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Riste Škrekovski c,e,f,g

aDepartment of Mathematics, Hakim Sabzevari University, Sabzevar, Iran

E-mail: y.alizadeh@hsu.ac.ir

2Faculty of Electrical Engineering and Information Technologies, Ss Cyril and

Methodius Univ.,

Ruger Boskovik, P. O. Box 574, 1000 Skopje, Macedonia

E-mail: vesna.andova@gmail.com

cFaculty of Mathematics and Physics, University of Ljubljana, Slovenia
dFaculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

eInstitute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

E-mail: sandi.klavzar@fmf.uni-lj.si

fFaculty of Information Studies, Novo Mesto, Slovenia
gFaculty of Mathematics, Natural Sciences and Information Technologies, University

of Primorska, Slovenia

E-mail: skrekovski@gmail.com

(Received January 24, 2014)

Abstract

The Wiener dimension of a connected graph is introduced as the number of dif-
ferent distances of its vertices. For any integer D and any integer k, a graph of
diameter D and of Wiener dimension k is constructed. An infinite family of non-
vertex-transitive graphs with Wiener dimension 1 is presented and it is proved that a
graph of dimension 1 is 2-connected. It is shown that the (5, 0)-nanotubical fullerene
graph on 10k (k ≥ 3) vertices has Wiener dimension k. As a consequence the Wiener
index of these fullerenes is obtained.
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1 Introduction

The distance considered in this paper is the usual shortest path distance. We assume

throughout the paper that all graphs are connected unless stated otherwise. For terms

not defined here we refer to [21].

Let G be a graph and u ∈ V (G). Then the distance of u is

dG(u) =
∑

v∈V (G)

dG(u, v) .

In location theory, sets of vertices with the minimum (or maximum) distance in a

graph play a special role because they form target sets for locations of facilities. The

set of vertices of a graph G that minimizes the distance is called the median set of G.

The framework can be made more general (at least) in two ways: by considering the

sum of distances to a specified multiset of vertices (such multisets are referred to as

profiles) and by considering weighted graphs. For more information in this direction

of research see [2, 3, 17, 22].

The Wiener index of a graph G is defined as

W (G) =
1

2

∑

u∈V (G)

dG(u) .

This graph invariant has been extensively investigated in the last decades and con-

tinues to be an utmost active research area; see the recent papers [12, 13, 14, 16]

and references therein. In particular, in the latter paper the so-called semi-cartesian

product of graphs is introduced in order to simplify the computation of the Wiener

index of chemical graphs such as carbon nanotubes and nanotori.

Suppose now that {dG(u) | u ∈ V (G)} = {d1, d2, . . . , dk}. Assume in addition

that G contains ti vertices of distance di, 1 ≤ i ≤ k. Then the Wiener index of G can

be expressed as

W (G) =
1

2

k
∑

i=1

tidi . (1)

We therefore say that theWiener dimension dimW(G) of G is k. That is, in this paper

we introduce the Wiener dimension of a graph as the number of different distances

of its vertices.



The paper is organized as follows. In the next section the Wiener dimension is

given for some classes of graphs. Then, in Section 3, we construct for any integer D

and any integer k a graph of diameter D and of Wiener dimension k. In Section 4 we

consider graphs of Wiener dimension 1. An infinite family of non-vertex-transitive

graphs with Wiener dimension 1 is constructed and it is proved that a graph of

dimension 1 is 2-connected. In the final section we determine the Wiener dimension

of (5, 0)-nanotubical fullerene graphs and as a consequence obtain their Wiener index.

2 The Wiener dimension of cyclic phenylenes

It is easy to see that dimW(Kn) = dimW(Cn) = dimW(P ) = 1, where P is the

Petersen graph, the intrinsic reason being that all these graphs are vertex-transitive,

cf. Section 4. It is also clear that dimW(Kn,m) = 2 as soon as n 6= m, and it is not

difficult to infer that dimW(Pn) = ⌈n/2⌉ for any n ≥ 1. For a sporadic example of a

graph G with dimW(G) = 4 see Fig. 1, where the graph G is shown together with the

distances of its vertices.

11 8 8

9 118 7

Figure 1: An asymmetric graph G with dimW(G) = 4

For a slightly more elaborate example consider the family of cyclic phenylenes, a

class of graphs arising in mathematical chemistry [4, 24]. These graphs are composed

of cyclically attached hexagons and squares, as shown in Fig. 2 for the cyclic phenylene

R5. The definition of Rk, k ≥ 3, should be clear from this example.

Let u, v, w be vertices of Rh, where u is a vertex of the inner long cycle, v a

vertex of degree 3 on the outer long cycle, and w a vertex of degree 2. Then it is not



Figure 2: The cyclic phenylene R5

difficult to see that for any k ≥ 3, dRk
(u) = 3k2 + 6k, dRk

(v) = 3k2 + 12k − 12, and

dRk
(w) = 3k2 + 18k − 24. Since dRk

(u) < dRk
(v) < dRk

(w) holds for k ≥ 3, we have

dimW(Rk) = 3, k ≥ 3.

Using (1), we thus also get:

W (Rk) =
1

2
2k

(

(k2 + 6k) + (3k2 + 12k − 12) + (3k2 + 18k − 24)
)

= 9k3 + 36k2 − 36k .

3 Graphs with given diameter and Wiener dimen-

sion

The inverse Wiener index problem is to find a graph from a certain class of graphs

with a given value of the Wiener index. The inverse Wiener index problem was

solved for general graphs by Goldman et al. [9]: for every positive integer n except

2 and 5 there exists a graph G such that the Wiener index of G is n. Lepovič and

Gutman [15] conjectured that all but 49 positive integers are Wiener indices of trees.

The conjecture was independently proved in [18] and [19]. Later, Fink et al. [7] showed

that there are semi-exponential number of trees with given Wiener index. For some

recent developments on the inverse Wiener problem see [20, 23].

In this section we start the inverse Wiener dimension problem. As the first result

in this direction we prove that for any integer D and any integer k there exists a



graph of diameter D and of Wiener dimension k. The corresponding construction

uses two main ingredients, graphs of diameter 2 and Cartesian products of graphs.

We begin with the following:

Lemma 3.1. Let G be a graph of order n, diameter 2, and let v ∈ V (G). Then

dG(v) = 2n− deg(v)− 2. In particular, dimW(G) = |{deg(u) | u ∈ V (G)}|.

Proof. Since diam(G) = 2, we have dG(v) = deg(v) + 2(n − deg(v) − 1) = 2n −

deg(v)− 2. Therefore, dG(u) = dG(w) if and only if deg(u) = deg(w).

The Cartesian product G�H of graphs G and H has vertex set V (G�H) =

V (G) × V (H), and (g, h) is adjacent to (g′, h′) if g = g′ and hh′ ∈ E(H), or h = h′

and gg′ ∈ E(G). This graph operation is associative, hence we may consider powers

of graphs with respect to it. Powers of K2 are known as hypercubes, the d-tuple

power is denoted with Qd.

Let (g, h), (g′, h′) ∈ V (G�H), then it is well-known (cf. [8, Proposition 5.1]) that

dG�H((g, h), (g
′, h′)) = dG(g, g

′) + dH(h, h
′). Note that this fact in particular implies

that diam(G�H) = diam(G) + diam(H). Moreover,

dG�H((g, h)) =
∑

(g′,h′)∈V (G�H)

dG�H((g, h), (g
′, h′))

=
∑

(g′,h′)∈V (G�H)

(dG(g, g
′) + dH(h, h

′))

= |V (H)|
∑

g′∈V (G)

dG(g, g
′) + |V (G)|

∑

h′∈V (H)

dH(h, h
′)

= |V (H)|dG(g) + |V (G)|dH(h) . (2)

Equation (2) has several consequences. First of all,

dimW(G�H) = |{|V (H)| dG(g) + |V (G)| dH(h) | g ∈ V (G), h ∈ V (H)}| .

Consequently,

max {dimW(G), dimW(H)} ≤ dimW(G�H) ≤ dimW(G)dimW(H) .

For our purposes, we apply Equation (2) as follows:

Corollary 3.2. Let G be a graph and let H be a graph with dimW(H) = 1. Then

dimW(G�H) = dimW(G).



Proof. Since dimW(H) = 1, there exists a constant s such that dH(h) = s for any

h ∈ V (H). Then by (2), dG�H((g, h)) = |V (H)|dG(g) + |V (G)|s for any vertex

(g, h) ∈ V (G�H). The conclusion is then clear.

Now everything is ready for the main result of this section. Since the only graphs

of diameter one are complete graphs, their Wiener dimension is not interesting. How-

ever, for diameter at least two we have:

Theorem 3.3. For any D ≥ 2, and any k ≥ 1 there exists a graph G such that

diam(G) = D, and dimW(G) = k.

Proof. For d ≥ 2 and k = 1 note that diam(C2D) = D and dimW(C2D) = 1. Hence it

remains to prove the theorem for any D ≥ 2 and any k ≥ 2.

Let Gk, k ≥ 2, be the graph defined as follows: V (Gk) = {1, 2, . . . , k + 1} and

ij ∈ E(Gk) whenever i + j ≤ k + 2. The vertex 1 of Gk is of degree k, and since

Gk is not a complete graph we first get that diam(Gk) = 2. Moreover, the degree

sequence of Gk is k, k − 1, . . . , k/2 + 1, k/2, k/2, k/2− 1, . . . , 2, 1 when k is even and

k, k − 1, . . . , (k + 1)/2 + 1, (k + 1)/2, (k + 1)/2, (k + 1)/2− 1, . . . , 2, 1 when k is odd.

In any case, Lemma 3.1 implies that for any k ≥ 2, dimW(Gk) = k.

So Gk, k ≥ 2, is a graph with diam(Gk) = 2, and dimW(Gk) = k. Let now D ≥ 3,

and letH be an arbitrary vertex-transitive graph of diameterD−2. (Say, H = QD−2.)

Then since diam(G�H) = diam(G) + diam(H), we have diam(Gk �H) = 2 + (D −

2) = D and by Corollary 3.2, dimW(Gk �H) = k.

4 Graphs with Wiener dimension 1

In this section we consider graphs with Wiener dimension 1. Examples of such graphs

are vertex-transitive graphs, but there are other examples as well. We construct an

infinite family of non-vertex-transitive graphs with Wiener dimension 1. We also show

that a graph of dimension 1 is 2-connected.

Let Aut(G) denote the automorphism group of the graph G. Let u, v ∈ V (G) and



α ∈ Aut(G) be such that α(u) = v. Then, since α preserves distances, we have

dG(u) =
∑

v∈V (G)

dG(u, v) =
∑

v∈V (G)

dG(α(u), α(v)) =
∑

v∈V (G)

dG(v, α(v)) = dG(v) .

This means that vertices of the same orbit of the automorphism group of a graph G

have the same distance; in particular, dimW(G) = 1 holds for vertex-transitive graphs

G. Using (1) again we thus have:

Corollary 4.1. ([25]) Let G be a vertex-transitive graph and u ∈ V (G). Then

W (G) = |V (G)|dG(u)/2.

Zhang and Li [25] extended this result by considering a subgroup of Aut(G) and

its orbits. The approach using Corollary 4.1 (and its edge-transitivity variation) was

applied in [6].

On the other hand, dG(u) = dG(v) does not necessarily imply that u and v are

in the same orbit of Aut(G) as we have already observed in Fig. 1. Note in addition

that the graph G from the figure is asymmetric.

Theorem 4.2. There exists a family of graphs {Gk}k≥0 such that Gk is non-vertex-

transitive and dimW(Gk) = 1.

Proof. Set G0 to be the Tutte 12-cage. It is well-known that it is not vertex-transitive

and we checked (using computer) that dimW(G0) = 1. Set now Gk = G0�Qk,

k ≥ 1, where Qk is the k-dimensional cube. Since a Cartesian product has tran-

sitive automorphism group if and only if every factor has transitive automorphism

group, cf. [8, Theorem 6.17], we get that Gk, k ≥ 1, is not vertex-transitive. On the

other hand, since Qk is vertex-transitive, dimW(Qk) = 1 and hence by Corollary 3.2,

dimW(Gk) = 1.

It is clear from the above proof that the same effect could also be obtained by

considering Cartesian powers of the Tutte 12-cage, that is, Gk
0, k ≥ 1, are not vertex-

transitive but have Wiener dimension 1.

The Tutte 12-cage is an example of a semisymmetric graph, where a graph G is

called semisymmetric if G is regular, edge-transitive but not vertex-transitive [5]. Of

course, 1 ≤ dimW(G) ≤ 2 holds for any semisymmetric graph G. We have checked

the Wiener dimension of the four smallest cubic semisymmetric graphs. Interestingly,



two of them, namely the Gray graph and the Ljubljana graph have Wiener dimension

2, while the other two—the 110-Iofinova-Ivanov graph and the Tutte 12-cage—have

Wiener dimension 1. It seems an interesting problem to characterize semisymmetric

graphs with Wiener dimension 2.

We conclude with the following structural property of graphs of dimension 1:

Proposition 4.3. If dimW(G) = 1, then G is 2-connected.

Proof. Suppose on the contrary that x is a cut-vertex of G. Let G1 be an arbitrary

connected component of G − x and let G2 be the remaining graph of G − x. Let

|G1| = n1 and |G2| = n2, so that |G| = n1+n2+1. Let y be a neighbor of x from G1.

Denote by d̄G1(x) and d̄G2(y) the sum of the distances between the vertex x (resp. y)

and all the vertices from G1 (resp. G2), i.e.

d̄G1(x) =
∑

v∈G1

dG(x, v) and d̄G2(y) =
∑

v∈G2

dG(y, v) .

Then

d̄G1(x) ≤ d̄G1(y) + n1 ,

d̄G2(y) = d̄G2(x) + n2 .

Summing up these inequalities we get

d̄G1(x) + d̄G2(x) + n2 ≤ d̄G1(y) + d̄G2(y) + n1 .

Since dG(x) = d̄G1(x) + d̄G2(x) and dG(y) = d̄G1(y) + d̄G2(y) + 1 if follows that

dG(x) + n2 ≤ (dG(y)− 1) + n1 .

Therefore, n2 < n1. On the other hand, selecting a neighbor of x in G2, an analogous

argument gives n1 < n2, a contradiction.

As cycles show, in the above proposition 2-connectivity cannot be improved to

3-connectivity. We next show that there are other examples of graphs with Wiener

dimension 1 which are 2-connected but not 3-connected.

Let G2k+1,b be a graph constructed from 2k + 1 copies of the complete graph Kb,

and 2k+1 isolated vertices. Connect each isolated vertex to all the vertices from two



Figure 3: The graph G3,3

copies of Kb in such a way that each vertex from Kb is connected to precisely two

isolated vertices. Fig. 3 depicts the graph G2k+1,b for k = 1 and b = 3.

Graphs G2k+1,b are not 3-connected, but dimW(G2k+1,b) = 1. Due to the symmetry

of the graph we only need to consider two types of vertices. Let x be an arbitrary

vertex connected with two different subgraph Kb, and let y be an arbitrary inner

vertex of some Kb. Then by a simple calculation we find that

dG2k+1,b
(x) = 2k(1 + k) + b(1 + 2k + 2k2) = dG2k+1,b

(y) ,

hence dimW(G2k+1,b) = 1.

5 The Wiener dimension of (5, 0)-nanotubes

A fullerene graph is a 3-connected 3-regular planar graph with only pentagonal and

hexagonal faces. By Euler’s formula, the number of pentagonal faces is always twelve.

Grűnbaum and Motzkin [11] showed that fullerene graphs with n vertices exist for all

even n ≥ 24 and for n = 20. Although the number of pentagonal faces is negligible

compared to the number of hexagonal faces, their layout is crucial for the shape of

fullerene graphs.

Nanotubical graphs or simply nanotubes are cylindrical fullerene graphs with each

of the two ends capped by a subgraph containing six pentagons and possibly some

hexagons called caps, and a “cylindrical” part.

The cylindrical part of the nanotube is determined by the (p1, p2)-vector that de-



fines the way an infinite hexagonal grid is wrapped in order to get the cylindrical part

(the tube). The numbers p1 and p2 denote the coefficients of the linear combination

of the unit vectors ~a1 and ~a2 such that the vector p1~a1 + p2~a2 joins pairs of identified

points, i.e. the integers p1 and p2 denote the number of unit vectors along two direc-

tions in the honeycomb lattice. We can always assume that p1 ≥ p2 since we want

to avoid the mirror effect. Fig. 4 shows the construction of the cylindrical part of a

(4, 3)-nanotube.

A

A

p1~a1

p2~a2

p1~a1 + p2~a2

Figure 4: Construction of the cylindrical part of a (4, 3)-nanotube. The hexagons
with the same name overlap.

Here we will consider the (5, 0)-nanotubes, such nanotubes belong to the family of

zig-zag nanotubes. More precisely, zig-zag nanotubes are nanotubes with p2 = 0. The

two caps of a (5, 0)-nanotube are identical, and comprised only from six pentagons,

one of which is central. Due to this fact the (5, 0)-nanotubes can be represented as

shown in Fig. 5. Such a fullerene has 10k, k ≥ 2, vertices and will be denoted in the

rest with C10k.

From [1] we recall the following result on the diameter of (5, 0)-nanotubes:

Theorem 5.1. If k ≥ 5, then diam(C10k) = 2k − 1.

Let p be the central pentagon in one of the caps of C10k, that is, p is the pentagon

adjacent to five other pentagons. Let the central pentagon in the other cap be denoted

by p′. We define L0 to be the set of all incident vertices to p as an initial layer and

F0 = {p}. Inductively, having defined the sets Li−1 and Fi−1, Li is the set of vertices

incident with Fi−1, not contained in Li−1. Furthermore, Fi is the set of faces incident

with Li that are not contained in Fi−1. For an edge e = uw, where u, w ∈ V (G), we



Figure 5: A (5, 0)-nanotube. The shaded faces are pentagons including the outer face.

say that it is an incoming edge to Li if u ∈ Li−1 and w ∈ Li. If e is an incoming

edge to Li, then we also say that e is an outgoing edge from Li−1. The vertex u is

an outgoing vertex, and w is an incoming vertex, respectively. Notice that a vertex

cannot be outgoing and incoming at the same time; all the vertices in the last layer

are incoming, and those in the first layer are outgoing vertices.

The vertices of C10k are grouped into k+1 layers L0, L1, . . . , Lk, such that L0 and

Lk have five vertices, while the remaining layers have 10 vertices each. The vertices

of C10k can also be grouped into layers with respect to the other central pentagon

p′. Let the i-th layer with respect to the pentagon p′ be denoted by L′
i, 0 ≤ i ≤ k.

Observe that Li = L′
k−i. Even more, if v is an incoming vertex for the layer Li,

then the vertex v is an outgoing vertex for L′
k−i and vice versa. Similarly holds for

incoming and outgoing edges.

The smallest (5, 0)-nanotube is the dodecahedron C20 created only by the two caps.

This fullerene has full icosahedral symmetry, and therefore its Wiener dimension is

one. Using the powers of the adjacency matrix [10] of C30, C40, and C50, we calculate

that dimW (C30) = 3, dimW (C40) = 4, and dimW (C50) = 5. Even more, we find the

following:

• For C30, i.e. k = 3, the vertices from L0 and L3 have distance 99, the incom-

ing vertices from L1 and outgoing vertices from L2 have distance 95, and the

outgoing vertices from L1, as well as incoming vertices from L1 have distance

93.



• For C40, i.e. k = 4, we find 4 classes of vertices: vertices from L0 ∪ L4 with

distance 166, incoming vertices from layer L1 and outgoing vertices from layer

L3 with distance 155, outgoing vertices from L1 and incoming vertices from L2

have distance 148, and vertices from L2 with distance 138.

• For C50, i.e. k = 5, there are 5 different classes of vertices, each of them having

10 vertices. The first class contains all the vertices from the first and last layer.

These vertices have distance 251. The incoming vertices from L1 and outgoing

from L4 are in the second class of vertices with distance 231. The outgoing

vertices from L2 and incoming vertices from L4 have distance 218, and they

form the third class. The remaining vertices from L2 ∪ L4 have distance 198.

The vertices from the layer L3 are in the last class with distance 193.

These computations motivated the following result:

Theorem 5.2. If k ≥ 3, then dimW(C10k) = k.

Proof. The assertion is true for k = 3, 4, 5 by the above computations. In what follows

we assume that k ≥ 6.

From the fullerene’s structure and its symmetry it follows that all the incoming

(resp. outgoing) vertices from the same layer have the same distance. Even more,

an outgoing (resp. incoming) vertex from the layer Li has the same distance as an

incoming (resp. outgoing) vertex from the layer Lk−i. Observe that with this, we

divide the vertices into k classes (each containing ten vertices) such that the vertices

in the same class have the same distance. This observation gives the upper bound

dimW (C10k) ≤ k.

In the sequel we show that vertices from different classes have different distances,

which will establish the theorem. More precisely, we will show that the distance of

the vertices is decreasing when the vertices are “farther” from the central pentagon.

Because of the symmetry we only consider vertices from “one half” of C10k, i.e. layers

L0, L1, . . . , L⌊k/2⌋. Also from each layer we take only two representatives: one incom-

ing, and one outgoing vertex. Notice that if k is even, all of the vertices from Lk/2

have equal distances (belong to the same class).



Denote by

douti (u) =
∑

w∈L0∪···∪Li

d(u, w) ,

the sum of all the distances between an outgoing vertex u ∈ Li to the vertices from

the layers Lj , where 0 ≤ j ≤ i, and

dini (v) =
∑

w∈L0∪···∪Li−1

d(v, w) ,

the sum of all the distances between an incoming vertex v ∈ Li to the vertices from

the previous layers Lj , 0 ≤ j < i.

Let u be a vertex from layer Li, 0 < i < k. Then

dC10k
(u) =

∑

v∈V (C10k)

d(u, v) =

{

dini (u) + doutk−i(u) u is incoming,
douti (u) + dink−i(u) u is outgoing.

(3)

If a vertex belongs to L0 or Lk, then the following claim holds.

Claim 1. If u ∈ L0 ∪ Lk, then dC10k
(u) = 26 + 5k(2k − 1).

Using the adjacency matrix of C60, we find that dC60(u) = 356, and that confirms

the claim for k = 6. Let assume that the claim holds for C10k, k ≥ 6. The fullerene

C10(k+1) can be constructed when 5 outgoing vertices are added in Lk, and new layer

Lk+1 of 5 incoming vertices is formed, in a way that the new graph is still a (5, 0)-

nanotube. Notice that the distance between u and the new outgoing vertices in Lk is

diam(C10(k+1)) − 1, and the distance between u and the vertices from the new layer

Lk+1 is diam(C10(k+1)). By induction and Theorem 5.1, we have

dC10(k+1)
(u) = 26 + 5k(2k − 1) + 5[2(k + 1)− 2 + 2(k + 1)− 1]

= 26 + 5(k + 1)(2k + 1) ,

which proves Claim 1.

In the following we will simplify the notations douti (u) and dini (u) to douti and dini

respectively.

Claim 2. If 5 ≤ i < k, then

douti = 40 + 5i(2i+ 1) . (4)



To prove the claim we again proceed by induction in a similar way as for Claim 1.

The basis of it is for k = 5 in which case we have dout5 = 315. The values of douti ,

i ≤ 5, are given in Table 1.

i 0 1 2 3 4 5
douti 6 39 84 144 220 315
dini 36 79 134 204 290

Table 1: The values of douti and dini for i ≤ 5.

Let v ∈ Li be an incoming vertex, and let u be the adjacent vertex to v such that

u ∈ Li−1. Clearly, u is an outgoing vertex, and a shortest path from v to any vertex

from Lj , 0 ≤ j < i goes through the vertex u, i.e. d(v, x) = d(u, x) + 1, where x ∈ Lj

and 0 ≤ j < i. This observation gives us the following

dini = douti−1 + |L0 ∪ · · · ∪ Li−1| = douti−1 + 5 + 10(i− 1) = douti−1 + 10i− 5.

After plugging this relation in (4), for 6 ≤ i < k we get

dini = 40 + 5i(2i− 1) . (5)

The values of dini for i ≤ 5 are also given in Table 1.

Now we can determine the distance of each vertex of C10k. If u ∈ Li for 6 ≤ i ≤

k − 6, then

dC10k
(u) =

{

80 + 5[i(2i− 1) + (k − i)(2k − 2i+ 1)] u is incoming,
80 + 5[i(2i+ 1) + (k − i)(2k − 2i− 1)] u is outgoing.

(6)

The distances for u ∈ Li, 0 ≤ i ≤ 5 (resp. k − 5 ≤ i ≤ k) are calculated using

Equations (3), (4), and (5), and Table 1; the results are presented in Table 2.

Let u, v be two adjacent vertices. In order to conclude the proof of the theorem

we consider the following two cases:

Case 1. u and v belong to the same layer Li, 0 < i ≤ ⌊k/2⌋ (in the first half of the

tube).

Let u be an incoming vertex, and v be an outgoing vertex. If k is even and i = k/2,

then u, v belong to the layer Lk/2. From the symmetry of the (5, 0)-nanotube, as

mention above dC10k
(u) = dC10k

(v), i.e. u and v belong to the same class.



i u is incoming vertex u is outgoing vertex
0 26 + 5k(2k − 1)
1 51 + 5(k − 1)(2k − 1) 79 + 5(k − 1)(2k − 3)
2 94 + 5(k − 2)(2k − 3) 124 + 5(k − 2)(2k − 5)
3 149 + 5(k − 3)(2k − 5) 184 + 5(k − 3)(2k − 7)
4 219 + 5(k − 4)(2k − 7) 260 + 5(k − 4)(2k − 9)
5 305 + 5(k − 5)(2k − 9) 355 + 5(k − 5)(2k − 11)

Table 2: The distance of the vertex u ∈ Li for i ≤ 5. Knowing that an incoming (resp.
outgoing) vertex from Li has the same distance as an outgoing (resp. incoming) vertex
from Lk−i, this table also gives the distance of the vertex u ∈ Li for k − 5 ≤ i ≤ k.

Now, it remains to consider the cases i ≤ ⌊(k− 1)/2⌋. From the results presented

in Table 2, for i ≤ 5 we find that dC10k
(u) − dC10k

(v) = Ci + 10(k − i), where C1 =

−28, C2 = −30, C3 = −35, C4 = −41, and C5 = −50. Since i ≤ ⌊(k−1)/2⌋, one can

easily deduce that Ci + 10(k − i) > 0, i.e. dC10k
(u) > dC10k

(v). For i > 5 we use (6),

and find d(u)− d(v) = 10(k − 2i) > 0. Observe that the distance between L0 and v

(the smallest distance between a vertex from L0 and v) is greater than the distance

between L0 and u.

Case 2. u and v belong to different layers, say v ∈ Li and u ∈ Li−1.

Clearly v is an incoming, and u is an outgoing vertex. Notice that a shortest path

between v and any vertex x from the layers L0∪· · ·∪Li−1 traverses the vertex u, and

vice versa the shortest path between u and any vertex y form the layers Li ∪ · · · ∪Lk

passes trough v. Therefore we have d(x, v) = d(x, u) + 1, and d(y, u) = d(x, v) + 1.

Now,

dC10k
(u)− dC10k

(v) =
∑

w∈V (C10k)

[d(u, w)− d(v, w)]

= |Li ∪ · · · ∪ Lk| − |L0 ∪ · · · ∪ Li−1|

= 10(k − 2i) + 5,

which is nonnegative since i ≤ ⌊k/2⌋. Notice that in this case as well, the distance

between v and L0 is greater than the distance between u and L0.

Combining Eq. (1) with the above computations we conclude the paper with the

following corollary already obtained by Graovac et al [10].



Corollary 5.3. W (C20) = 500, W (C30) = 1435, W (C40) = 3035, and for k ≥ 5,

W (C10k) =
100

3
k3 +

1175

3
k − 670 .
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