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Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

e-mail: gasper.kosmrlj@student.fmf.uni-lj.si

Abstract

The domination game is played on a graph G by two players who alter-
nately take turns by choosing a vertex such that in each turn at least one
previously undominated vertex is dominated. The game is over when each
vertex becomes dominated. One of the players, namely Dominator, wants to
finish the game as soon as possible, while the other one wants to delay the
end. The number of turns when Dominator starts the game on G and both
players play optimally is the graph invariant γg(G), named the game domi-
nation number. Here we study the γg-critical graphs which are critical with
respect to vertex predomination. Besides proving some general properties,
we characterize γg-critical graphs with γg = 2 and with γg = 3, moreover for
each n we identify the (infinite) class of all γg-critical ones among the nth
powers Cn

N of cycles. Along the way we determine γg(C
n
N ) for all n and N .

Results of a computer search for γg-critical trees are presented and several
problems and research directions are also listed.
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1. Introduction

Critical graphs are indispensable when investigating many central graph invari-
ants. Several different criticality concepts were investigated with respect to the
chromatic number and the chromatic index. An important concept in this respect
is the one of color-critical graphs which are the graphs G such that χ(H) < χ(G)
holds for any proper subgraph H of G (equivalently, χ(G − e) < χ(G) for any
edge e of G), see the books [1, Section 14.2] and [24, Section 5.2], and the recent
paper [22]. For the parallel concept on the chromatic index we refer to [20] and
the references therein. A good source for critical graphs with respect to the inde-
pendence number is the book [21]. Different criticality concepts were investigated
also related to domination. A standard example is formed by γ-critical graphs [5],
that is, the graphs for which γ(G − v) < γ(G) holds for any vertex v of G. For
distance domination-critical graphs see [15, 23], while for domination dot-critical
graphs see the seminar paper [9] and the recent developments [11, 12].

The domination game [4] is played on an arbitrary graph G by Dominator and
Staller, see [2, 6, 7, 8, 10, 19] for some recent developments on the game and [13,
14] for the total version of the game. The players are taking turns choosing a
vertex such that at least one previously undominated vertex becomes dominated.
The game ends when no move is possible. Dominator wants to finish the game as
soon as possible, while Staller wants to play as long as possible. ByGame 1 (Game

2) we mean a game in which Dominator (respectively, Staller) has the first move.
Assuming that both players play optimally, the game domination number γg(G)
(the Staller-start game domination number γ′g(G)) of a graph G, denotes the
number of moves in Game 1 (respectively, Game 2). A partially-dominated graph

is a graph together with a declaration that some vertices are already dominated,
that is, they need not be dominated in the rest of the game. Note that a vertex
declared to be already dominated can still be played in the course of the game
provided it has an undominated neighbor. For a vertex subset S of a graph G, let
G|S denote the partially dominated graph in which vertices from S are already
dominated. If S = {v}, then we will simplify the notation G|{v} to G|v. The
following result of Kinnersley, West, and Zamani is a fundamental tool for the
domination game and will be used throughout the paper.

Theorem 1 (Lemma 2.1, Continuation Principle [18]). Let G be a graph and

A,B ⊆ V (G). If B ⊆ A, then γg(G|A) ≤ γg(G|B) and γ′g(G|A) ≤ γ′g(G|B).

In this paper we introduce critical graphs with respect to the domination
game as follows. A graph G is domination game critical or shortly γg-critical if
γg(G) > γg(G|v) holds for every v ∈ V (G). We also say that G is k-γg-critical
provided that γg(G) = k.

One might think that in view of the standard coloring and domination critical
graphs, a more natural option would be to consider vertex removed, or edge
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removed, or edge added graphs. However, as it turned out, the domination
game is not monotone with respect to removing/adding vertices or edges. It was
demonstrated in [2] that removing an edge from a graph can change its game
domination number by any value from {−2,−1, 0, 1, 2}. Moreover, removing a
vertex from a graph can increase its game domination number by any value, and
can also decrease it by 1 or 2. On the other hand, by the Continuation Principle,
γg(G) ≥ γg(G|v) holds for every v ∈ V (G). Note also that our definition of
γg-critical graphs is parallel with the chromatic-critical graphs with respect to a
vertex removal because removing a vertex just means that it need not be colored.

We proceed as follows. In the next section we prove some general results that
we need in later sections. One of them establishes the relation γg(G|v) ≥ γg(G)−
2, valid for every graph G and every v ∈ V (G). In Section 3 we concentrate on
γg-critical graphs. Especially, we show that if G is γg-critical then γ′g(G) equals
either γg(G) or γg(G)−1; moreover, we characterize 2-γg-critical and 3-γg-critical
graphs. In Section 4, the game domination number γg(C

n
N ) and the Staller-start

game domination number γ′g(C
n
N ) of the powers of cycles are determined for each

n ≥ 1 and N ≥ 2n+1. As a consequence, for every k ≥ 2 we identify the infinite
class of k-γg-critical graphs which are powers of cycles. In Section 5, we present
all γg-critical trees up to order 17 (obtained by computer search) and discuss
possible infinite families of γg-critical trees. In the last section we describe some
further typical examples of γg-critical graphs and raise some open problems.

2. Preliminaries

A graph G realizes the pair (k, ℓ) if γg(G) = k and γ′g(G) = ℓ. It was proved
in [4, 18] that |γg(G)−γ′g(G)| ≤ 1 holds for any graph G. Hence any graph realizes
either (k, k+1), (k, k), or (k, k−1) (for some integer k) and is consequently called
a plus graph, an equal graph, or a minus graph, respectively. Moreover, we
say that G is a no-minus graph [10], if for any S ⊆ V (G), γg(G|S) ≤ γ′g(G|S)
holds (in other words, G|S is not a minus).

A variation of the domination game when Dominator (respectively, Staller)
is allowed, but not obligated, to skip exactly one move in the course of the game,
is called the Dominator-pass game (respectively, Staller-pass game). The number
of moves in such a game, where both players are playing optimally, is denoted by
γdpg (G) (respectively, γspg (G)) when Dominator starts the game (unless he decides

to pass already the first move) and by γ′dpg (G) (respectively, γ′spg (G)) when Staller
starts the game. These variants of the domination game turned out to be very
useful, see [3, 4, 10, 18]. For our purposes we recall the following result.

Proposition 2 (Lemma 2.2, Proposition 2.3 [10]). If S is a subset of vertices of

a graph G, then γspg (G|S) ≤ γg(G|S) + 1. Moreover, if G is a no-minus graph,

then γspg (G|S) = γdpg (G|S) = γg(G|S).
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Now we can prove:

Theorem 3. If u is a vertex of a graph G, then γg(G|u) ≥ γg(G) − 2 holds.

Moreover, if G is a no-minus graph, then γg(G|u) ≥ γg(G)− 1 holds.

Proof. We assume that Dominator plays two games at the same time. The real
game is played on G, while Dominator also imagines another game being played
on G|u. The strategy of Dominator is to consider the imagined game as a Staller-
pass game and to play optimally in it. Throughout the game Dominator will
ensure that every vertex that is dominated in the real game is also dominated in
the imagined game. Clearly this is true at the beginning. Dominator optimally
plays in the imagined game and copies his moves to the real game. Since the
described property is preserved, all of his moves are legal in the real game. Every
move of Staller in the real game is copied to the imagined game. If her move
is not legal in the imagined game, then the only new dominated vertex in the
real one must be u. In this case Dominator just skips her move in the imagined
game (which is fine because Dominator is playing a Staller-pass game). From
this move on, the sets of dominated vertices are the same in both games, hence
all the moves until the end will be legal, and the number of moves still needed to
finish the game is equal in both games.

Let p and q be the number of moves played in the real game and in the
imagined game, respectively. Then, since Staller plays optimally in the real game
(but Dominator might not), we have γg(G) ≤ p. Since in the imagined game it
is possible that one move from the real game was skipped, we have p ≤ q + 1.
Moreover, since Dominator is playing optimally on G|u (but Staller might not),
we also infer that q ≤ γspg (G|u). Putting these inequalities together we get

γg(G) ≤ p ≤ q + 1 ≤ γspg (G|u) + 1 ,

that is, γg(G) ≤ γspg (G|u) + 1. Therefore, by the first assertion of Proposition 2,
γg(G) ≤ γg(G|u)+2. For the case when G is a no-minus graph we can analogously
apply the second statement of Proposition 2 to show that γg(G) ≤ γg(G|u) + 1
holds.

Vertices u and v of a graph G are twins in G if their closed neighborhoods
are the same, N [u] = N [v]. In particular, twins are adjacent vertices. A graph is
called twin-free if it contains no twins.

Lemma 4. If u and v are twins in G, then γg(G) = γg(G|u) = γg(G|v).

Proof. Suppose that the same game is played on G and on G|u, that is, the
same vertices are selected in both games. Then we claim that a move is legal
in the game played on G if and only if the move is legal in the game played on
G|u. Clearly, a legal move on G|u is also legal on G. On the other hand, if at
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some point a move is legal on G but not on G|u, then u would be the only newly
dominated vertex in the game played on G. This would mean that the vertex v
has already been dominated, but this is not possible as u and v are twins. This
proves the claim, from which the lemma follows immediately.

3. Properties of γg-Critical Graphs

The concept of γg-critical graphs is interesting only for Game 1. Indeed, suppose
that γ′g-critical graphs are defined analogously, that is, as graphs G for which
γ′g(G) > γ′g(G|v) holds for every v ∈ V (G). Let G be an arbitrary graph and
let u be an optimal start vertex for Staller in Game 2 on G. This implies that
γ′g(G) = 1 + γg(G|N [u]). Assuming that u has at least one neighbor in G, it
follows that Staller can play u on her first move in Game 2 on the graph G|u.
While this may not be an optimal first move for Staller on G|u, we still get
γ′g(G|u) ≥ 1 + γg(G|N [u]) = γ′g(G). It follows that there are no non-trivial
γ′g-critical graphs.

Consider next the graph G from Figure 1. It has 13 vertices and is 7-critical.
What appears to be quite surprising is that γg(G|u) = γg(G|w) = 5 holds. Hence
in the definition of the γg-critical graphs, the condition γg(G) > γg(G|v) cannot
be replaced with the condition γg(G) = γg(G|v)+1. On the other hand it follows
from Theorem 3 that the decrease γg(G)− γg(G|v) = 2 is largest possible.

u

w

Figure 1. A critical graph on 13 vertices.

A general property of γg-critical graphs is that they cannot be plus.

Proposition 5. If G is a γg-critical graph, then G is either a minus graph or

an equal graph.

Proof. Suppose s is an optimal start vertex in Game 2 for Staller on G. Then,
using the Continuation Principle,

γ′g(G) = 1 + γg(G|N [s]) ≤ 1 + γg(G|s) .



786 Cs. Bujtás, S. Klavžar and G. Košmrlj

On the other hand, since G is critical, γg(G|s) ≤ γg(G)− 1. Hence

γ′g(G)− 1 ≤ γg(G|s) ≤ γg(G)− 1 .

In conclusion, γ′g(G) ≤ γg(G), that is, G is not a plus graph.

The only 1-γg-critical graph is K1. As the next result asserts, 2-γg-critical
graphs are precisely the cocktail party graphs. Recall that the cocktail party graph
Kk×2, k ≥ 1, is the graph obtained from K2k by deleting a perfect matching. In
particular, K1×2 is the disjoint union of two vertices and K2×2 = C4.

Proposition 6. The following conditions are equivalent for a graph G.

(i) G is 2-γg-critical,

(ii) G = Kk×2, for some k ≥ 1,

(iii) γ(G) = 2 and every pair of vertices of G forms a dominating set.

Proof. Let |V (G)| = n.
(i) ⇒ (ii) Assuming that G is a 2-γg-critical graph, for every vertex u of G

there exists a vertex u′ 6= u which is an optimal first choice of Dominator on G|u.
Since γg(G) = 2, deg(u′) ≤ n− 2. On the other hand, because γg(G|u) = 1, u′ is
a dominating vertex in G− u. Therefore, N [u′] = V (G) \ {u}. Since this is true
for each vertex of G, we conclude that G is isomorphic to the graph obtained
from K2k by deleting a perfect matching for some k ≥ 1, that is, G = Kk×2.

(ii) ⇒ (iii) This implication is obvious.
(iii) ⇒ (i) Let x be an arbitrary vertex of G. Since γ(G) = 2, deg(x) ≤ n−2.

On the other hand, if x is adjacent to neither x′ nor to x′′, then {x′, x′′} is not
a dominating set. Therefore, deg(x) = n − 2. Suppose now that G is not 2-γg-
critical, so that there exists a vertex u such that γg(G|u) = 2. Then any vertex
x 6= u must be non-adjacent with exactly one vertex x′ 6= u, which in turn implies
that x is adjacent to u (since deg(x) = n−2). Since x was arbitrary, we conclude
that deg(u) = n− 1 and so γ(G) = 1, the final contradiction.

The equivalence between (ii) and (iii) was earlier proved in [16].
Clearly, ∆(G) ≤ |V (G)| − 3 holds in a 3-γg-critical graph G since otherwise

γg(G) ≤ 2 would hold. Now we can characterize 3-γg-critical graphs as follows.

Theorem 7. Let G = (V,E) be a graph of order n and with ∆(G) ≤ n−3. Then
G is 3-γg-critical if and only if G is twin-free, and for any v ∈ V there exists a

vertex u ∈ V such that uv /∈ E and deg(u) = n− 3.

Proof. Assume first that G is twin-free, and that for any v ∈ V there exists a
vertex u ∈ V such that uv /∈ E and deg(u) = n − 3. Since ∆(G) ≤ n − 3, after
the first move of Dominator at least two vertices remain undominated. Let x and
y be such vertices. Because G is twin-free, Staller can force at least two more
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moves to be made to finish the game. On the other hand, if Dominator selects
a vertex of degree n− 3 (which exists by our second assumption), the game will
finish in the next two moves. We conclude that γg(G) = 3. Consider now any
v ∈ V and the game on G|v. Because of the second assumption, Dominator can
play a vertex u such that only one vertex remains undominated. Thus, any legal
move of Staller finishes the game in the second turn. Therefore, G is 3-γg-critical.

To prove the other direction, assume that G is 3-γg-critical. By Lemma 4, G
must be twin-free. Take any vertex v ∈ V and consider the domination game on
G|v. Let an optimal first choice of Dominator be u and assume that deg(u) < n−3
in G. Hence, in G|v we have two different undominated vertices, say x and y,
after the choice of u. Since Staller finishes the game after her first move, there
exists no vertex that dominates only one of x and y, hence N [x] = N [y]. This
contradicts Lemma 4. So after Dominator’s first move in G|v, there exists only
one undominated vertex w. Since γg(G) > 2 we get that v is not adjacent to u.
From γg(G|v) = 2 we conclude that deg(u) = n − 3. Because u is not adjacent
to v we are done.

The two conditions of Theorem 7 are independent. For instance, P5 is twin-
free and does not fulfill the second condition (for the middle vertex). Of course,
it is then not 3-γg-critical by the theorem. Similarly, the graph from Figure 2
is not twin-free (u and v are twins), fulfills the second condition, and is not
3-γg-critical. Indeed, if Dominator plays w as the first move, then the only
undominated vertices left are the twins u and v, hence Staller is forced to finish
the game in the next move.

u

v

w

Figure 2. A graph with twins u and v.

It follows from Theorem 7 that the class of 3-γg-critical graphs is quite rich
(in contrast with the class of 2-γg-critical graphs). For instance, the class of 3-
γg-critical graphs includes complements of cycles Cn, n ≥ 5. In addition, we also
get 3-γg-critical graphs by removing the edges of two disjoint cycles Cp and Cq

from Kk, where k ≥ 6, p, q ≥ 3 and p+ q = k. Moreover,

Corollary 8. The join of any two 3-γg-critical graphs is a 3-γg-critical graph.
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Proposition 6 can be reformulated in the way parallel to Theorem 7. However,
as we will see in the next section (cf. Corollary 10), Theorem 7 does not extend
to k-critical graphs with k ≥ 4. Note also that Corollary 8 does not hold for k-
γg-critical graphs with k ≥ 4 because if G is a join of two graphs, then γg(G) ≤ 3.

4. Powers of Cycles

For a positive integer n, the nth power Gn of a graph G is the graph with
V (Gn) = V (G) and two vertices are adjacent in Gn if and only if their distance in
G is at most n. In this section we consider the powers of cycles and determine their
game domination number, Staller-start game domination number, and classify
which are γg-critical. In this way we extend the result on cycles from [17] and
also obtain infinite families of k-γg-critical graphs for any k ≥ 2.

Theorem 9. For every n ≥ 1 and N ≥ 3,

γg(C
n
N ) =















⌈

N
n+1

⌉

; N mod (2n+ 2) ∈ {0, 1, . . . , n+ 1} ,

⌈

N
n+1

⌉

− 1; N mod (2n+ 2) ∈ {n+ 2, . . . , 2n+ 1} .

Moreover, for every n ≥ 1 and N ≥ 2n+ 1,

γ′g(C
n
N ) =



































⌈

N
n+1

⌉

; N mod (2n+ 2) ∈ {0} ,

⌈

N
n+1

⌉

− 1; N mod (2n+ 2) ∈ {1, . . . , n+ 1, 2n+ 1} ,

⌈

N
n+1

⌉

− 2; N mod (2n+ 2) ∈ {n+ 2, . . . , 2n} .

Proof. If N ≤ 2n+ 1, then Cn
N is a complete graph and hence γg(C

n
N ) = 1 and

γ′g(C
n
2n+1) = 1, thus the statements clearly hold. Hence we assume N ≥ 2n+ 2.

After the first turn, throughout the game we always have 2n + 1 consecutive
vertices of the cycle CN , each one being dominated. Hence, Staller may choose
a vertex such that only one new vertex becomes dominated. On the other hand,
Dominator cannot dominate more than 2n + 1 vertices in a turn. Thus, Staller
has a strategy which ensures that in any two consecutive turns at most 2(n+ 1)
vertices become newly dominated.

It follows for Game 1 that if Staller finishes this game, the number of turns

is at least 2
⌈

N
2(n+1)

⌉

, while if the last choice is made by Dominator, it is at least
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2
⌈

N−2n−1
2(n+1)

⌉

+ 1. Hence, we have

γg(C
n
N ) ≥ min

{

2

⌈

N

2(n+ 1)

⌉

, 2

⌈

N − 2n− 1

2(n+ 1)

⌉

+ 1

}

.

From these inequalities, checking the cases due to the residues modulo 2n + 2,
we obtain that the formulae given in the theorem are lower bounds on γg(C

n
N ).

In Game 2, the inequality

γ′g(C
n
N ) ≥ min

{

2

⌈

N − 2n− 1

2(n+ 1)

⌉

+ 1, 2

⌈

N − 4n− 2

2(n+ 1)

⌉

+ 2

}

must hold. Checking the cases due to the residues, we obtain that the formulae
given for γ′g(C

n
N ) in the theorem are lower bounds.

For the upper bounds consider the following strategy of Dominator, where a
run means a non-extendable set of consecutive dominated vertices which induce
a path on CN .

• In the first turn (if it is his turn) he is free to choose any vertex.

• In his later turns, he prefers to extend a run by exactly 2n+1 vertices; if it
is not possible, he selects a vertex which dominates all the vertices between
the ends of two runs.

Extending an idea from [17] used there to determine the game domination number
of cycles, we consider function

P (m) = u+ (n+ 1)m+ 2nr,

where u is the number of undominated vertices and r is the number of runs after
the mth turn of the game.

Now, we consider the Dominator-start game and prove the following relations
by induction on m:

P (m) ≤

{

N + n; m is odd,
N + 2n; m is even.

After the first turn we have P (1) = N − (2n+ 1) + (n+ 1) + 2n = N + n.

• If in the mth turn, for an m ≥ 3 odd, Dominator extends a run with 2n+1
vertices, then

P (m) ≤ P (m− 1)− (2n+ 1) + (n+ 1) = P (m− 1)− n ≤ N + n

holds. In the other case, when Dominator decreases the number of runs,
the induction hypothesis implies again

P (m) ≤ P (m− 1)− 1 + (n+ 1)− 2n = P (m− 1)− n ≤ N + n.
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• If m is even, then in the mth turn Staller either does not increase the
number of runs and we have

P (m) ≤ P (m− 1)− 1 + (n+ 1) = P (m− 1) + n ≤ N + 2n,

or a new run arises and then exactly 2n+1 vertices become dominated. In
the latter case,

P (m) ≤ P (m− 1)− (2n+ 1) + (n+ 1) + 2n = P (m− 1) + n ≤ N + 2n.

Further, we note that if Staller finishes the game in the mth turn, then the
number of runs necessarily decreases by at least 1, hence

P (m) ≤ P (m− 1)− 1 + (n+ 1)− 2n = P (m− 1)− n ≤ N

must be true for the number m of turns if m is even.
Consequently, if the game finishes in the mth turn, we have

P (m) = m(n+ 1) ≤

{

N + n; m is odd,
N ; m is even.

Let us write N as N = 2s(n+1)+x, where s =
⌊

N
2(n+1)

⌋

and 0 ≤ x ≤ 2n+1

is the residue of N modulo (2n+2). Checking the conditions proved for the value
P (m), we obtain the following inequalities.

• If x = 0, the condition (2s+1)(n+1) ≤ N +n is not true, hence γg(C
n
N ) ≤

2s =
⌈

N
n+1

⌉

.

• If x ≥ 1 then (2s + 2)(n + 1) ≤ N cannot hold, and γg(C
n
N ) ≤ 2s + 1 is

concluded. Then, for 1 ≤ x ≤ n + 1 we have γg(C
n
N ) ≤

⌈

N
n+1

⌉

, while for

n+ 2 ≤ x ≤ 2n+ 1, γg(C
n
N ) ≤

⌈

N
n+1

⌉

− 1 is obtained.

These bounds together prove our formulae stated for γg(C
n
N ).

Similarly, in any Staller-start game P (1) = N + n holds, and if Dominator
follows the strategy described above then

P (m) ≤

{

N + n; m is odd,
N ; m is even

is valid for every m. In addition, if Staller finishes the game with the mth
turn, P (m) ≤ N − n must be fulfilled. Again, we may consider the form N =
2s(n + 1) + x and check the different cases. This yields that the formulae given
for γ′g(C

n
N ) in the theorem are upper bounds.

These facts together prove our statements.
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The game domination number γg(C
n
N |v), where v is any vertex of Cn

N , can
be determined in a similar way. We note that in this case

P (m) = m(n+ 1) ≤

{

N + n− 1; m is odd,
N − 1; m is even

must be true, where P (m) = u+(n+1)m+2nr and m is the length of the game
on Cn

N |v. Then, we obtain

γg(C
n
N |v) =















⌈

N−1
n+1

⌉

; N mod (2n+ 2) ∈ {1, . . . , n+ 2} ,

⌈

N−1
n+1

⌉

− 1; N mod (2n+ 2) ∈ {0, n+ 3, . . . , 2n+ 1} .

Comparing it with the result of Theorem 9, we immediately get that γg(C
n
N |v)

< γg(C
n
N ) holds if and only if N ≡ 0 or 1 mod(2n+ 2).

Corollary 10. For every n ≥ 1 and k ≥ 1, the graph Cn
2(n+1)k is (2k)-γg-critical,

and the graph Cn
2(n+1)k+1 is (2k + 1)-γg-critical. Further, if 2 ≤ x ≤ 2k + 1 then

Cn
2(n+1)k+x

is not γg-critical.

Note that Corollary 10 in particular asserts that Cn
2n+2 = K(n+1)×2 are 2-γg-

critical graphs and that Cn
2n+3 = C2n+3 are 3-γg-critical. Moreover, by Theorem 9

the graphs Cn
2(n+1)k are equal graphs (and (2k)-γg-critical), while the graphs

Cn
2(n+1)k+1 are minus (and (2k + 1)-γg-critical).

We also emphasize the following consequence:

Corollary 11. For every ℓ and k ≥ 2, there exist infinitely many k-γg-critical
graphs of order greater than ℓ.

5. On γg-Critical Trees

In this section we present γg-critical trees that were found by computer. The
computational results indicate that the appearance of such trees is somehow
random. In Figure 3 all γg-critical trees up to 17 vertices are shown. There are
no γg-critical trees on up to 12 vertices, two γg-critical trees on 13 vertices, no
such trees on 14 and 15 vertices, another (and only) one on 16 vertices, and ten
on 17 vertices.

Let Tp,q,r be the graph obtained from disjoint paths P4p+1, P4q+1, and P4r+1

by identifying three end-vertices, one from each of the paths. Hence |V (Tp,q,r)| =
4(p+q+r)+1. Note that T1,1,1 is one of the two γg-critical trees on 13 vertices and
that T1,1,2 also appears in Figure 3. Moreover, we have verified by computer that
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Figure 3. Critical trees on 13, 16, and 17 vertices.

Tp,q,r is 2((p+q+r)+1)-critical for 1 ≤ p, q, r ≤ 3. These computations naturally
lead to a conjecture that Tp,q,r is a γg-critical tree for any p, q, r ≥ 1. Using the
existing tools, a possible proof of this conjecture would be a technical, lengthy
case analysis, hence new techniques to prove γg-criticality would be welcome.

One of the things we would need to determine in order to prove that the trees
Tp,q,r are γg-critical, is γg(Tp,q,r). Note that Tp,q,r, p, q ≥ 1, r ≥ 2, is obtained by
attaching P4 to a leaf of Tp,q,r−1 corresponding to the parameter r − 1. Because
of that it would be nice if it would hold in general that if T ′ is obtained from a
tree T by attaching P4 to one of its leaves, then γg(T

′) = γg(T ) + 2. However,
this is not true in general. There is no such example on at most 8 vertices, but
there is a unique such tree T on 9 vertices shown in Figure 4. First, γg(T ) = 5.
On the other hand, if T ′ is the tree obtained from T by attaching a P4 at x, then
γg(T

′) = 6. Moreover, if T ′′ is a tree obtained from T by attaching a P4 at y,
then γg(T

′′) = 7. The same holds also when a P4 is attached at z.
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x

y

z

Figure 4. Tree T .

6. Concluding Remarks and Open Problems

Using computer we have found more sporadic examples of γg-critical graphs.
The broken ladder BLk, k ≥ 0, is the graph obtained from the Cartesian product
P2�P4 by amalgamating an edge of the cycle C4k+2 with an edge of P2�P4

whose end-points are of degree 2, see [19]. In particular, BL0 = P2�P4. It was
verified by computer that BLk is (2k + 4)-critical for 0 ≤ k ≤ 5. Similarly, let
Hk, k ≥ 0, be the graph obtained from P2�P4 by amalgamating an edge of the
cycle C4k+2 with a middle P4-layer edge of P2�P4. It was verified for k ≤ 2 that
Hk is γg-critical.

If G is a vertex-transitive graph, then we only need to compare γg(G) with
γg(G|v) for some vertex v of G. That is, a vertex-transitive graph G is either
γg-critical or γg(G) = γ(G|v) holds for any vertex v of G.

Every graph contains a color-critical subgraph with the same chromatic num-
ber. Naturally extending the concept of γg-criticality to all partially dominated
graphs, the same conclusion holds also for this concept. Indeed, let G be an
arbitrary graph. If it is not γg-critical, then it contains a vertex u such that
γg(G|u) = γg(G). Now, if G|u is γg-critical (in the sense of the extended defini-
tion), we are done, otherwise we repeat the procedure until finally a γg-critical
partially dominated graph G|S with γg(G|S) = γg(G) is found, where S ⊆ V (G).
Hence we pose:

Problem 12. Investigate γg-criticality of partially dominated graphs. In parti-
cular, compare it with the concept studied in this paper.

The graphs that are in a way complementary to the γg-critical graphs are
the graphs G such that γg(G) = γg(G|v) holds for every v ∈ V (G). For instance,
among the powers of cycles, such graphs are precisely those that are not critical.
Thus:
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Problem 13. Study the graphs G for which γg(G) = γg(G|v) holds for every
v ∈ V (G). In particular, establish their connections with the γg-critical graphs.

Finally, in view of [10], we also pose:

Problem 14. Consider the behavior of the γg-criticality on the disjoint union of
graphs. In particular, if G is a γg-critical graph, when is G ∪K1 γg-critical?
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[10] P. Dorbec, G. Košmrlj and G. Renault, The domination game played on unions of

graphs , Discrete Math. 338 (2015) 71–79.
doi:10.1016/j.disc.2014.08.024

[11] M. Furuya, Upper bounds on the diameter of domination dot-critical graphs with

given connectivity , Discrete Appl. Math. 161 (2013) 2420–2426.
doi:10.1016/j.dam.2013.05.011

[12] M. Furuya, The connectivity of domination dot-critical graphs with no critical ver-

tices , Discuss. Math. Graph Theory 34 (2014) 683–690.
doi:10.7151/dmgt.1752
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