
i=1

p∑
j=1

deg(vi)(Aij + dG(vi, vj )),
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whereAij is the element of the adjacency matrix ofG. An entry Aij is 1 if vertices i
and j are adjacent and zero otherwise. The molecular topological index has found
interesting chemical applications (for details, see [117]).

It has been demonstrated that MTI and W are closely mutually related for cer-
tain classes of molecular graphs, in particular, for trees ([47, 89]). Namely, if G is
a tree on p vertices, then

MTI(G) = 4W(G)+
∑

v∈V (G)
(deg(v))2 − p(p − 1).

For hexagonal systems, the molecular topological index may be presented as
follows [62]:

THEOREM 8.1. Let G ∈ HSh, possessing ni internal vertices. Then

MTI(G) = 4W(G)+ 1
2 [4(13h − 1)+ 5ni] +

∑
deg(v)=3

d(v).

For catacondensed systems, there is a simpler relation between MTI andW [29]:

THEOREM 8.2. Let G ∈ CHSh. Then

MTI(G) = 5W(G)− (12h2 − 14h + 5).

The proof of Theorem 8.2 is significantly based on the decomposition of the
Wiener index into two parts as in Equation (10). The obtained formula immediately
shows that W and MTI have the same discriminating ability.

COROLLARY 8.2.1 Let G1,G2 ∈ CHSh. Then MTI(G1) = MTI(G2) if and only
if W(G1) = W(G2).

Properties of the Wiener index imply also similar properties of the molecular
topological index. For example, there is an unconditional regularity among MTI-
values (for other relations see Section 6).

COROLLARY 8.2.2 Let G1,G2 ∈ CHSh. Then MTI(G1) ≡ MTI(G2) (mod 40).

There are several estimates of MTI in terms of the Wiener index of simple
hexagonal systems ([62, 83]). The sharpest bounds are given in the following result.

THEOREM 8.3. Let G be a simple hexagonal system. Then

4W(G) + λ1W(G)
2/3 + λ2W(G)

1/3 − 15

< MTI(G) < 6W(G)+ λ3W(G)
2/5 − λ4W(G)

1/6,

where

λ1 = (120/13)2/3 = 4.400 . . . , λ2 = (120/104)1/3 = 1.048 . . . ,
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λ3 = 9(45
√

6/32)2/5 = 14.760 . . . ,

and

λ4 = √
150(120/13)1/6 = 17.738 . . . .

8.2. SZEGED INDEX

Let e = (x, y) be an edge of a graph G. Let n1(e) be the number of vertices of G
lying closer to x than to y and let n2(e) be the number of vertices of G lying closer
to y than to x. A classical result in the theory of Wiener indices is the following.
Let G be a tree. Then,

W(G) =
∑

e∈E(G)
n1(e)n2(e). (11)

For details see Theorem 8 in [30].
If G is not a tree then the right-hand side of Equation (11) needs not be equal

to W(G). Yet, the right-hand side of (11), namely

Sz(G) =
∑

e∈E(G)
n1(e)n2(e)

is a well-defined quantity for all graphs and has been examined under the name
Szeged index. The main properties of the Szeged index as well as an exhaustive list
of references can be found in the review [54].

The Szeged index Sz(G) of a hexagonal system G can be calculated by means
of a formula analogous to the expression for W(G) stated above as Theorem 5.4.
Using the same notation as in Theorem 5.4 and denoting the number of edges in Ei
by |Ei|, one has [60]

Sz(G) =
k∑
i=1

|Ei |p0
i p

1
i .

By means of this formula combinatorial expressions for the Sz-values of several
classes of hexagonal systems were obtained ([48, 56]). A number of congruence
relations for the Szeged indices of catacondensed hexagonal systems have been
deduced that are fully analogous to what was described in Subsection 6.1 for the
Wiener index ([31–33, 36, 81]).

9. Phenylenes and Hexagonal Squeezes

Phenylenes are a class of chemical compounds in which the carbon atoms form
6- and 4-membered cycles. Each 4-membered cycle (= square) is adjacent to two
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Figure 18. A phenylene (PH), its hexagonal squeeze (HS) and its inner dual (ID).

disjoint 6-membered cycles (= hexagons), and no two hexagons are adjacent. The
respective molecular graphs are also referred to as phenylenes. Their structure
(which we are not going to define in a rigorous manner) should be evident from
the example depicted in Figure 18.

By eliminating,‘squeezing out’, the squares from a phenylene, a catacondensed
hexagonal system (which may be jammed) is obtained, called the hexagonal squeeze
of the respective phenylene ([45]). Clearly, there is a one-to-one correspondence
between a phenylene (PH) and its hexagonal squeeze (HS). Both possess the same
number (h) of hexagons. In addition, a phenylene with h hexagons possesses h− 1
squares. The number of vertices of PH and HS is 6h and 4h + 2, respectively.

The inner dual ID of a phenylene (and of its hexagonal squeeze) is a tree,
the vertices of which correspond to the hexagons; two vertices are adjacent if the
respective two hexagons are first neighbors (see Figure 18).

The following peculiar relation between theW -values of a phenylene, its hexag-
onal squeeze and its inner dual was first empirically detected ([66]) and eventually
demonstrated to be a generally valid result ([63, 99]):

THEOREM 8.4. Let PH be a phenylene containing h hexagons and let HS and ID
be the hexagonal squeeze and inner dual corresponding to PH. Then their Wiener
indices are related as

W(PH) = 9
4 [W(HS)+ 16W(ID)− (4h+ 1)(2h+ 1)].

For a related result, see [84].
It seems that there exists and analogous relations between the Szeged indices of

PH, HS and ID ([63, 68]), but – so far – its form could not be established.
Concluding this section and this review, we wish to mention some closely re-

lated investigations. The Wiener index was also examined for other classes of
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polycyclic graphs: bipartite polycyclic plane graphs with faces of equal, but arbi-
trary sizes ([3, 42, 46]), graphs of polyphenyls ([55]), polycyclic chains consisting
of pentagons ([3, 21, 22]), graphs of polymers and fullerenes ([1, 80, 87, 98, 116]).
Several other, so-called Wiener-type topological indices were studied for hexago-
nal systems and other polycyclic graphs ([13, 54, 88, 121]).
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57. Gutman, I. and Jovašević, V.: Wiener indices of benzenoid hydrocarbons containing two linear
polyacene fragments, J. Serb. Chem. Soc. 63 (1998), 31–40.

58. Gutman, I., Kennedy, J. W. and Quintas, L. V.: Wiener numbers of random benzenoid chains,
Chem. Phys. Lett. 173 (1990), 403–408.

59. Gutman, I., Khadikar, P. V. and Khaddar, T.: Wiener and Szeged indices of benzenoid hydrocar-
bons containing a linear polyacene fragment, Comm. Math. Comp. Chem. (MATCH) 35 (1997),
105–116.

60. Gutman, I. and Klavžar, S.: An algorithm for the calculation of the Szeged index of benzenoid
hydrocarbons, J. Chem. Inf. Comput. Sci. 35 (1995), 1011–1014.

61. Gutman, I. and Klavžar, S.: A method for calculating Wiener numbers of benzenoid hydrocar-
bons, ACH Models Chem. 133 (1996), 389–399.

62. Gutman, I. and Klavžar, S.: Bounds for the Schultz molecular topological index of benzenoid
systems in terms of the Wiener index, J. Chem. Inf. Comput. Sci. 37 (1997), 741–744.

63. Gutman, I. and Klavžar, S.: Relations between Wiener numbers of benzenoid hydrocarbons and
phenylenes, ACH Models Chem. 135 (1998), 45–55.

64. Gutman, I., Klavžar, S., Petkovšek, M. and Žigert, P.: On Hosoya polynomials of benzenoid
graphs, Comm. Math. Comp. Chem. (MATCH) 43 (2001), 49–66.
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90. Klein, D. J., Živković, T. P. and Trinajstić, N.: Resonance in random π-network polymers, J.
Math. Chem. 1 (1987), 309–334.

91. Konstantinova, E. V.: The discrimination ability of some topological and information distance
indices for graphs of unbranched hexagonal systems, J. Chem. Inf. Comput. Sci. 36 (1996),
54–57.

92. Konstantinova, E. V. and Paleev A. A.: On sensitivity of topological indices for polycyclic
graphs, Vychisl. Sistemy 136 (1990), 38–48 (in Russian).

93. Lukovits, I.: Decomposition of the Wiener topological index. application to drug-receptor
interactions, J. Chem. Soc. Perkin Trans. 9 (1988), 1667–1671.

94. Lukovits, I.: Wiener indices and partition coefficients of unsaturated hydrocarbons, Quant.
Struct. Act. Relat. 9 (1990), 227–231.



WIENER INDEX OF HEXAGONAL SYSTEMS 293

95. Lukovits, I.: Correlation between components of the Wiener index and partition coefficients of
hydrocarbons, Int. J. Quantum Chem. Quantum Biol. Symp. 19 (1992), 217–223.

96. Mohar, B. and Pisanski, T.: How to compute the Wiener index of a graph, J. Math. Chem. 2
(1988), 267–277.

97. Nikolić, S., Trinajstić, N. and Mihalić, Z.: The Wiener index: developments and applications,
Croat. Chem. Acta 68 (1995), 105–129.

98. Ori, O. and D’Mello, M.: A topological study of the structure of the C76 fullerene, Chem. Phys.
Lett. 197 (1992), 49–54.
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