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Abstract

In this note connected, edge-transitive lexicographic and Cartesian prod-
ucts are characterized. For the lexicographic product G ◦H of a connected
graph G that is not complete by a graph H, we show that it is edge-transitive
if and only if G is edge-transitive and H is edgeless. If the first factor of
G ◦H is non-trivial and complete, then G ◦H is edge-transitive if and only
if H is the lexicographic product of a complete graph by an edgeless graph.
This fixes an error of Li, Wang, Xu, and Zhao [11]. For the Cartesian
product it is shown that every connected Cartesian product of at least two
non-trivial factors is edge-transitive if and only if it is the Cartesian power
of a connected, edge- and vertex-transitive graph.
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1. Introduction

A graph G = (V (G), E(G)) is vertex-transitive (resp. edge-transitive) if the auto-
morphism group Aut(G) acts transitively on V (G) (resp. E(G)). A fine source
on the fundamental properties of these graphs, their applications, and related
topics is the book [4], the survey [10] and recent papers [3, 12, 20].

While vertex-transitivity of graph products is well understood, cf. [6], it is
rather surprising that not much can be found in the literature about their edge-
transitivity. It is claimed in [11] that the lexicographic product of edge-transitive
graphs is edge-transitive as well. This is not true, as we shall show in the next
section, in which we will characterize edge-transitive lexicographic products. This
will be done in two steps, first for products whose first factors are not complete
(Theorem 3) and then for products whose first factors are complete (Theorem 4).
In Section 3, we characterize connected, edge-transitive Cartesian products.

If G is a graph, then its connectivity is denoted by κ(G). Recall that κ(G) ≤
δ(G), where δ(G) is the minimum degree in G. We will denote the edgeless graph
on m vertices by Nm.

The lexicographic product G ◦H of graphs G and H is the graph with V (G ◦
H) = V (G) × V (H), where (g, h) is adjacent to (g′, h′) if either g = g′ and
hh′ ∈ E(H), or gg′ ∈ E(G).

The Cartesian product G�H of graphs G and H is the graph with the
vertex set V (G) × V (H), vertices (g, h) and (g′, h′) being adjacent if g = g′

and hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′. If u = (g, h) ∈ V (G�H), then
the subgraph of G�H induced by the vertices of the form (g, x), x ∈ V (H),
is isomorphic to H; it is denoted with Hu and called the H-layer (through u).
Analogously G-layers are defined. The same terminology applies to lexicographic
products.

Vertices x and y of a graph G are in relation RG (or simply in relation R if the
graph G is clear from the context) if they have the same open neighborhood, that
is, if NG(x) = NG(y) holds. It is well-known (cf. [6, Exercise 8.4]) that R is an
equivalence relation on V (G); its equivalence classes are called R-classes. Graphs
in this paper have no loops, hence no two vertices of an R-class are adjacent.
Finally, we introduce the relation SG on V (G) by letting x, y be in relation SG if
they have the same closed neighborhoods. Again, SG is an equivalence relation,
and its equivalence classes are called S-classes.

2. Edge-Transitive Lexicographic Products

The lexicographic product of graphs is also known as the composition of graphs
as well as graph substitution. The latter is due to the fact that G ◦ H can be
obtained from G by substituting a copy Hg of H for every vertex g of G, and
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then joining all vertices of Hg with all vertices of Hg′ if gg
′ ∈ E(G). This graph

operation was of ongoing interest in the last several decades, the references [1, 5, 9]
present just a very selective list of recent papers.

It is well-known that a lexicographic product G◦H is vertex-transitive if and
only if G and H are vertex-transitive, see [6, Theorem 10.14]. In [11, Theorem
2.2] it is claimed that if G and H are edge-transitive graphs, then G ◦ H is
edge-transitive as well. To see that this need not be the case, consider the edge-
transitive graphs K2 and P3 and their lexicographic product K2 ◦ P3, which is
clearly not edge-transitive. More generally, the following holds.

Proposition 1. Suppose that G, H, and G ◦H are edge-transitive and that each

of G and H has at least one edge. Then H is vertex-transitive.

Proof. Suppose on the contrary that H is not vertex-transitive. Then, by the
above, G ◦H is not vertex-transitive. Because both G and H have at least one
edge, G ◦ H is not bipartite. Since an edge-transitive graph that is not vertex-
transitive is necessarily bipartite (cf. [19, Proposition 2.2] or [4, Lemma 3.2.1]),
it follows that G ◦H is not edge-transitive, a contradiction.

To characterize edge-transitive lexicographic products whose first factor is
not complete, we will make use of the following result due to Watkins.

Theorem 2 ([18, Corollary 1A]). If G is a connected, edge-transitive graph, then

κ(G) = δ(G).

Our first result now reads as follows.

Theorem 3. Let G be a connected graph that is not complete and H be any

graph. Then G ◦H is edge-transitive if and only if G is edge-transitive and H is

edgeless.

Proof. Suppose first that G andH are as stated and that G◦H is edge-transitive.
From [6, Proposition 25.7] we know that, as G is not complete, κ(G ◦ H) =
κ(G) |V(H)|. Since δ(G ◦H) = δ(H) + δ(G)|V (H)|, Theorem 2 implies that

κ(G) |V (H)| = δ(H) + δ(G)|V (H)|.

As κ(G) ≤ δ(G) holds, we infer that δ(H) = 0 (and that κ(G) = δ(G)). Hence
H is edgeless.

It is easy to see that the R-classes of A = G ◦ H are the products of the
R-classes of G with H. The automorphisms of A preserve the R-classes, hence
every automorphism of A induces an automorphism of A/R. Since Aut(A) is
edge-transitive, this is also the case for A/R. Notice that A/R = A/RG◦H is
the image of the projection of (G/RG) ◦H onto G/RG, hence A/RG◦H

∼= G/RG.
Therefore G/RG is edge-transitive, and thus so is G.

The converse is straightforward.
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Interestingly, we did not need to know much about the automorphism group
of the lexicographic product for the proof of this theorem. However, for the next
theorem, which characterizes the edge-transitive lexicographic products whose
first factors are complete, we need more information.

Given a lexicographic product G ◦ H, a vertex (g, h) ∈ V (G ◦ H) and a
β ∈ Aut(H), then the permutation of V (G ◦H) that maps (g, h) into (g, βh) for
every h ∈ V (H), and fixes all other vertices of G ◦H, clearly is an automorphism
of G◦H. Furthermore, if α ∈ Aut(G), then the mapping (g, h) 7→ (αg, h) defined
on V (G ◦H) also is in Aut(G ◦H).

The group generated by such elements is the wreath product of Aut(G) by
Aut(H) and denoted Aut(G) ◦ Aut(H). Clearly it is a subgroup of Aut(G ◦H),
and all elements of Aut(G) ◦Aut(H) can be written in the form

(g, h) 7→ (αg, βgh),

where α ∈ Aut(G) and every βg is in Aut(H). Notice that two vertices that have
the same G-coordinate, say (g, h) and (g, h′), are mapped into vertices that have
the same G-coordinate again, namely into (αg, αgh) and (αg, αgh

′). Evidently
this means that Aut(G) ◦Aut(H) preserves H-layers.

By Sabidussi [15], a necessary and sufficient condition that Aut(G ◦ H) =
Aut(G) ◦ Aut(H) is that H is connected if RG is non-trivial, and that the com-
plement H of H is connected if SG is non-trivial.

Theorem 4. The lexicographic product G ◦ H of a non-trivial complete graph

G by a graph H is edge-transitive if and only if H is the product of a complete

graph by an edgeless graph. This means that G◦H can be represented in the form

K ◦N , where K is complete and N edgeless.

Proof. Let A = G ◦H. Clearly A is connected and has at least two H-layers.

We first treat the case where Aut(A) = Aut(G)◦Aut(H). SupposeH contains
an edge. Then all H-layers contain an edge and, since Aut(A) preserves the H-
layers, all edges are in H-layers by edge-transitivity. But then A is disconnected.
Hence H is edgeless, and A = K ◦N for K = G and N = H.

Now, let us assume that Aut(A) 6= Aut(G) ◦ Aut(H). Since G is a non-
trivial complete graph, SG is non-trivial, and therefore H must be disconnected
by Sabidussi’s theorem. Let B1, . . . , Bℓ be the complements of the connected
components of H, that is,

H = B1 ∪ · · · ∪Bℓ.

H is then the join of the Bi, 1 ≤ i ≤ ℓ, that is, H consists of the Bi and every
vertex in Bi is joined by an edge to every vertex in Bj for j 6= i. The Bi are the
join components of H. We will use the notation Bv

i for the subgraph of A that
is induced by the vertices {(v, x) |x ∈ V (Bi)}. It is isomorphic to Bi.
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Suppose Bj contains an edge. Since every Bv
j contains an edge, let e ∈ E(Bv

j ).
By edge-transitivity e must be mapped by some automorphism α to an edge αe
whose endpoints are in different H-layers. But then, α(Bv

j ) has a disconnected
complement, and hence so does Bj , contrary to the definition of the Bi as the
connected components of H. Thus all Bi are edgeless.

Suppose that some B1 and B2 have different numbers of vertices. Then any
two vertices v ∈ V (B1) and w ∈ V (B2) have different degrees in H. For any two
vertices x, y ∈ G the edge [(x, v), (y, v)] of G ◦ H will have endpoints of degree
dH(v)+(n−1)|V (H)|, whereas the degrees of the endpoints of [(x,w), (y, w)] are
dH(w)+(n−1)|V (H)|. Since dH(v) 6= dH(w) these edges cannot be mapped into
each other. Hence all Bi are edgeless graphs with the same number of vertices,
say r. Then H = K|V (H)|/r ◦ Nr. Using the fact that the lexicographic product
is associative we conclude that

A = Kn ◦
(

K|V (H)|/r ◦Nr

)

=
(

Kn ◦ (K|V (H)|/r

)

◦Nr = K ◦Nr,

where K = Kn ◦K|V (H)|/r.

Consider the following illustrative example to Theorem 4. It is easy to see
that the lexicographic product An = Kn ◦C4 is the so-called cocktail-party graph
of order 4n. Clearly, An is edge-transitive. Now, An can also be represented as
An = K2n ◦N2, in accordance with Theorem 4.

A closely related result should be mentioned here. Recall that a graph is
super-connected if every minimum vertex cut isolates a vertex. Then Meng [13]
proved that a connected, vertex- and edge-transitive graph G is not super-con-
nected if and only if G is isomorphic to Cn ◦Nm (n ≥ 6,m ≥ 1), or to L(Q3)◦Nm

(m ≥ 1), where L(Q3) is the line graph of the 3-cube.

3. Edge-Transitive Cartesian Products

It is well-known that a Cartesian product of connected graphs has transitive au-
tomorphism group if and only if every factor has transitive automorphism group,
see [6, Proposition 6.16]. On the other hand, vertex- and edge-transitivity of the
factors does not imply in general that their Cartesian product is edge-transitive.
A simple example is K3�K2, and, more generally, Kn�Km, where n,m ≥ 2
and n 6= m. Indeed, since Kn and Km are relatively prime, no automorphism of
Kn�Km maps an edge of a Kn-layer onto an edge of a Km-layer.

The main result of this section is the characterization of edge-transitive con-
nected Cartesian products. For the proof we will use the structure of the auto-
morphism group of Cartesian products of connected prime graphs and the result
of Sabidussi [16] and Vizing [17] that every connected graph G has a unique prime
factor representation with respect to the Cartesian product.
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To be more precise, every connected graph G can be represented as a product
H1� · · · �Hk of connected, prime graphs, and the presentation is unique up to
the order and isomorphisms of the factors. It is convenient to denote the vertices
x of G as vectors (x1, . . . , xk), where xi ∈ V (Hi), 1 ≤ i ≤ k. Then every ϕ ∈
Aut(G) can be represented in the form

(1) ϕ(x)i = ϕi(xπ(i)),

where 1 ≤ i ≤ k, ϕi ∈ Aut(Hi), and π is a permutation of the set {1, . . . , k}.
This result is due to Imrich and Miller [7, 14]; see also [6, Theorem 6.10]. There
are two important special cases.

In the first case π is the identity permutation and only one ϕi is nontrivial.
Then the mapping ϕ∗

i defined by

ϕ∗
i (x1, . . . , xk) = (x1, . . . xi−1, ϕi(xi), xi+1, . . . , xk)

is an automorphism and we say that ϕ∗
i is induced by the automorphism ϕi of

the factor Hi. Note that ϕ∗
i preserves every Hi-layer and preserves every set of

Hj-layers for fixed j.
The second case is the transposition of isomorphic factors, which is possible if

G has two isomorphic factors, say Hi
∼= Hj . To simplify notation we can assume

that Hi = Hj , where i < j. Then the mapping ϕi,j defined by

ϕi,j(x1, . . . , xi, . . . , xj , . . . , xk) = (x1, . . . , xj , . . . , xi, . . . , xk)

is an isomorphism. We call it a transposition of isomorphic factors. Clearly ϕi,j

interchanges the set of Hi-layers with the set of Hj-layers.
It is easily seen that the automorphisms that are induced by the automor-

phisms of the factors, together with the transposition of isomorphic factors gen-
erate Aut(G). Hence every automorphism ϕ of G permutes the sets of Hi-layers
in the sense that ϕ maps the set of Hi-layers into the set of Hπ(i)-layers, where
π is the permutation from equation (1).

As an easy application of the above we determine the number of vertex orbits
of powers of prime, connected graphs with two vertex orbits.

Lemma 5. Let H be a connected graph with two vertex orbits that is prime with

respect to the Cartesian product, and let k a positive integer. Then Hk has k+1
vertex orbits.

Proof. Let the vertex orbits of H be V0 and V1. Then V0 ∪ V1 = V (H) and if
x ∈ V (Hk), then every component xi of x can be in V0 or V1. Let Xr be the set
of vertices where r components are in V0. Clearly r ∈ {0, 1, . . . , k}, hence there
are k + 1 such sets. Furthermore, every automorphism of Hk that is induced
by one of the factors preserves all Xr, and the same is true for transpositions of
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isomorphic factors. Since Aut(Hk) is generated by these automorphisms, the Xr

are preserved by Aut(Hk).

The observation that Aut(Hk) acts transitively on every Xr completes the
proof.

Theorem 6. A connected graph that is not prime with respect to the Cartesian

product is edge-transitive if and only if it is the power of a connected, edge- and

vertex-transitive graph.

Proof. Suppose H1� · · · �Hk is the prime factorization of an edge-transitive
graph G. Let e be an edge in an H1-layer of G and f be an edge in an Hi-layer,
1 ≤ i ≤ k. By edge-transitivity there is an automorphism ϕ that maps e into f .
Clearly ϕ maps the H1-layer containing e into the Hi-layer containing f . Hence
all factors are isomorphic. If f is in the same H1-layer as e, then ϕ maps this
H1-layer, say Hv

1 , into itself. Thus ϕ|Hv
1 is an automorphism of Hv

1 . Since f was
arbitrarily chosen, the action of the restriction of ϕ|Hv

1 on Hv
1 is edge-transitive.

As H1
∼= Hv

1 it is clear that G ∼= Hk for some graph H ∼= H1.

If H is not vertex-transitive, then G has at least three vertex orbits under
the action of Aut(G) by Lemma 5. However, an edge-transitive graph can have
only one or two.

To complete the proof we have to show that every connected graph G is
edge-transitive if it is a product of the form H1� · · · �Hk, where the factors are
isomorphic copies of an edge- and vertex-transitive graph H.

For, given edges e ∈ Hv
i and f ∈ Hw

j , where w = (w1, . . . , wk), we first apply
πi,j , the automorphism that interchanges the i-th with the j-th coordinate of

every vertex v ∈ V (G). Hence πi,j(e) ∈ H
πi,j(v)
j . Then we choose automorphisms

αi ∈ Aut(Hi) for every i ∈ {1, . . . , k} such that αi(πi,j(v)i) = wi. Setting α =
(α1, . . . , αk), we thus have w = (απi,j)(v), and απi,j(e) ∈ Hw

j . Since Hj is edge-
transitive, there clearly exists an automorphism ϕ of G that maps απi,j(e) into
f . Hence f = ϕαπi,j(e).

We comment here that the misstatement in [21] (a Cartesian product is edge
transitive if and only if its factors are) should read simply “only if” and not “if
and only if”.

There are graphs that are vertex- and edge-transitive, but, given any edge e,
there is no automorphism that interchanges the endpoints of e. Such graphs are
called half-transitive, cf. [2]. By Theorem 6 any connected half-transitive graph
G is either prime or the Cartesian power of a prime, vertex- and edge-transitive
graph H. It is easy to see that H must also be half-transitive, and that any
Cartesian power of a half-transitive graph is also half-transitive. We thus have
the following corollary.
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Corollary 7. A connected graph that is not prime with respect to the Cartesian

product G is half-transitive if and only if it is the power of a connected, half-

transitive graph.

We conclude with the remark that so-called weak Cartesian products, that
is, connected components of Cartesian products with infinitely many factors, can
be vertex-transitive, even if no factor is vertex-transitive, see [8].
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