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Abstract

The distance dðu; vjGÞ between the vertices u and v of a molecular graph G is the length of a shortest u; v-path. We

consider a class of Wiener-type topological indices WkðGÞ, defined as the sum of the terms dðu; vjGÞk over all pairs of

vertices of G. Several special cases of WkðGÞ, namely for k ¼ þ1 (the original Wiener number) as well as for k ¼ �2;�1,

+1/2, +2 and +3, were previously studied in the chemical literature, and found applications as molecular structure-

descriptors. We establish a relation between Wkþ1 and Wk, applicable for benzenoid molecules, phenylenes, chemical

trees, and other types of molecular graphs.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

One of the oldest, best studied and most often

applied molecular-graph-based structure-descrip-

tor [1] is the Wiener topological index [2]

W ¼ W ðGÞ ¼
X
u;v

dðu; vjGÞ: ð1Þ

If Eq. (1) G stands for a molecular graph,

dðu; vjGÞ is the distance (¼ number of edges in a

shortest path) between the vertices u and v of G,
and the summation embraces all pairs of vertices

of G. The Wiener index was introduced in 1947.

After a latent period of almost half century, within
only a few years, a plethora of generalizations and

extensions of the Wiener-index-concept has been

put forward. Many (but not all) of these Wiener-

type indices can be expressed in terms of the

quantities

Wk ¼ WkðGÞ ¼
X
u;v

dðu; vjGÞk; ð2Þ

where, clearly, W1 coincides with the ordinary

Wiener index.

First of all, the Wiener-type topological indices

W�2, W�1, and W�1=2 were introduced in the works

[3–6], respectively. The quantity W�2 was named

�Harary index� [3], but later the same name was

used for W�1 [4]; other authors call W�1 the �re-
ciprocal Wiener index� [5]. Klein et al. [7] demon-

strated that the so-called �hyper-Wiener index� [8]
can be expressed as WW ¼ ð1=2ÞW1 þ ð1=2ÞW2.

In another work [9] Klein et al. established

the expression ð1=6ÞW3 þ ð1=2ÞW2 þ ð1=3ÞW1 for a
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structure-descriptor earlier considered by Tratch

et al. [10]. The quantity Wk, as given by Eq. (2) and

with k being an unspecified continuous variable,

was studied for the first time by one of the present

authors [11]. In the work [12] some properties of

Wk were investigated for �106 k6 10.
Note that all the papers [3–12] appeared within

less than 10 years.

In view of the works [3–12] on various Wiener-

type topological indices, it may be of some value to

search for properties of Wk that hold for any value

of k. In this Letter we report such a relation,

connecting Wkþ1 with Wk, applicable to benzenoid

molecules and a variety of other molecular graphs.
In order to deduce this relation we need some

preparations.

2. Wiener-type indices of disconnected graphs

The definition (2) of Wk requires that the graph

G be connected. As a consequence, practically the
entire research on the Wiener index and its cong-

eners, done so far, was restricted to connected

graphs. Yet, this restriction can be overcome.

Denote by dðG; kÞ the number of pairs of ver-

tices of the graph G that are at distance k, and note

that this quantity is well defined for both con-

nected and disconnected graphs. In particular,

dðG; 0Þ ¼ number of vertices of G, and dðG; 1Þ ¼
number of edges of G. Then the right-hand side of

Eq. (2) can be rewritten as

Wk ¼ WkðGÞ ¼
X
k P 1

dðG; kÞkk: ð3Þ

Formula (3) may be viewed as the definition of

the Wiener-type indices of disconnected graphs.
Since we consider only finite (molecular) graphs,

the above sum is always finite. It is easy to see that

if G consists of components G1;G2; . . . ;Gp, then

WkðGÞ ¼ WkðG1Þ þ WkðG2Þ þ � � � þ WkðGpÞ:

3. Benzenoid systems and their elementary cuts

Benzenoid systems (molecular graphs of

benzenoid hydrocarbons) have been extensively

studied in chemical graph theory [13]. A self-ex-

planatory example of a benzenoid system is de-

picted in Fig. 1.

An elementary cut of a benzenoid system B is a

straight line segment, passing through the middle

of some edges, orthogonal to these edges, that
intersects the perimeter of B exactly two times.

Elementary cuts of benzenoid systems have been

much studied (see, for instance, [14–19]). Illustra-

tive examples thereof are found in Fig. 1.

Every edge of a benzenoid system is intersected

by exactly one elementary cut. A benzenoid system

with h hexagons and ni internal vertices has

c ¼ 2hþ 1� ni distinct elementary cuts [18].
Elementary cuts are, in fact, just a diagram-

matic presentation of the Djokovi�cc–Winkler rela-

tion H [20,21], known in the theory of so-called

�partial cubes�, namely isometric subgraphs of hy-

percubes [22]. (Benzenoid systems are partial cubes

[15].)

Let e1 ¼ ðu1; v1Þ and e2 ¼ ðu2; v2Þ be two edges

of a graph G. One says [19,20] that e1 and e2 are
in relation H, e1He2, if dðu1; u2jGÞ þ dðv1; v2jGÞ 6¼
dðu1; v2jGÞ þ dðv1; u2jGÞ.

In the case of partial cubes the relation H is

transitive, i.e., if e1He2 and e2He3, then e1He3.
If e1 and e2 are edges of a hexagon (or, more

generally, of an even-membered cycle), then e1He2
if and only if these edges lie opposite to each other.

Then, because of the transitivity of H, all edges of
a benzenoid system lying on an elementary cut

Fig. 1. A benzenoid system B (perylene), three of its elementary

cuts (C1;C2;C3), and the subgraphs obtained by dissecting B
along C1, C2, and C3. The perylene graph has a total of nine

elementary cuts.
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(and only these edges) are mutually H-related. One

says that they form a H-class; an example is shown

in Fig. 2.

Using the technique of H-relations it is possible

to deduce certain results for Wk of benzenoid sys-

tems (or, more generally, of partial cubes). This is

outlined in the subsequent section.

4. The main result

If B is a benzenoid system, then for any real (or

complex) value of the parameter k,

Wkþ1ðBÞ ¼ cWkðBÞ �
X
C

WkðBnCÞ: ð4Þ

In Eq. (4) C stands for an elementary cut, and

the summation goes over all elementary cuts of B;
the total number of elementary cuts of B is de-

noted by c. As already mentioned, c ¼ 2hþ 1� ni.

Recall also that WkðB n CÞ is computed using for-

mula (3) that is applicable to disconnected graphs.

In order to verify Eq. (4) we need the following

facts about the relation H in the case when the

graph G is a partial cube, cf. [22,23]:

(i) G is a connected graph.
(ii) A path P in G is a geodesic if and only if no

two different edges of P are in relation H.

(iii) Let F1; F2; . . . ; Fc be the H-classes of G. Then
for i ¼ 1; 2; . . . ; c, the subgraph G n Fi consists
of two connected components.

Proof of Eq. (4).

Consider a partial cube G and let F1; F2; . . . ; Fc

be its H-classes. Define an auxiliary quantity X as

X ¼
Xc

i¼1

WkðG n FiÞ:

Let u and v be arbitrary vertices ofG. By property
(i) their distance is well-defined, dðu; vjGÞ ¼ kP 1.

Let P be a u; v-geodesic. By property (ii), the edges

of P belong to different H-classes, say to

F1; F2; . . . ; Fk. By property (iii), u and v belong to

different components of G n Fi for i ¼ 1; . . . ; k, but
are in the same component for i ¼ k þ 1; . . . ; c.

Therefore, dðu; vjG n FiÞ ¼ k for i ¼ k þ 1; . . . ; c,
and the pair u; v contributes ðc � kÞ-times to X .
Summing these contributions over all pairs of

vertices of B we arrive at:

X ¼
X
k P 1

ðc � kÞdðG; kÞkk

¼ c
X
k P 1

dðG; kÞkk �
X
k P 1

dðG; kÞkkþ1

¼ cWkðGÞ � Wkþ1ðGÞ;

resulting in the identity

cWkðGÞ � Wkþ1ðGÞ ¼
Xc

i¼1

WkðG n FiÞ: ð5Þ

In the case of benzenoid systems, the H-classes

in (5) may be replaced by elementary cuts, and
Eq. (4) follows.

5. Discussion and concluding remarks

In the special cases k ¼ 0 and k ¼ 1 formula (4)

can be significantly simplified.

Fig. 2. Diagram 1: dðu1; u2Þ ¼ 1, dðv1; v2Þ ¼ 3, dðu1; v2Þ ¼ 2,

dðv1;u2Þ ¼ 2 ; therefore dðu1;u2Þþ dðv1;v2Þ ¼ dðu1;v2Þþ dðv1;u2Þ
implying that the edges e1 and e2 are not in relation H. Diagram

2: dðu1;u2Þ ¼ 2, dðv1;v2Þ ¼ 2, dðu1;v2Þ ¼ 3, dðv1;u2Þ ¼ 3; there-

fore dðu1; u2Þ þ dðv1; v2Þ 6¼ dðu1; v2Þ þ dðv1; u2Þ implying that

the edges e1 and e2 are in relation H. Diagram 3: The edges e1
and e2 lie on opposite sides of the hexagon a of the benzenoid

system B; therefore e1He2. The edges e2 and e3 lie on opposite

sides of the hexagon b, whereas e3 and e4 lie on opposite sides of

the hexagon c; therefore e2He3 and e3He4. Then, by transitivity,
e1He3, e1He4, and e2He4. The edges e1; e2; e3; e4 form a H-class,

which is just another way of presentation of the elementary cut

depicted in Diagram 4.
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For a connected n-vertex graph G, W0ðGÞ ¼ n
2

� �
.

If, in turn, G possesses two components, with n1
and n2 vertices, then W0ðGÞ ¼ n1

2

� �
þ n2

2

� �
. Bearing

these relations in mind, we get from (4):

W ðBÞ ¼ c
n
2

� �
�
X
C

n1ðCÞ
2

� ��
þ n2ðCÞ

2

� �	
;

where n1ðCÞ and n2ðCÞ count the vertices of the

two components of BnC. Taking into account that

for all elementary cuts, n1ðCÞ þ n2ðCÞ ¼ n, and

that there are c distinct elementary cuts, we arrive

at a remarkably simple, previously reported [17],
expression for the Wiener index:

W ðBÞ ¼
X
C

n1ðCÞn2ðCÞ:

Setting k ¼ 1 we obtain from (4)

W2ðBÞ ¼ cW ðBÞ �
X
C

W ðBnCÞ;

from which follows a new connection between the

Wiener and hyper-Wiener indices of benzenoid

systems:

WW ðBÞ ¼ c þ 1

2
W ðBÞ � 1

2

X
C

W ðBnCÞ: ð6Þ

Identity (5) holds for all partial cubes. There are

molecular graphs, other than benzenoid systems,

that are partial cubes. Of them, phenylenes and

(chemical) trees deserve particular attention.
In the case of phenylenes formula (4) is appli-

cable without any modification. For a phenylene

with h hexagons, c ¼ 3h.
In the case of (chemical) trees, each edge be-

longs to a different H-class. Then Eq. (4) reduces

to [24]:

Wkþ1ðT Þ ¼ ðn� 1ÞWkðT Þ �
X
e

WkðT � eÞ: ð7Þ

where T stands for an n-vertex tree, and the sum-

mation goes over all edges e of T .
From identity (7) we straightforwardly arrive at

the following special case of Eq. (6):

WW ðT Þ ¼ n
2
W ðT Þ � 1

2

X
e

W ðT � eÞ; ð8Þ

that was earlier communicated in [25]. In reality,

after the discovery of relation (8) [25], efforts have

been made to understand its origin and extend the

range of its validity. This resulted first in formula

(7) [24] and eventually in (4) and (5).

Thus, by applying certain advanced proof

techniques of graph theory [22], we could shed
some light on the perplexed and hitherto con-

cealed relations between various Wiener-type to-

pological indices. These results enable a better

insight into the structure-dependency of these

structure-descriptors and also make easier their

calculation.
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