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Abstract

Topological indices are graph invariants which provide quantitative information on molecular

structures and thus they yield quantitative structure activity relationships (QSAR) and quantitative

structure property relationships (QSPR) for the prediction of physico chemical properties of com-

pounds. The zeolite RHO frameworks have received considerable attention as they are extremely

useful in trapping heavy metal ions and thus in environmental remediation. These frameworks

contain optimal cavities to trap toxic medial ions and recently for heavier halogen substitution. We

have applied an efficient technique to obtain exact analytical expressions for the various relativistic

topological descriptors of the zeolite RHO structures by graph-theoretical cut methods that reduce

the complex structures with tunnels and cages into simpler graphs. Our incorporation of relativistic

parameters would be especially useful for the characterization of properties when heavier atoms are

incorporated.

Keywords: Graph metrics; topological indices; cut method; zeolites; relativistic QSAR of

materials.
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1 Introduction

Zeolites are crystalline microporous aluminosilicates with uniform cavities that can trap multiple toxic

metal ions and environmental pollutant gases. Zeolite RHO is a material with considerable potential

as it offers smaller pore sizes of 3.6Å × 3.6Å with a relatively low Si/Al ratio of 2.5− 3.0. The zeolite

offers significant flexibility during sorptions and thus these materials offer considerable promise to trap

multiple metal ions of varying sizes such as Na+, Cd2+, Sr2+, Rb+, Ba2+ etc. Moreover they have

also been considered as potential candidates for the environmental remediation of high level nuclear

wastes. The structure of zeolite RHO consists of a body centered cubic arrangement of α-cages linked

via double 8-rings [1] as shown in Figure 1. This framework displays a considerable flexibility during

the sorption-desorption process with metal ions and molecules, and thus it is able to adapt to various

cation sizes and shaped adsorbent molecules [2, 3]. Johnson et al. [4] have reported the synthesis of

a microporous aluminogermanate with a zeolite RHO topology of composition Na16Cs8Al24Ge24O96.

In this framework cation (sodium and cesium) sites can be substituted by a number of cations such

as NH+
4 , Ba2+, Sr2+ and Cd2+ etc. [4], thus acting as sorption sites for such metal ions. More

recently Sun et al. [5] have reported a novel high-silica zeolite RHO that included a self-assembled

Cs+-18-crown -6 sandwich complex. The crown complex containing Cs+ exhibits a greater catalytic

activity for ethanol dehydration than other materials with a considerably enhanced selectivity toward

ethylene. Zeolite RHO exhibits a high selectivity in catalyzing the production of dimethylamine

from ammonia and methanol [6–11]. In addition, it can also serve as a hydrogen storage material

with tailor-made pore sizes and cations that are suitable for hydrogen absorption [12–14] or as a

CO2 selective adsorbent [15]. The aluminosilicate framework of zeolite RHO undergoes a significant

distortion and loss of symmetry upon dehydration. Ng et al. [16] have used an ultraviolet irradiation

method for faster and efficient synthesis of zeolite RHO; the technique has yielded high crystallinity

with a truncated octahedral morphology. Hence molecular sieves and zeolites are becoming important

materials for gas sorptions catalysis and environmental remediation through sorption of toxic heavy

metal ions including high level radioactive wastes [17,18] as they offer flexible pore size to accommodate

multiple ions. Furthermore, heavier halogen substitution such as Br in scapolite-group minerals and

sodalite has received experimental and mineralogical interest [19]. Typically the solid samples of these

materials are characterized with X-ray diffraction (XRD), field emission scanning electron microscopy

(FESEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and

nitrogen adsorption-desorption analysis in order to establish their structures and pore sizes.

The design of new materials as well as proposed materials with novel architecture require theoretical

insights and knowledge concerning feasible structures, their topologies, as well as short and long-
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Figure 1: Zeolite RHO structure

range orders. The topology of the zeolite RHO material is directly connected to tiling and sphere

packings [20]. The nomenclature of each material is based on its zeolite framework type and it is

assigned a three letter code usually derived from the name of the source material; the code is used in

describing the network of corner sharing tetrahedral of the atoms irrespective of its composition [21–23].

Chemical graph theory is a branch of discrete mathematics which facilitates the computation of

topological descriptors of molecular structures which can then be used to predict the physico chemical

properties of complex systems such as zeolite RHO materials. Molecular graphs are structural repre-

sentations, where the vertices represent the atoms in the molecular structure and the edges represent

the chemical bonds. As properties of molecules are functions of their structures, real numbers derived

from the associated molecular graphs are called the graph invariants or more frequently structural

descriptors (topological indices). In the study of QSAR and QSPR these parameters are utilized to

compute the physico chemical and biological activities of chemical compounds from their molecular

structures. In this regard, a topological index can be regarded as a score function which maps each

molecular structure to a real number and then used as a descriptor of the molecule under consideration.

In the present study we consider the computation of relativistic topological indices for zeolite RHO

materials that can incorporate heavy ions such as Cs+, Ba2+, Sr2+, Cd2+ , Hg2+, Br− as well as heavy

metal oxide ions like UO2
2+ that are present in high level nuclear wastes. For such systems containing

very heavy atoms, relativistic effects including spin-orbit coupling alter the geometries, energetics,

topological and reactivity properties of these compounds are extremely important [24–27]. Thus any

realistic development of topological indices must include the relativistic parameters into both vertices

and edges of the molecular structures. Consequently, the present study considers such a development

of topological indices that incorporate relativistic effects. Furthermore we have validated the derived
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analytical results for the topological indices of zeolite RHO networks by computing several of the

topological indices by the software Topochemie-2020 [67].

2 Computational Techniques

We start with some basic definitions and notations that will be used in the paper. Let G be a finite

simple connected graph with vertex set and edge set respectively as V (G) and E(G). We define

dG(u, v) to be the usual shortest-path distance between vertices u, v ∈ V (G) and the distance between

a vertex u ∈ V (G) and an edge f = xy ∈ E(G) is defined as dG(u, f) = min{dG(u, x), dG(u, y)}.

Moreover, the shortest-path distance between edges g = ab and f = xy is defined as DG(g, f) =

min{dG(a, f), dG(b, f)}. For an edge e = uv ∈ E(G), we propose the values nu(e|G) and mu(e|G)

are defined as the number of vertices and edges of G respectively whose distance to the vertex u is

smaller than the distance to the vertex v. Similarly, nv(e|G) and mv(e|G) are defined as the number

of vertices and edges of G respectively whose distance to the vertex v is smaller than the distance to

the vertex u.

Let degG(u) be the number of edges that incident to u and the degree of an edge e = uv ∈ E(G)

is defined as the number of edges adjacent to e and denoted by degG(e). i.e., degG(e) = degG(u) +

degG(v) − 2. In addition to the degree measure of the edge, there are two types of measures defined

based on the degrees of end vertices and given below:

• w+(e) = degG(u) + degG(v).

• w∗(e) = degG(u) degG(v).

We now present the definitions of Wiener-type, Szeged-type, Mostar-type and degree-based topo-

logical indices for a simple graph G [28–50].

(1) Wiener-type indices:

Wiener W (G) =
∑

{u,v}⊆V (G)

dG(u, v)

Edge Wiener We(G) =
∑

{f,g}⊆E(G)

DG(f, g)

Vertex-edge Wiener Wev(G) =
1

2

∑
u∈V (G)

∑
f∈E(G)

dG(u, f)

Schultz S(G) =
∑

{u,v}⊆V (G)

(degG(u) + degG(v))dG(u, v)
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Gutman Gut(G) =
∑

{u,v}⊆V (G)

degG(u) degG(v)dG(u, v)

(2) Szeged-type indices:

Vertex Szeged Szv(G) =
∑

e=uv∈E(G)

nu(e|G)nv(e|G)

Edge Szeged Sze(G) =
∑

e=uv∈E(G)

mu(e|G)mv(e|G)

Edge-vertex Szeged Szev(G) = 1
2

∑
e=uv∈E(G)

(nu(e|G)mv(e|G) + nv(e|G)mu(e|G))

Padmakar-Ivan PI(G) =
∑

e=uv∈E(G)

(mu(e|G) +mv(e|G))

w+-vertex Szeged w+Szv(G) =
∑

e=uv∈E(G)

w+(e) nu(e|G)nv(e|G)

w+-edge Szeged w+Sze(G) =
∑

e=uv∈E(G)

w+(e) mu(e|G)mv(e|G)

w+-Padmakar-Ivan w+PI(G) =
∑

e=uv∈E(G)

w+(e) (mu(e|G) +mv(e|G))

w∗-vertex Szeged w∗Szv(G) =
∑

e=uv∈E(G)

w∗(e) nu(e|G)nv(e|G)

w∗-edge Szeged w∗Sze(G) =
∑

e=uv∈E(G)

w∗(e) mu(e|G)mv(e|G)

w∗-Padmakar-Ivan w∗PI(G) =
∑

e=uv∈E(G)

w∗(e) (mu(e|G) +mv(e|G))

(3) Mostar-type indices:

Mostar Mo(G) =
∑

e=uv∈E(G)

∣∣nu(e|G)− nv(e|G)
∣∣

Edge Mostar Moe(G) =
∑

e=uv∈E(G)

∣∣mu(e|G)−mv(e|G)
∣∣

w+-Mostar w+Mo(G) =
∑

e=uv∈E(G)

w+(e)
∣∣nu(e|G)− nv(e|G)

∣∣
w+-edge Mostar w+Moe(G) =

∑
e=uv∈E(G)

w+(e)
∣∣mu(e|G)−mv(e|G)

∣∣
w∗-Mostar w∗Mo(G) =

∑
e=uv∈E(G)

w∗(e)
∣∣nu(e|G)− nv(e|G)

∣∣
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w∗-edge Mostar w∗Moe(G) =
∑

e=uv∈E(G)

w∗(e)
∣∣mu(e|G)−mv(e|G)

∣∣
(4) Degree-based indices:

First Zagreb M1(G) =
∑

e=uv∈E(G)

w+(e)

Second Zagreb M2(G) =
∑

e=uv∈E(G)

w∗(e)

Randić R(G) =
∑

e=uv∈E(G)

1√
w∗(e)

Atom Bond Connectivity ABC(G) =
∑

e=uv∈E(G)

√
w+(e)− 2

w∗(e)

Harmonic H(G) =
∑

e=uv∈E(G)

2

w+(e)

Sum Connectivity SC(G) =
∑

e=uv∈E(G)

1√
w+(e)

Hyper Zagreb HM(G) =
∑

uv∈E(G)

(w+(e))2

Geometric Arithmetic GA(G) =
∑

e=uv∈E(G)

2

√
w∗(e)

w+(e)

Irregularity Measure irr(G) =
∑

e=uv∈E(G)

∣∣degG(u)− degG(v)
∣∣

Sigma σ(G) =
∑

e=uv∈E(G)

(
degG(u)− degG(v)

)2
Forgotten F (G) =

∑
e=uv∈E(G)

(
degG(u)2 + degG(v)2

)
Symmetric Division Degree SDD(G) =

∑
e=uv∈E(G)

(
degG(u)

degG(v)
+

degG(v)

degG(u)

)

We expand this preliminary section by defining a few concepts related to the cut method [52,53],

which has been used in the computation of relativistic topological descriptors of certain types of zeolite

structures [23, 51]. A subgraph H of a graph G is said to be isometric if dH(u, v) = dG(u, v) holds

for all pairs of vertices u and v of H. The family of graphs that comprises of all isometric subgraphs

of hypercubes are known as partial cubes. The Djoković-Winkler relation Θ [54, 55], which acts a

decisive part in our computations, is defined as follows: if e = ab ∈ E(G) and f = cd ∈ E(G), then

eΘf if dG(a, c) + dG(b, d) 6= dG(a, d) + dG(b, c). The relation Θ is reflexive and symmetric, but not
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transitive in general. If G is a partial cube, then Θ is also transitive and hence G is an equivalence

relation. Moreover, in that case for any Θ-class Fi, the graph G−Fi consists of exactly two connected

components [52]. We now define the measures of Fi based on w+ and w∗ as w+(Fi) =
∑
s∈Fi

w+(s), and

w∗(Fi) =
∑
s∈Fi

w∗(s). The standard cut method for the computation of topological indices [48,50,55–64]

can be now expressed as follows.

Theorem 2.1. Let G be a partial cube with its Θ-partition F = {F1, . . . , Fk}. For each 1 ≤ i ≤ k, let

XFi and Y Fi be the connected components of G. Let n1(Fi) = |V (XFi)|, n2(Fi) = |V (Y Fi)|, m1(Fi)

= |E(XFi)| and m2(Fi) = |E(Y Fi)|. Then

1. W (G) =
k∑
i=1

n1(Fi) n2(Fi),

2. We(G) =
k∑
i=1

m1(Fi) m2(Fi),

3. Wev(G) =
k∑
i=1

1

2
[n1(Fi) m2(Fi) + n2(Fi) m1(Fi)],

4. Szv(G) =
k∑
i=1
|Fi| n1(Fi) n2(Fi),

5. Sze(G) =
k∑
i=1
|Fi| m1(Fi) m2(Fi),

6. Szev(G) =
k∑
i=1

1

2
|Fi| {n1(Fi) m2(Fi) + n2(Fi) m1(Fi)},

7. PI(G) = |E(G)|2 −
k∑
i=1
|Fi|2,

8. S(G) = |E(G)||V (G)|+
k∑
i=1

2[n1(Fi) m2(Fi) + n2(Fi) m1(Fi)],

9. Gut(G) = 2|E(G)|2 +
k∑
i=1

[4m1(Fi) m2(Fi)− |Fi|2],

10. Mo(G) =
k∑
i=1
|Fi|

∣∣n1(Fi) − n2(Fi)
∣∣,

11. Moe(G) =
k∑
i=1
|Fi|

∣∣m1(Fi) − m2(Fi)
∣∣,

When # ∈ {+, ∗},

12. w#Mo(G) =
k∑
i=1

w#(Fi)
∣∣n1(Fi) − n2(Fi)

∣∣,
13. w#Moe(G) =

k∑
i=1

w#(Fi)
∣∣m1(Fi) − m2(Fi)

∣∣,
7



14. w#Szv(G) =
k∑
i=1

w#(Fi) n1(Fi) n2(Fi),

15. w#Sze(G) =
k∑
i=1

w#(Fi) m1(Fi) m2(Fi),

16. w#PI(G) =
k∑
i=1

w#(Fi) (m1(Fi) + m2(Fi)).

3 A Construction of Partial Cubes

In order to apply Theorem 2.1, we need to deal with partial cubes. To establish this fact for the key

players of this paper, zeolite RHO materials, the theorem proved in this section is essential. To prove

it, we recall the following two result, see [65, Lemma 11.2] and [65, Lemma 11.3], respectively.

Lemma 3.1. Let G be a bipartite graph and e = uv, f = xy be two edges of G with eΘf . Then the

notation can be chosen such that dG(u, x) = dG(v, y) = dG(u, y)− 1 = dG(v, x)− 1.

Lemma 3.2. Suppose that a walk P connects the endpoints of an edge e but does not contain it. Then

P contains an edge f with eΘf . If it is the only edge of P with this property, then it cannot be incident

with e.

To state the key result recall that a subgraph H of a graph G is convex if for each pair of vertices

x and y of G, each shortest path between x and y in G lies completely in H, and that a set of edges

of G is called a perfect matching if it an independent edge set that covers every vertex of G.

Theorem 3.1. Let G and H be partial cubes, and let CG and CH be convex cycles in G and H,

respectively, where |CG| = |CH |. Let X be the graph obtained from the disjoint union of G and H by

adding a perfect matching between CG and CH which induces an isomorphism between CG and CH .

Then X is a partial cube.

Proof. To prove the result we will use Winkler’s characterization that a connected graph G is a partial

cube if and only if G is bipartite and Θ is transitive on E(G) [55]. First, since G and H are partial

cubes, they are bipartite graphs. It is then straightforward to see that X is bipartite as well. It

remains to show that Θ is transitive in X.

Let e1 = x1y1, e2 = x2y2, and e3 = x3y3 be arbitrary edged of X such that e1Θe2 and e2Θe3 hold.

We need to prove that e1Θe3 holds as well. If e1, e2, e3 ∈ E(G), then since G is convex in X and G

is a partial cube, e1Θe3 holds by Wikler’s theorem applied to G (as a subgraph of X). Similarly, if

e1, e2, e3 ∈ E(H), we have the same conclusion.

Consider next the case that e1 is one of the matching edges between G and H. Assume without

loss of generality that x1 ∈ V (G) and y1 ∈ V (H). Then dX(y1, u) = dX(x1, u) + 1 holds for each
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vertex u ∈ V (G). Using Lemma 3.1 it follows that e1 is not in relation Θ with any of the edges from

E(G). So e1 can be only in relation Θ with matching edges. It is straighforward to see that e1 is

indeed in relation Θ with all the matching edges. In particular, e2 and e3 are also matching edges and

e1Θe3 holds.

It remains to consider the case in which two of the edges e1, e2, e3 lie in E(G) and one in E(H) or the

other way around. Without loss of generality, there are two cases to be considered: (i) e1, e2 ∈ E(G)

and e3 ∈ E(H), and (ii) e1, e3 ∈ E(G) and e2 ∈ E(H).

Suppose first that e1, e2 ∈ E(G) and e3 ∈ E(H). Recall that e1Θe2 and e2Θe3. By Lemma 3.1 we

may assume that dX(x2, x3) = dX(y2, y3) = dX(x2, y3) − 1 = dX(y2, x3) − 1. Let P be an arbitrary

shortest x2, x3-path and let u be the first vertex on P which lies in CG. Denoting the neighbor of u

in H by u′ we may assume that u′ also lies on P . Since dX(y2, x3) = dX(x2, x3) + 1, we infer that

dX(y2, u) = dX(x2, u) + 1. Consider next a shortest y2, y3-path Q, and let w be the first vertex of Q

that lies on CG. Then w 6= u, for otherwise we would have dX(y3, u
′) < dX(x3, u

′) which is not possible

because it would imply that dX(y3, x2) < dX(x3, x2). Consider now the walk W which connects x2

with y2 and is composed of the subpath of P between x2 and u, a shortest path between u and w on

CG, and the subpath of Q between w and y2. By Lemma 3.2, W contains an edge f such that e2Θf .

Since no two edges of a shortest path are in relation Θ, we infer that f must be an edge of the cycle

CG. Because e1Θe2, e2Θf , and e1, e2, f ∈ E(G), we get that e1Θf . Denoting by f ′ the isomorphic

copy of f in CH we also get that e1Θf
′. But then, since the distance function between the end vertices

of e1 and f ′, and between f ′ and e3 is additive, we conclude that e1Θe3.

Suppose second that e1, e3 ∈ E(G) and e2 ∈ E(H), where again e1Θe2 and e2Θe3. Considering

the edges e1 and e2 and using an argument parallel to the above reasoning, we find that there exists

an edge f ∈ CG such that e1Θf . Let f ′ be the isomorphic copy of f in CH . Similarly, considering the

edges e3 and e2 we find that there exists an edge g ∈ CG such that e3Θg. Let g′ be the isomorphic

copy of g in CH . Since f ′Θe2 and e2Θg
′, and H is a partial cube, we see that f ′Θg′. Consequently,

fΘg. But now we have e1ΘfΘgΘe3, and as these are all edges of G (which is a partial cube and a

convex subgraph of X), transitivity implies that e1Θe3.

4 Results and Discussion

The primitive unit cell of zeolite RHO materials is a truncated cuboctahedron, called the α-cage. It

is an Archimedean solid consisting of 48 vertices and 72 edges with 26 faces made of 12 squares, 8

hexagons and 6 octagons that preserve the point group symmetry on each its face as depicted in Figure

2(a). That this α-cage, that is, the truncated cuboctahedron, belongs to the class of partial cubes has
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(a) α–cage (b) RHO(2, 2)

Figure 2: Primitive unit cell of zeolite RHO and its single layer

been shown in [66] where an extensive search for cubic partial cubes has been performed.

The zeolite RHO materials are designed by arranging the α-cages in a 3D mesh a× b× c such that

two α-cages are connected by two eight-membered rings (octagonal prism) in order that all cation

sites are equally accessible for adsorbate molecules as shown in Figure 2(b). This 3D materials is

denoted by RHO(a, b, c) and by symmetrical arrangement of α-cages, RHO(a, b, c) ∼= RHO(b, c, a) ∼=

RHO(c, a, b). Inductively applying Theorem 3.1, we infer that the 3D material RHO(a, b, c) is a

partial cube.

From the octagonal-prism arrangement of α-cages, we can find the number of vertices and edges

as |V (RHO(a, b, c))| = 48abc and |E(RHO(a, b, c))| = 96abc−8 (ab+ bc+ ca), respectively. It is clear

that RHO(a, b, c) contains abc number of α-cages and we denote the α-cage in the (x, y, z) position

of a× b× c mesh as αx,y,z.

The relativistic parameters for the various heavy atoms impregnated into zeolites can be derived

by convenient localization of molecular orbitals as described in [51]. Hence, the topological indices in

terms of relativistic quantum parameters can be computed by weighted graphs with weights γx and ρxy

for each vertex x and edge xy, respectively. Thus, the molecular graphs of doped or impregnated zeolite

RHOs with heavy elements can be represented as a structural graphs with vertex-weights {γx, γy} and

edge-weights ρxy such that γx and γy with equal ratio. Let Vγ(RHO(a, b, c)) and Eρ(RHO(a, b, c))

be the structural vertex set and edge set of RHO(a, b, c) respectively. Therefore, it can be seen that

|Vγ(RHO(a, b, c))| = 1
2{γx + γy}|V (RHO(a, b, c))| and |Eρ(RHO(a, b, c))| = ρxy|E(RHO(a, b, c))|.
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We now present the technique to compute the relativistic topological indices for single layered

zeolite RHO materials, i.e. RHO(a, b, 1) and then readily generalize the technique to multi-layered

layers zeolite RHO(a, b, c). For convenience, we use the notation RHO(a, b) instead of RHO(a, b, 1)

and in the same way αx,y,1 by αx,y as given in Figure 2(b). To proceed further, we first compute the

Θ-classes of single α-cage and then identify the Θ-classes of RHO(a, b).

(a) F/ (b) F\ (c) F |

(d) S/ (e) S\ (f) S|

(g) T/ (h) T\ (i) T |

Figure 3: Various Θ-classes of α-cage based on the front-, side- and top-view

As a consequence of point group symmetry on each face of α-cage, we could find nine types of

Θ-classes as shown in Figure 3. These types are denoted by front-view forward-slash F/, front-view
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backward-slash F\, front-view vertical-slash F |, side-view forward-slash S/, side-view backward-slash

S\, side-view vertical-slash S|, top-view forward-slash T/, top-view backward-slash T\, and top-view

vertical-slash T |.

Theorem 4.1. Let G be a zeolite RHO materials RHO(a, b) where 1 ≤ a ≤ b. Then,

(1) W (G) = 48
5 a(γx + γy)2(60ab3 + (40a2 + 15a+ 5)b2 + (10a3 + 5a)b− 2a4 + 2).

(2) We(G) = 16
15ρ

2
xy((7260a2− 1320a+ 60)b3 + (4840a3− 5100a2 + 1565a− 45)b2 + (1210a4− 1320a3 +

1595a2 − 90a− 15)b− 242a5 + 50a3 − 45a2 + 237a).

(3) Wev(G) = 32
5 aρxy(γx+γy)((330a−30)b3+(220a2−75a+35)b2+(55a3−30a2+35a)b−11a4+11).

(4) Szv(G) = 384aρxy(γx + γy)2((23a2 + 1)b3 + 3a2b− a3 + a).

(5) Sze(G) = 256
15 ρ

3
xy((6800a3−2130a2+790a−30)b3+(−2570a3+315a2−85a)b2+(165a4+1430a3−

360a2 + 25a)b− 11a5 − 320a4 + 25a3 + 320a2 − 44a).

(6) Szev(G) = 128
5 aρ

2
xy(γx + γy)((1250a2 − 195a+ 85)b3 + (−235a2 − 5)b2 + (15a3 + 195a2 − 30a)b−

a4 − 55a3 + 5a2 + 55a− 4).

(7) PI(G) = 128
3 ρ

2
xy((180a2 − 39a+ 3)b2 + (−42a2 + 3a)b+ a3 + 3a2 − a).

(8) S(G) = 64
5 aρxy(γx +γy)((660a−60)b3 +(440a2 +15a+55)b2 +(110a3−60a2 +55a)b−22a4 +22).

(9) Gut(G) = 64
15ρ

2
xy((7260a2 − 1320a + 60)b3 + (4840a3 − 1485a2 + 845a)b2 + (1210a4 − 1320a3 +

845a2 − 30a− 15)b− 242a5 + 60a3 + 227a).

(10) Mo(G) = 96ρxy(γx + γy)((10a2 − 2a+ (−1)a − 1)b2 − 2a2b− ((−1)a+b + (−1)b − 2)a2).

(11) Moe(G) = 32
3 ρ

2
xy((330a2−84a+33(−1)a−33)b2+(−78a2+12a−3(−1)a+3)b−2a3−(33(−1)a+b−

33(−1)b − 66)a2 + (3(−1)a+b − 3(−1)b + 8)a).

(12) w+Mo(G) = 16ρxy(γx + γy)((456a2 − 144a+ 45(−1)a − 21)b2 + (−150a2 − 9(−1)a + 9)b+ 2a3 −

(42(−1)a+b − 45(−1)b + 51)a2 + (3(−1)a+b − 9(−1)b + 10)a).

(13) w+Moe(G) = 16ρ2xy((1672a2 − 618a + 165(−1)a − 69)b2 + (−612a2 + 84a − 48(−1)a + 40)b −

2a3 + (−154(−1)a+b + 165(−1)b − 179)a2 + (25(−1)a+b − 48(−1)b + 59)a+ 2(−1)a+b − 5).

(14) w∗Mo(G) = 8ρ2xy(γx+γy)((1752a2−750a+171(−1)a+21)b2+(−798a2+24a−63(−1)a+63)b+

16a3 + (−150(−1)a+b + 171(−1)b − 57)a2 + (24(−1)a+b − 63(−1)b + 71)a).
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(15) w∗Moe(G) = 8
3ρ

3
xy((19272a2−9276a+1881(−1)a+405)b2+(−9504a2+1512a−864(−1)a+648)b+

76a3+(−1650(−1)a+b+1881(−1)b−453)a2+(414(−1)a+b−864(−1)b+842)a+39(−1)a+b−102).

(16) w+Szv(G) = 384
5 ρxy(γx + γy)2((880a3 − 55a2 − 25a+ 30)b3 + (−45a3 − 15a)b2 + (−5a4 + 45a3 −

15a2)b+ a5 − 35a4 + 30a3 + 35a2 − a).

(17) w+Sze(G) = 128
15 ρ

3
xy((103960a3 − 39100a2 + 7185a+ 2975)b3 + (−44050a3 + 10020a2 − 2330a−

660)b2 + (1705a4 + 16145a3 − 6195a2 + 780a+ 25)b− 33a5 − 4480a4 + 3750a3 + 3820a2 − 717a).

(18) w+PI(G) = 64
3 ρ

2
xy((2748a2 − 837a+ 75)b2 + (−879a2 + 144a− 3)b+ 14a3 + 75a2 − 17a).

(19) w∗Szv(G) = 192
5 ρ

2
xy(γx + γy)2((3400a3− 395a2− 355a+ 240)b3 + (−315a3− 105a)b2 + (−40a4−

105a3 − 105a2)b+ 8a5 − 125a4 + 240a3 + 125a2 − 8a).

(20) w∗Sze(G) = 64
15ρ

4
xy((401320a3−172670a2+6655a+25765)b3+(−184990a3+55680a2−11090a−

5280)b2 + (3410a4 + 38655a3−24960a2 + 4030a+ 215)b+ 418a5−16000a4 + 28555a3 + 10720a2−

2993a).

(21) w∗PI(G) = 64
3 ρ

3
xy((5298a2 − 2043a+ 198)b2 + (−2118a2 + 459a− 12)b+ 25a3 + 198a2 − 37a).

Proof. We begin the proof by identifying the Θ-classes of RHO(a, b) based on the Θ-classes of α-cage

as shown in Figure 4. For 1 ≤ i ≤ a+ b− 1, let F/i = {e ∈ αx,y : e is in F/ such that x+ y − 1 = i},

F\i = {e ∈ αx,y : e is in F\ such that y − x + a = i} and F |1 = {e ∈ αx,y : e is in F |} be the

front-view type of Θ-classes. For 1 ≤ i ≤ a, let S/i = {e ∈ αx,y : e is in S/ such that x = i}, S\i =

{e ∈ αx,y : e is in S\ such that x = i} and 1 ≤ i ≤ b, S|i = {e ∈ αx,y : e is in S| such that y = i} be

the side-view type of Θ-classes. For 1 ≤ i ≤ b, let T/i = {e ∈ αx,y : e is in T/ such that y = i}, T\i =

{e ∈ αx,y : e is in T\ such that y = i} and 1 ≤ i ≤ a, T |i = {e ∈ αx,y : e is in T | such that x = i} be

the top-view type of Θ-classes.

For 1 ≤ i ≤ b− 1, let S–i be a set of edges connecting αx,i and αx,i+1, called side-view horizontal-

slash type Θ-classes. Similary, for 1 ≤ i ≤ a− 1, let T–i be a set of edges connecting αi,y and αi+1,y,

called top-view horizontal-slash type Θ-classes. Since |V (RHO(a, b))| = 48ab and |E(RHO(a, b))| =

8[11ab − (a + b)], we have |Vγ(RHO(a, b))| = 1
2{γx + γy}|V (RHO(a, b))| and |Eρ(RHO(a, b))| =

ρxy|E(RHO(a, b))|. The graph theoretical parameters of Front-view Θ-classes are given below:

|F/i| =


8iρxy if 1 ≤ i ≤ a− 1

8aρxy if a ≤ i ≤ b∣∣F/a+b−i∣∣ if b+ 1 ≤ i ≤ a+ b− 1
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(a) F/1, F/2, F/3 & F\1, F\2, F\3 in RHO(2,2) (b) S/1, S/2 & S\1, S\2 in RHO(2,2)

(c) T/1, T/2 & T\1, T\2 in RHO(2,2) (d) S −1 & T−1 in RHO(2,2)

(e) F |1, S|1, S|2, T |1 & T |2 in RHO(2,2)

Figure 4: Various Θ-classes of RHO(2, 2) based on the front-, side-, top-, horizontal- and vertical-view
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n1(F/i) =


12i2{γx + γy} if 1 ≤ i ≤ a− 1

12a(2i− a){γx + γy} if a ≤ i ≤ b

n1(F/a+b−i) if b+ 1 ≤ i ≤ a+ b− 1

n2(F/i) = |Vγ(RHO(a, b))| − n1(F/i),

m1(F/i) =


4i(11i− 3)ρxy if 1 ≤ i ≤ a− 1

{8(11a− 1)i− 4a(11a+ 1)}ρxy if a ≤ i ≤ b

m1(F/a+b−i) if b+ 1 ≤ i ≤ a+ b− 1

m2(F/i) = |Eρ(RHO(a, b))| −m1(F/i)− |F/i| .

w+ (F/i) =



4(14i− 1)ρxy if 1 ≤ i ≤ a− 1

8(7a− 1)ρxy if i = a, a = b

2(28a− 3)ρxy if i = a, a < b

4(14a− 1)ρxy if a < i < b

w+
(
F/a+b−i

)
if b ≤ i ≤ a+ b− 1

w∗ (F/i) =



4(25i− 4)ρ2xy if 1 ≤ i ≤ a− 1

4(25a− 7)ρ2xy if i = a, a = b

2(50a− 11)ρ2xy if i = a, a < b

4(25a− 4)ρ2xy if a < i < b

w∗
(
F/a+b−i

)
if b ≤ i ≤ a+ b− 1

|F |1| = 8abρxy,

n1 (F |1) = n2 (F |1) = 12ab{γx + γy},

m1 (F |1) = m2 (F |1) = (40ab− 4(a+ b))ρxy,

w+ (F |1) = 8(8ab− (a+ b))ρxy,

w∗ (F |1) = 4(32ab− 7(a+ b))ρ2xy.

The graph theoretical parameters of S/ and S\ as well as T/ and T\ are the same. In addition,

the parameters of S/ and T/ are symmetrical with respect to a and b whereas S| and T | as well as
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S− and T− are symmetrical with respect to b and a. Hence, we have the following measures for only

S-type classes.

|S/i| = 8bρxy, 1 ≤ i ≤ a

n1 (S/i) = 12b(2i− 1){γx + γy}, 1 ≤ i ≤ a

n2 (S/i) = |Vγ(RHO(a, b))| − n1 (S/i) , 1 ≤ i ≤ a

m1 (S/i) = {8(11b− 1)i− 4(13b− 1)}ρxy, 1 ≤ i ≤ a

m2 (S/i) = |Eρ(RHO(a, b))| −m1 (S/i)− |S/i| , 1 ≤ i ≤ a

w+ (S/i) =


4(15b− 2)ρxy if i = 1, a

8(8b− 1)ρxy if 1 < i < a

w∗ (S/i) =


28(4b− 1)ρ2xy if i = 1, a

4(32b− 7)ρ2xy if 1 < i < a

|S|i| = 8aρxy, 1 ≤ i ≤ b

n1 (S|i) = 12a(2i− 1){γx + γy}, 1 ≤ i ≤ b

n2 (S|i) = |Vγ(RHO(a, b))| − n1 (S|i) , 1 ≤ i ≤ b

m1 (S|i) = {8(11a− 1)i− 4(13a− 1)}ρxy, 1 ≤ i ≤ b

m2 (S|i) = |Eρ(RHO(a, b))(ρxy)| −m1 (S|i)− |S/i| , 1 ≤ i ≤ b

w+ (S|i) = 8(7a− 1)ρxy, 1 ≤ i ≤ b

w∗ (S|i) = 4(25a− 7)ρ2xy, 1 ≤ i ≤ b

|S−i| = 8aρxy, 1 ≤ i ≤ b− 1

n1 (S−i) = 24ai{γx + γy}, 1 ≤ i ≤ b− 1

n2 (S−i) = |Vγ(RHO(a, b))| − n1 (S−i) , 1 ≤ i ≤ b− 1

m1 (S−i) = {8(11a− 1)i− 8a}ρxy, 1 ≤ i ≤ b− 1

m2 (S−i) = |Eρ(RHO(a, b))| −m1 (S−i)− |S/i| , 1 ≤ i ≤ b− 1

w+ (S−i) = 64aρxy, 1 ≤ i ≤ b− 1

w∗ (S−i) = 128aρ2xy, 1 ≤ i ≤ b− 1

If we denote TI(X) to represent the numerical number induced by the class X with respect to TI,

then the proof is complete by the following equation.
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TI(G) = 4
a−1∑
i=1

TI(F/i) + 2
b∑
i=a

TI(F/i) + TI(F |1)

+ 2
a∑
i=1

TI(S\i) +
b∑
i=1

TI(S|i) +
b−1∑
i=1

TI(S−i)

+ 2

b∑
i=1

TI(T\i) +

a∑
i=1

TI(T |i) +

a−1∑
i=1

TI(T−i).

Theorem 4.2. Let TI ∈ {W,We,Wev, Szv, Sze, Szev, P I, S,Gut,Mo,Moe, w
+Mo,w+Moe,

w∗Mo,w∗Moe, w
+Szv, w

+Sze, w
+PI,w∗Szv, w

∗Sze, w
∗PI}. For a ≤ b ≤ c,

TI(RHO(a, b, c)) = TI(a, b, c) + TI(a, c, b) + TI(b, c, a),

where we use TI(a, b, c) from the following expressions, TI(a, c, b) and TI(b, c, a) are obtained from

TI(a, b, c) by replacing suitable values.

(1) W (a, b, c) = 48
5 ac(γx + γy)2((20ab2)c2 + (−2a4 + 10a3b+ 20ab3 + 2)c− 5ab2).

(2) We(a, b, c) = 16
15ρ

2
xy(2880a2b2 − 480a2b + 20a2 − 480ab2 + 40ab + 20b2)c3 + (288a5 + 1440a4b −

480a3b+10a3 +2880a2b3−2880a2b2 +270a2b−480ab3 +240ab2 +240ab+278a+20b3−20b)c2 +

(48a5− 240a4b+ 40a3b− 480a2b3 + 240a2b2 + 60a2b− 5a2 + 40ab3 + 60ab2− 30ab− 48a− 5b2)c−

2a5 + 10a4b+ 20a2b3 − 60a2b2 + 2a).

(3) Wev(a, b, c) = 16
5 acρxy(γx + γy)((20ab − 240ab2 + 20b2)c2 + (24a4 − 120a3b + 20a2b − 240ab3 +

120ab2 + 20b3 − 10b− 24)c− 2a4 + 10a3b+ 20ab3 + 30ab2 − 5ab− 5b2 + 2).

(4) Szv(a, b, c) = 384a2cρxy(γx + γy)2((−a2 + 8ab3 + 2ab+ 1)c2 − ab3).

(5) Sze(a, b, c) = 128
15 aρ

3
xy((−24a4+360a3b−755a3+5760a2b3−1920a2b2+1550a2b+120a2−960ab3+

160ab2−600ab+755a+40b3 +40b−96)c3 +(2a4−30a3b+120a3−1920a2b3 +240a2b2−240a2b−

10a2 + 160ab3 + 50ab− 120a+ 8)c2 + (−5a3 + 140a2b3 + 60a2b2 + 5a2b+ 60ab3 − 10ab2 + 5a−

5b3)c− 60a2b3).

(6) Szev(a, b, c) = 128
5 acρ

2
xy(γx + γy)((−a4 + 15a3b− 60a3 + 480a2b3− 80a2b2 + 120a2b+ 5a2− 40ab3−

25ab+ 60a− 4)c2 + (5a3 − 80a2b3 − 10a2b− 5a)c− 30a2b3 + 5a2b2 + 5ab3).

(7) PI(a, b, c) = 64
3 ρ

2
xy((2a3 + 144a2b2 − 30a2b + a2 − 24ab2 + 2ab − 2a + b2)c2 + (−30a2b2 + 2a2b +

2ab2)c+ 4a2b2).
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(8) S(a, b, c) = 64
5 acρxy(γx+γy)((240ab2−20ab−20b2)c2+(−24a4+120a3b−20a2b+240ab3−60ab2−

5ab− 20b3 − 5b2 + 10b+ 24)c+ 2a4 − 10a3b− 20ab3 − 35ab2 + 5ab+ 5b2 − 2).

(9) Gut(a, b, c) = 64
15ρ

2
xy((2880a2b2 − 480a2b+ 20a2 − 480ab2 + 40ab+ 20b2)c3 + (−288a5 + 1440a4b−

480a3b+ 20a3 + 2880a2b3 − 1440a2b2 + 10a2 − 480ab3 + 260ab+ 268a+ 20b3 + 10b2 − 20b)c2 +

(48a5− 240a4b+ 40a3b− 480a2b3− 30a2b2 + 80a2b− 5a2 + 40ab3 + 80ab2− 30ab− 48a− 5b2)c−

2a5 + 10a4b+ 20a2b3 − 35a2b2 + 2a).

(10) Mo(a, b, c) = 96a2cρxy(γx + γy)((4b2 − (−1)(a+b) − 1)c− 2b2).

(11) Moe(a, b, c) = 32
3 aρ

2
xy((144ab2− 6ab− 36(−1)(a+b)a− 36a+ 3(−1)(a+b)− 2a2− 12b2 + 5)c+ 3a+

6ab+ 3(−1)(a+b)a− 78ab2 + 6b2).

(12) w+Mo(a, b, c) = 16aρxy(γx +γy)(192ab2−18ab−48(−1)(a+b)a−36a+ 3(−1)(a+b) + 2a2−12b2 +

1)c2 + (6a+ 6(−1)(a+b)a− 108ab2)c+ 3ab+ 3b2 − 3(−1)cb2 − 3(−1)cab).

(13) w+Moe(a, b, c) = 16
3 ρ

2
xy(68a + 24ab − 336ab2 − 312a2b − 420a2 − 8a3 + 12b2 − 3(−1)a(−1)b +

2304a2b2 + 84(−1)a(−1)ba− 576(−1)a(−1)ba2 + 3)c2 + (114ab2 − 11a+ 108a2b+ 108a2 + 2a3 −

1392a2b2 − 9(−1)a(−1)ba + 120(−1)a(−1)ba2)c + 36ab2 − 6ab + 36a2b − 9a2 − 3b2 + 12a2b2 +

3(−1)ca2 + 3(−1)cb2 − 36(−1)cab2 − 36(−1)ca2b− 6(−1)a(−1)ba2 + 6(−1)cab).

(14) w∗Mo(a, b, c) = 8aρ2xy(γx + γy)(24b − 120a − 138ab − 192(−1)(a+b)a + 768ab2 + 24(−1)(a+b) +

16a2 − 90b2 + 8)c2 + (42a+ 42(−1)(a+b)a− 468ab2)c+ 21ab+ 21b2 − 21(−1)cb2 − 21(−1)cab).

(15) w∗Moe(a, b, c) = 8
3ρ

3
xy((248a−24b+468ab−1848ab2−2040a2b−1350a2+64a3+90b2−24(−1)a+b+

9216a2b2 + 480(−1)a+ba − 2304(−1)a+ba2 + 24)c2 + (516ab2 − 24ab − 78a + 480a2b + 624a2 +

12a3−6000a2b2−66(−1)a+ba+696(−1)a+ba2)c+252ab2−42ab+252a2b−63a2−21b2+84a2b2+

21(−1)ca2 + 21(−1)cb2 − 252(−1)cab2 − 252(−1)ca2b− 42(−1)a+ba2 + 42(−1)cab).

(16) w+Szv(a, b, c) = 384
5 acρxy(γx + γy)2(a4− 5a3b− 25a3 + 320a2b3− 10a2b2 + 50a2b− 20ab3 + 40a−

1)c2 + (5a3 − 20a2b3 − 10a2b− 5a)c− 40a2b3 − 5a2b2 − 5ab3).

(17) w+Sze(a, b, c) = 128
15 ρ

3
xy((−48a5 +2160a4b−3880a4 +46080a3b3−16800a3b2 +8560a3b+585a3−

10560a2b3 + 2480a2b2 − 3465a2b + 5995a2 + 800ab3 − 90ab2 + 110ab − 907a − 20b3 + 10b)c3 +

(16a5−480a4b+1355a4−18240a3b3+4080a3b2−2810a3b−170a3+2720a2b3−300a2b2+880a2b−

1715a2− 100ab3− 30ab+ 184a)c2 + (−a5 + 25a4b− 145a4 + 1600a3b3− 420a3b2 + 370a3b+ 5a3−

350a2b3 + 160a2b2 − 65a2b+ 160a2 + 80ab3 − 15ab2 − 9a− 5b3)c+ 5a4 − 500a3b3 − 10a3b− 5a2).

(18) w+PI(a, b, c) = 64
3 ρ

2
xy((16a3 + 1152a2b2− 216a2b+ 6a2− 168ab2 + 15ab− 13a+ 6b2)c2 + (−2a3−

504a2b2 + 45a2b+ 39ab2 + 2a)c+ 54a2b2).
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(19) w∗Szv(a, b, c) = 192
5 acρ

2
xy(γx + γy)2((8a4−40a3b−70a3 + 1280a2b3−70a2b2 + 140a2b−150ab3 +

160a− 8)c2 + (35a3 − 140a2b3 − 70a2b− 35a)c− 160a2b3 − 35a2b2 − 35ab3).

(20) w∗Sze(a, b, c) = 64
15ρ

4
xy((384a5+5760a4b−11200a4+184320a3b3−71520a3b2+27280a3b+1570a3−

52320a2b3+14240a2b2−11370a2b+23890a2+4880ab3−690ab2−220ab−4184a−150b3+80b)c3+

(40a5− 2520a4b+ 6965a4− 81600a3b3 + 22800a3b2− 14650a3b− 980a3 + 15440a2b3− 2160a2b2 +

5080a2b−9125a2−720ab3−200ab+ 1120a)c2 + (−6a5 + 170a4b−910a4 + 7840a3b3−4380a3b2 +

2500a3b + 35a3 − 3900a2b3 + 1360a2b2 − 455a2b + 1000a2 + 680ab3 − 105ab2 − 64a − 35b3)c +

35a4 − 2060a3b3 − 70a3b− 35a2).

(21) w∗PI(a, b, c) = 32
3 ρ

3
xy((64a3 + 4608a2b2−1116a2b+ 45a2−924ab2 + 186ab−52a+ 45b2−6b)c2 +

(−14a3 − 2232a2b2 + 246a2b+ 204ab2 − 6ab+ 14a)c+ 234a2b2).

Proof. We complete the proof by enumerating the Θ-classes of zeolite RHO structures and then ap-

plying Theorem 2.1. The Θ-classes of zeolite RHO structures are classified into three types as follows:

1. Front-view:
{
F/abi , F\

ab
i : 1 ≤ i ≤ a+ b− 1

}
,
{
F |abi : 1 ≤ i ≤ c

}
and

{
F−abi : 1 ≤ i ≤ c− 1

}
,

2. Side-view: {S/aci , S\
ac
i : 1 ≤ i ≤ a+ c− 1}, {S|aci : 1 ≤ i ≤ b} and {S−aci : 1 ≤ i ≤ b− 1},

3. Top-view:
{
T/bci , T\

bc
i : 1 ≤ i ≤ b+ c− 1

}
,
{
T |bci : 1 ≤ i ≤ a

}
and

{
T−bci : 1 ≤ i ≤ a− 1

}
.

From the construction of forward-slash and backward-slash of Θ-classes, it is easily seen that the graph

theoretical parameters of F/abi and F\abi are same and similarly true for S/abi , S\abi , T/abi and T\abi
of Θ-classes. In addition, the graph theoretical parameters of S\aci and T\bci are similar to F\abi with

respect to superfix variables. Also, the graph theoretical parameters of F |abi , S|aci and T |bci as well as

F−abi , S−aci and T−bci are similar with respect to superfix variables respectively. Bearing the above

relations in our mind, it is enough to perform the computation for front-view related Θ-classes and

the other classes can be easily manipulated from the following equations.

If we denote TI(a, b, c) =
a+b−1∑
i=1

[
TI(F/abi ) + TI(F\abi )

]
+

c∑
i=1

TI(F |abi ) +
c−1∑
i=1

TI(F−abi ),

then TI(a, c, b) =
a+c−1∑
i=1

[
TI(S/aci ) + TI(S\aci )

]
+

b∑
i=1

TI(S|aci ) +
b−1∑
i=1

TI(S−aci ),

and TI(b, c, a) =
b+c−1∑
i=1

[
TI(T/bci ) + TI(T\bci )

]
+

a∑
i=1

TI(T |bci ) +
a−1∑
i=1

TI(T−bci ).

Combining the above three equations, we have

TI
(
Z(a, b, c)

)
= TI(a, b, c) + TI(a, c, b) + TI(b, c, a).
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We now present the graph theoretical parameters related to F/abi , F\abi , F |abi and F−abi inorder to

compute the expressions of TI(a, b, c). As we mentioned earlier, the expressions of TI(a, c, b) and

TI(b, c, a) are easily derived by replacing the values of a, b and c in TI(a, b, c).

The number of elements and weighted bond measures in the Θ-classes of F/abi , F\abi , F |abi and

F−abi are given below:

∣∣∣F/abi ∣∣∣ =
∣∣∣F\abi ∣∣∣ =


8ciρxy if 1 ≤ i ≤ a− 1

8acρxy if a ≤ i ≤ b∣∣∣F\aba+b−i∣∣∣ if b+ 1 ≤ i ≤ a+ b− 1

|F |i| = 8abρxy, 1 ≤ i ≤ c

|F−i| = 8abρxy, 1 ≤ i ≤ c− 1

w+
(
F/abi

)
= w+

(
F\abi

)
=



(8i(8c− 1)− 4c)ρxy if 1 ≤ i ≤ a− 1

(8a(8c− 1)− 8c)ρxy if i = a, a = b

(8a(8c− 1)− 6c)ρxy if i = a, a < b

(8a(8c− 1)− 4c)ρxy if a < i < b

w+
(
F\aba+b−i

)
if b ≤ i ≤ a+ b− 1

w∗
(
F/abi

)
= w∗

(
F\abi

)
=



(4i(32c− 7)− 16c)ρ2xy if 1 ≤ i ≤ a− 1

(4a(32c− 7)− 28c)ρ2xy if i = a, a = b

(4a(32c− 7)− 22c)ρ2xy if i = a, a < b

(4a(32c− 7)− 16c)ρ2xy if a < i < b

w∗
(
F\aba+b−i

)
if b ≤ i ≤ a+ b− 1

w+ (F |i) = 8 (8ab− (a+ b)) ρxy, 1 ≤ i ≤ c

w∗ (F |i) = 4 (32ab− 7 (a+ b)) ρ2xy, 1 ≤ i ≤ c

w+ (F−i) = 64abρxy, 1 ≤ i ≤ c− 1

w∗ (F−i) = 128abρ2xy, 1 ≤ i ≤ c− 1

Finally, we present the number of vertices and edges in the components which are obtained by removal

of Θ-classes from zeolites.
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n1

(
F/abi

)
= n1

(
F\abi

)
=


12ci2(γx + γy) if 1 ≤ i ≤ a− 1

12ac(2i− a)(γx + γy) if a ≤ i ≤ b

n1

(
F\aba+b−i

)
if b+ 1 ≤ i ≤ a+ b− 1

n2

(
F/abi

)
= n2

(
F\abi

)
= |Vγ(RHO(a, b, c))| − n1

(
F\abi

)

m1

(
F/abi

)
= m1

(
F\abi

)
=


4((12c− 1)i2 − 3ci)ρxy if 1 ≤ i ≤ a− 1

4(2(12ac− a− c)i− ac(12a+ 1) + a2)ρxy if a ≤ i ≤ b

m1

(
F\aba+b−i

)
if b+ 1 ≤ i ≤ a+ b− 1

m2

(
F/abi

)
= m2

(
F\abi

)
= |Eρ(RHO(a, b, c))| −m1

(
F\abi

)
−
∣∣∣F\abi ∣∣∣

For 1 ≤ i ≤ c,

n1 (F |i) = 12ab(2i− 1)(γx + γy),

n2 (F |i) = |Vγ(RHO(a, b, c))| − n1 (F |i) ,

m1 (F |i) = 4(2(12ab− a− b)i− (14ab− a− b))ρxy,

m2 (F |i) = |Eρ(RHO(a, b, c))| −m1 (F |i)− |F |i| .

For 1 ≤ i ≤ c− 1,

n1 (F−i) = 24abi(γx + γy),

n2 (F−i) = |Vγ(RHO(a, b, c))| − n1 (F−i) ,

m1 (F−i) = 8((12ab− (a+ b))i− ab)ρxy,

m2 (F−i) = |Eρ(RHO(a, b, c))| −m1 (F−i)− |F−i| .

Then, TI(a, b, c) = 4
a−1∑
i=1

TI(F/abi )+2
b∑
i=a

TI(F\abi )+
c∑
i=1

TI(FB|abi )+
c−1∑
i=1

TI(F−abi ), which completes

the proof.

4.1 Degree-based Topological Indices

In this section, we use the edge partition technique based on the degrees of terminal vertices of each

edge to find the expressions of degree-based topological indices of the zeolite RHO materials. Since

zeolite RHO contains only ρxy bond type, it is sufficient to consider the computation of degree-based
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indices without weights. We now partition the edge set of zeolite RHO(a, b, c) as follows:

Let E1 =
{
uv ∈ E

(
RHO(a, b, c)

)
:
(

degG(u),degG(v)
)

= (3, 3)
}

,

E2 =
{
uv ∈ E

(
RHO(a, b, c)

)
:
(

degG(u),degG(v)
)

= (3, 4)
}

,

E3 =
{
uv ∈ E

(
RHO(a, b, c)

)
:
(

degG(u),degG(v)
)

= (4, 4)
}

.

Then E
(
RHO(a, b, c)

)
= E1 ∪ E2 ∪ E3 and∣∣E1

∣∣ = 8(2(ab+ bc+ ac) + (a+ b+ c)),∣∣E2

∣∣ = 16((ab+ bc+ ac)− (a+ b+ c)),∣∣E3

∣∣ = 8(12abc− 5(ab+ bc+ ac) + (a+ b+ c)).

In addition, there are 16(ab+ ac+ bc) vertices of degree 3 and 48abc− 16(ab+ ac+ bc) vertices are

of degree 4. We now present the degree-based topological measures of zeolite RHO materials in view

of the above edge partition by simple mathematical calculations.

Theorem 4.3. Let G be a Zeolite RHO materials RHO(a, b, c) where a, b, c ≥ 1. Then,

(1) M1(G) = 16(48abc− 7(ab+ bc+ ca)).

(2) M2(G) = 8(192abc− 38(ab+ bc+ ca) + (a+ b+ c)).

(3) R(G) =
2

3
(36abc+ (4

√
3− 7)(ab+ bc+ ca)− (4

√
3− 7)(a+ b+ c)).

(4) ABC(G) =
2

3
(36
√

6abc+ (4
√

15− 15
√

6 + 16)(ab+ bc+ ca) + (3
√

6− 4
√

15 + 8)(a+ b+ c)).

(5) H(G) =
2

21
(252abc− (ab+ bc+ ca) + (a+ b+ c)).

(6) HM(G) =
2

21
(252
√

2abc+(28
√

6−105
√

2+24
√

7)(ab+bc+ca)+(21
√

2+14
√

6−24
√

7)(a+b+c)).

(7) SC(G) = 16(384abc− 75(ab+ bc+ ca) + (a+ b+ c)).

(8) GA(G) =
8

7
(84abc+ (8

√
3− 21)(ab+ bc+ ca)− (8

√
3− 14)(a+ b+ c)).

(9) irr(G) = 16((ab+ bc+ ca)− (a+ b+ c)).

(10) σ(G) = 16((ab+ bc+ ca)− (a+ b+ c)).

(11) F (G) = 16(192abc− 37(ab+ bc+ ca)).

(12) SDD(G) =
4

3
(144abc− 11(ab+ bc+ ca)− (a+ b+ c)).
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4.2 Numerical Values

By considering the relativistic parameters as γx = γy = ρxy = 1, the numerical topological descriptor

values are presented in Tables 2 and 3 and the comparative study between the descriptors are displayed

in Figures 5 and 6. The numerical results for the topological indices derived from the expressions were

also validated against the results computed from the TopoChemie-2020 software [67].

Table 2: TI values of RHO(a, b)

TI
a = 1 a = 2 a = 3

b = 2 b = 3 b = 3 b = 4 b = 4 b = 5

W 28800 84672 402048 854784 2195712 3918528

We 59520 189312 1007968 2228064 5985760 10923520

Wev 41472 126720 637440 1381248 3628032 6546048

Szv 304128 1009152 7805952 18413568 61728768 120319488

Sze 624128 2206720 19445248 47286272 166816256 331005952

Szev 436224 1492992 12334080 29531136 101529600 199640064

PI 21376 50432 227712 413440 967296 1529856

S 180480 540288 2690304 5776896 15088128 27088512

Gut 282560 861504 4497728 9756032 25910336 46801472

M 3840 8448 56064 102912 238080 369408

Moe 6400 14080 98560 181504 423936 659200

w+Mo 24192 54528 386304 716544 1687680 2635776

w+Moe 40320 90880 679232 1264000 3005568 4704128

w∗Mo 38016 88320 670464 1258752 3019392 4748544

w∗Moe 63360 147200 1179072 2220864 5377920 8475904

w+Szv 1990656 6750720 55480320 132000768 450708480 882556416

w+Sze 4090368 14780416 138350592 339198720 1218791936 2428919296

w+PI 139520 335616 1604736 2938496 6993280 11114496

w∗Szv 3253248 11326464 99753984 239459328 833292288 1639111680

w∗Sze 6695424 24842752 249042176 615808896 2255059200 4513345536

w∗PI 227328 560000 2857728 5280384 12790912 20429568
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Figure 5: Comparison of TI values for RHO(a, b)

24



Table 3: TI values of RHO(a, b, c) when a = b = c

TI a = 2 a = 3 a = 4 a = 5 a = 6

M1 4800 17712 43776 87600 153792

M2 8688 33336 83808 169320 299088

R 191.71 647.14 1534.28 2997.13 5179.69

ABC 427.72 1491.90 3593.26 7084.51 12318.40

H 191.43 646.29 1532.57 2994.29 5175.43

SC 253 875 2098 4126 7163

HM 34848 133632 335808 678240 1197792

GA 671.01 2373.05 5754.09 11381.25 19857.23

irr 96 288 576 960 1440

σ 96 288 576 960 1440

F 17472 66960 168192 339600 599616

SDD 1352 4776 11568 22880 39864

W 230400 3986496 30007296 143409600 514501632

We 609984 12151936 98041728 488254464 1800082496

Wev 375552 6966144 54266880 264698880 962581248

Szv 6340608 242237952 3222798336 24004800000 123846672384

Sze 16960512 743851008 10586972160 82073395200 434794595328

Szev 10383360 424756224 5843386368 44397312000 232091578368

PI 144384 1833984 10854400 42688000 130046976

S 1588224 28891008 222965760 1081595520 3919002624

Gut 2734848 52323520 414080512 2039025856 7462009088

M 30720 435456 2654208 10560000 32348160

Moe 55808 817920 5066752 20352000 62737920

w+Mo 215040 3227904 20054016 80832000 249440256

w+Moe 390656 6063744 38285312 155795200 483801600

w∗Mo 379392 6027264 38129664 155520000 483134976

w∗Moe 689280 11324160 72800768 299769600 937111680

w+Szv 45563904 1815478272 24600379392 185125248000 961403240448

w+Sze 122000384 5576954880 80826331136 633005153280 3375410525184

w+PI 1031168 13670016 82487296 328006400 1006411776
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TI a = 2 a = 3 a = 4 a = 5 a = 6

w∗Szv 83128320 3438236160 47324528640 359220672000 1875784200192

w∗Sze 222835456 10565968896 155513768960 1228396989440 6586032925440

w∗PI 1865984 25724928 157905920 633958400 1957142784

Figure 6: Comparison of TI values for RHO(a, b, c)
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One can visualize from the above numerical values and 3D-bar graphs that the degree-based TIs

have the smaller quantity values compared to distance-based indices. Among all the distance-based

TIs, Mostar type indices acquire the least values while Szeged type indices expose the largest values

implying the peripheral perfection of the materials. On the other hand, the correlation between the

pairs of TIs such as (M1,M2), (R,ABC), (W,We), (S,Gut), (M,Moe) and etc., was found to be

greater than 0.99. Hence, all the acquired topological descriptors are highly significant for the charac-

terization of the QSAR properties of zeolite frameworks. Relativistic effects in both scalar form and

vector form (spin-orbit coupling) are extremely important for molecules and materials that contain

very heavy atoms [24, 25]. Both computational and experimental studies have been carried out on

such molecules with heavy atoms [17,18,24–27,67–70], and all of these studies have demonstrated the

importance of relativistic effects including spin-orbit coupling. Consequently, the techniques devel-

oped in the current study can provide rapid quantitative measures of phase transformations and other

structural and topological modifications that occur in materials through the incorporation of such

heavy atoms through sorption, environmental pollutants and so forth. Such relativistic computations

of the topological indices of these materials would involve two-component Wannier function spinors

obtained from localization of Bloch spinors by localization techniques such as the Pipek-Mezey local-

ization technique [71]. The technique would yield a number of localized properties including localized

charges, populations and bond parameters which can then be used in the relativistic topological indices

formulated in this study.

5 Conclusion

In this study we have computed relativistic structural descriptors for 3D zeolite RHO frameworks

by employing cut methods for vertex and edge weighted molecular graphs. These materials exhibit

extremely complex framework of topologies in multiple layers, cages and pores. Such relativistic

topological descriptors of zeolite RHOs can provide for QSAR correlations for rapid computations of

their physico chemical properties and thus enhance future applications of these materials for catalysis

and sorptions. These techniques can also pave the way for future synthesis of novel and complex 2D and

3D structures comprising of tunnels and cages. An important feature of the developments considered

here is that relativistic effects are included in here. Thus applications to a number of structural

and reactivity problems pertaining to very heavy elements are feasible. For example, environmental

remediation of mercury ions and actinyl ions found in environmental and high-level nuclear wastes

requires such developments and consequently, the developed techniques are of paramount importance

to the environmental management of pollutants, green-house gases and mitigation of heavy metal
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toxins including the ones in high level nuclear wastes. Moreover the developed topological indices that

have the capability to include relativistic effects would be especially useful in the characterization of

morphological changes to the materials that occur by the incorporation of heavier elements into the

zeolite. The topological techniques can also provide quantitative measures for phase transitions and

other modifications to the materials through interaction with chemicals, pollutants, and heavy metal

ions.
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