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Abstract 

It is proved that a split graph is an absolute retract of split graphs if and only if a partition of 
its vertex set into a stable set and a complete set is unique or it is a complete split graph. Three 
equivalent conditions for a split graph to be an absolute retract of the class of all graphs are 
given. It is finally shown that a reflexive split graph G is an absolute retract of reflexive split 
graphs if and only if G has no retract isomorphic to some J,, n B 3. Here J, is the reflexive graph 
with vertex set {?c~,x*, . . . , x,,y,, y,, , y,} in which the vertices x1, x2, , x, are mutually 
adjacent and thevertexy,isadjacent to x~,x~,...,x~_~,x~+~,...,x,. 

1. Introduction 

The main motivation for this paper is the investigation [l] by Bandelt et al. in 

which the internal structure of the absolute retracts of bipartite graphs is clarified. 

They proved several nice characterizations of bipartite absolute retracts and applied 

these graphs to the competitive location theory. However, the investigation of the 

absolute retracts of bipartite graphs started as early as in 1972 with the Ph.D. Thesis 

of Hell [S], who gave, among others, two characterizations of the absolute retracts of 

bipartite graphs. Split graphs are ‘half-way’ between bipartite graphs and their 

complements. Since there are many structural characterizations of the absolute 

retracts of bipartite graphs, one may hope that something similar holds for the 

absolute retracts of split graphs as well. 

All graphs considered in this paper are finite, undirected, connected, and simple. 

Sometimes we add a loop at each vertex and say we have a rej?e.xiue graph. The degree 

L&(X) of a vertex XE V(G) is the number of edges incident with x, not counting loops. 

The neighbourhood N,(x) of a vertex XE V(G) is the set of vertices adjacent to 

x excluding x if there is a loop at x. Hence we think of the degree and the 

neighbourhood of a vertex of a reflexive graph G just as if G were a simple graph. 

I This work was supported in part by the Research Council of Slovenia. A part of the work was done while 
the author was visiting the Universitit Bielefeld, supported by a SFB. 
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A subset K E V(G) is a complete set if K induces a complete subgraph of G. A subset 

S G V(G) is a stable set if no pair of distinct vertices of S is adjacent in G. The number 

of vertices in a maximum complete set of G is denoted by o(G) and the number of 

vertices in a stable set of a maximum cardinality is denoted by r(G). 

For graphs G and H an edge-preserving map of G to H is a map f: V(G)-+ V(H) such 

that (f(x),f(y))~E(H) whenever (x,~)EE(G). Note that in reflexive graphs an edge-pre- 

serving map can identify adjacent vertices. A subgraph H of a (reflexive) graph G is a 

retract of G if there is an edge-preserving map r: V(G)+ V(H) with r(x)=x, for all 

XE V(H). The map r is called a retraction. If H is a retract of a (reflexive) graph G then H is 

an isometric subgraph of G, that is C&(X, y) = &(x, y) for all x, YE V(H), where C&(X, y) de- 

notes the length of a shortest path in G between x and y. A simple graph G is n-chromatic if 

there is an edge-preserving map from G onto the complete graph K,, and n is the smallest 

such natural number. This n is called the chromatic number of G and is denoted by x(G). 

The corresponding edge-preserving map is called an n-colouring of G. If H is a retract of 

a simple graph G then x(H)=x(G), i.e., H is an isochromatic subgraph of G. 

Let 59 be a class of graphs. A graph GE%? is an absolute retract of graphs of V if G is 

a retract of any graph HE%? containing G as an isometric and isochromatic subgraph. 

If V=Y, i.e. %? is the class of all graphs then we call an absolute retract of all graphs 

simply an absolute retract. If V is a class of reflexive graphs then call a graph G& an 

absolute retract of rejexive graphs of V if G is a retract of any graph HEW containing 

G as an isometric subgraph. If V is the class of all reflexive graphs then we call such 

a graph an absolute rejexive retract. 
In the literature one can find also some other definitions of absolute retracts. In fact, 

any set of necessary conditions for a retraction would yield a definition. For example, 

in [lo] the only condition for an absolute retract is to be an induced subgraph while in 

[11] a graph H is called an absolute reflexive retract if it is a retract of any graph 

G provided that every hole of H is separated in G. 

In the next section we recall some basic facts about split graphs and introduce 

complete split graphs and graphs J,. In Section 3 we characterize absolute retracts of 

split graphs, and prove that an n-chromatic split graph G is an absolute retract if and 

only if there is a unique n-colouring of G. The graphs J,, which are defined in 

Section 2, were considered earlier; see for instance [4,12-14). They came up in 

a game-theoretic problem solved by Nowakowski and Winkler [14]. The graphs J, 

were shown to be irreducible by Nowakowski and Rival in [13], and these graphs are 

also important in a classification of reflexive graphs, see [4,12]. In the last section we 

add a new aspect of the graphs J,: They are precisely the forbidden retracts of the 

absolute retracts of reflexive split graphs. 

2. Split graphs 

A (reflexive) graph G is called split if there is a partition V(G) = K + S of its vertex 

set into a complete set K and a stable set S. Such a partition may not be unique, as 
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X 

1 Yl Y2 Y3 

Fig. 1. A complete split graph. Fig. 2. The graph J,. 

can be seen on Fig. 1. One of its partitions is indicated, while the 

(KU{yi})+(S-{yi}) for i=1,2,3,4. 

Y7l 

others are 

Let H be an induced subgraph of a split graph G, V(G) = K + S. Clearly, H is a split 

graph and the partition V(H)= K’ + S’ of its vertex set which satisfies K’ E K and 

S’ c S will be called an induced partition. Foldes and Hammer [S] proved that the 

graphs 2K,, C4 and C5 are the minimal forbidden induced subgraphs of split graphs. 

It follows that every split graph with at least one edge consists of the nontrivial 

connected component and several isolated vertices. Hence our assumption that all the 

graphs are connected is not a restriction. 

A graph G is a complete split graph if there is a partition V(G) = K + S of its vertex 

set into a complete set K and a stable set S such that every vertex from S is adjacent to 

every vertex from K. Note that in such a partition any one vertex from S together with 

the set K forms a complete subgraph, hence o(G) = 1 K I+ 1. In a trivial case, a com- 

plete split graph is isomorphic to a complete graph K,. We refer again to Fig. 1, which 

shows a complete split graph with a corresponding partition. 

The (reflexive) graph J,, n > 2, has the vertex set X,u Y,, where X, = {xi, x2, . . , x,} 

and Y,= {yi ,yz, . . . , y,). The subset X, forms a complete set, the subset Y forms 

a stable set, and otherwise, two vertices xi and yi; are adjacent except if i =j (cf. Fig. 2). 

Clearly, J, is a split graph with a vertex partition X + Y. 

The next theorem can be found in [6] and follows essentially from the work of 

Hammer and Simeone [73. 

Theorem 2.1. Let G be a split graph, V(G) = K + S. Exactly one of the following 

conditions holds: 

(i) 1 K I= o(G) and 1 SI = a(G) (in this case the partition K + S is unique), 

(ii) IKI=w(G)-landISI=r(G)(inthiscasethereexistsany~SstrchthatK+(y} 

is complete), 

(iii) IKI=o(G)andISI=cx(G)-l(inthiscasethereexistsanx~KsuchthatS+(x} 

is stable). 

It follows from the theorem that there always exists a partition K + S such that the 

part K has w(G) vertices. We will also use the following corollary to Theorem 2.1. 
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Corollary 2.2. Let G be a split graph with a partition V(G)= K +S, where 

K={x,,x,, . ..) x,> and S={yI,yz, . . . . y,}. Then this partition is unique if and only if 

do(xi)>nfori=1,2 ,._., nandd,(y,)<n-lfori=1,2 ,..., m. 

Proof. If dc(xi)= n- 1 for some i, then we have the condition (iii) of Theorem 2.1 and 

if dc(yi) = n for some i, then we have the condition (ii). Conversely, if da(xi) B n for all 

i then LX(G) = m and if d,(yi) < n - 1 for all i then o(G) = n. Hence by the condition (i) of 

Theorem 2.1 a partition K +S is unique. I7 

3. Absolute retracts of split graphs 

In this section we want to characterize absolute retracts of split graphs and split 

graphs which are absolute retracts, i.e., absolute retracts in the class of all graphs. Our 

main results are presented in Theorem 3.2 and Theorem 3.6. 

Lemma 3.1. Let G be a split graph, V(G) = K + S, where K is a maximum complete 

subgraph. Let H be an induced subgraph of G with an induced partition V(H)= K’ + S’. 
Then H is a retract of G ifand only ifw(H)=o(G)and, ifx~K-K’then No(x)nS’=@ 

Proof. Let H be a retract of G and let r : V(G)-+ V(H) be a retraction. Then 

x(G) = x(H) and as split graphs are perfect, o(H) = o(G). Suppose that there are YES 

and XEK - K’, such that (~,x)EE(G). Then r(y)=y and r(x)ES’. But S’ is a stable set, 

hence (r(y), r(x))$E(H), a contradiction. 

Assume that the conditions of the theorem are fulfilled. H is a split graph, hence by 

Theorem 2.1, IK’j=w(H) or (K’I=w(H)-1. Let for any yES-S’,f(y) denote a fixed 

by arbitrary vertex ~EK such that (y,x)$E(G), if such a vertex exists. 

Case 1: IK’I =o(H). By assumption, o(H)=w(G) hence K = K’. Since K is a 

maximum complete subgraph, f(y) always exists. Define r: V(G)+ V(H): 

L;E V(H), 

VES-S’. 

The mapping r: V(G)+ V(H) is well-defined and it is easy to verify that r is also 

edge-preserving. 

Case 2: JK’I =o(H)- 1. Let x be the unique vertex from K-K’. Since 

o(H)=o(G), there exists a vertex WES’ such that the vertex set K’+{w) induces 

a complete subgraph of H. Define r: V(G)-+ V(H) as follows: 

V DE V(H), 

r(v)= i(v), VES-S’, (u,x)sE(G), 

i w, ES-S’, (v,x)$E(G) or v=x. 
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Because K is a maximum complete subgraph, f(y) exists whenever (y,x)~E(c). It 

follows that r is well-defined. Furthermore, as N,(x)nS’=@ it is straightforward to 

verify that r preserves adjacency, hence it is a retraction. 0 

Since the maximal complete subgraphs of a chordal graph can be calculated in 

linear time (see [6, Theorem 4.171) Lemma 3.1 provides us a linear time characteriza- 

tion of the retracts of a split graph. 

Theorem 3.2. A split graph is an absolute retract of split graphs tfand only zfa partition 

of its vertex set into a stable set and a complete set is unique or it is a complete split 

graph. 

Proof. Suppose first that a partition of V(G) is unique. Let G be an isometric and 

isochromatic subgraph of a split graph H with V(H) = K + S. Let V(G) = K’ + S’ be an 

induced partition. As V(G) has a unique partition it follows from Theorem 2.1 that 

1 K’J = o(G). Furthermore, G is isochromatic in H and K’ c K, hence K = K’. It follows 

from Lemma 3.1 that G is a retract of H. Since H was arbitrary, G is an absolute 

retract of split graphs. 

Suppose next that a partition of I’(G) is not unique. Let V(G) = K + S, 

K={xl,xz,...,x,},S={yl,ya,..., y,}, where o(G) = n. It follows from Corollary 2.2 

that at least one vertex from K is of degree n - 1. We may suppose that do(xl) = n - 1. 

We distinguish two cases. 

Case 1: At least one vertex from S is of degree <n - 2. Assume do(yI ) < n - 2 and 

define a graph H as follows: 

I’(H)= I’(G)u{z}, 

E(H)=E(G)U{(z,xt),i=2,3 ,..., ~}u{(z,Y~)). 

Since xi is not adjacent to any of the yi, the graph H is a split graph with a vertex 

partition V(H)=K’+S’, where K’=(z,x~,x~,...,x.} and S’= V(H)-K’. Let 

c: V(G)-+K, be an n-colouring of G and let t be any colour not in the set 

{c(xl)}u{c(xi); . 4 x, IS a acent to yi}. Since do(y,)bn-2, we can always choose 

t from K,. Then c’: V(H)+K, 

i 

4x1), v=z, 

c’(v)= t, u=y1, 

c(u), otherwise. 

is an n-colouring of H, therefore G is an isochromatic subgraph of H. Since G is 

connected it is also straightforward to verify that G is isometric in H. Hence G is an 

isometric and isochromatic subgraph of H, but by Lemma 3.1 G is not a retract of H. 

It follows that G is not an absolute retract of split graphs. 

Case 2: All the vertices from S are of degree n - 1. As do(xl) = n - 1, yi is adjacent to 

x2,x3 ,..., x, for all i=l,2 ,..., m. Hence G is a complete split graph with a vertex 
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partition{x,,x, ,..., x.}+{xl,yl,yz ,..., y,>. Let G be an isometric and isochromatic 

subgraph of H with V(H)= K +S, 1 K I= n, and let I’(G)= K’ +S’ be the induced 

partition. If K = K’ then G is a retract of H. Otherwise, IK - K’I = 1 and let ZEK - K’. 

If for some i, if 1, the vertex xi belongs to S’ then H is not a split graph, hence 

K={x2,x3,..., x,, z} and x1 ES’. But then z is not adjacent to any of yi, for otherwise 

w(H)an+ 1. It follows, using Lemma 3.1 again, that G is a retract of H. 0 

Corollary 3.3. Let G be a split graph and let both G and its complement e be connected. 

Then G is an absolute retract of split graphs ij’and only ifG is an absolute retract of split 
graphs. 

Proof. Recall that a graph G is a split graph if and only if its complement G is a split 

graph. 

Let G and G be connected and let G be an absolute retract of split graphs. Then G is 

not a complete split graph for otherwise G would be disconnected. It follows from 

Theorem 3.2 that G has a unique vertex partition V(G) = K + S, K = {x1, x2, . . . , x,,}, 

S={Y,,Yz? .*., y,}. Then by Corollary 2.2 dc(xi)>n for i= 1,2, . . . , n and 

dc(yi),<n-lfori=1,2,..., m. Clearly, G is a split graph with a vertex partition K + S, 

where K is a stable set and S a complete set. Furthermore, do(xi) d m - 1 for all i and 

do(yi) 2 m for all i. Using Corollary 2.2 again, G has a unique partition, hence it is an 

absolute retract of split graphs. 0 

In the proof of our next theorem we will use the following two results. 

Theorem 3.4 (Pesch [16, p, 421). Let G be an absolute retract, x(G)=n. Then G is 
(n - 1)-connected. 

Theorem 3.5 (Pesch and Poguntke [17]). Let G be an n-chromatic graph. The follow- 

ing is equivalent: 

(i) G is an absolute retract, and diam( G) < 3 if n = 2, diam(G) d 2 if n Z 3. 

(ii) For each colouring c: G-+K, and for each iE V(K,), there is a Z~E V(G) with 

zivCE(G)for all VEV(G) with c(v)#i. 

We now characterize split graphs which are absolute retracts. 

Theorem 3.6. For a split graph G with w(G) = n, the following conditions are equivalent: 
(i) G is (n- 1)-connected. 

(ii) There is a unique n-colouring of G. 

(iii) do(x)>w(G)- 1, for all XE V(G). 

(iv) G is an absolute retract. 

Proof. Let G bea split graph, V(G)=K+S,K={xI,x2 ,..., x.}, S={yI,y2 ,..., y,}, 
where o(G) = n. 
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(i)*(ii). Assume that there is no unique n-colouring of G. Since the complete set 

K is uniquely colourable, there is a vertex YES for which 1 Nc(y)) d II - 2. It follows that 

N,(y) separates G, a contradiction. 

(ii) *(iii). Clearly, dc(xi) > n - 1, for i = 1,2, . . . , n. As yi is adjacent only to vertices 

from K, yi must be adjacent to exactly n- 1 vertices from K, for otherwise G is not 

uniquely colourable. 

(iii)+(iv). Let c: G-K,, be a given n-colouring of G and let iEV(K,). We may 

suppose c(Xi) = i. We claim that the vertex xi satisfies the condition of Theorem 3.5 for 

for colour i. Clearly, xi is adjacent to every xj,j # i. Let YES be any vertex with c(y) # i. 

AS d,(y)= n - 1 and (y, xj)$E(G), c(y)=j, it follows that (y, xi)EE(G). This proves the 

claim, hence G is an absolute retract. Note also that if n z 3 then every pair of vertices 

from S has a common neighbour in K, hence diam(G)= 2 and if G is bipartite then 

diam(G)=3. 

(iv)=(i). This follows from Theorem 3.4. 0 

Corollary 3.7. Every bipartite split graph is an absolute retract. 

Proof. A bipartite split graph is a tree with a diameter less than four (see Fig. 3). 

Clearly d,(x)ko(G)- 1= 1 for all XE V(G). 0 

The above corollary is well-known, since every tree is an absolute retract, as was 

first observed by Hell [S]. Furthermore, Hell [S, Proposition 6.3.71 showed also that 

a bipartite graph G of diameter three is an absolute retract if and only if there is some 

edge (x,y)eE(G) such that every vertex of G is adjacent to either x or y. 

4. Absolute retracts of reflexive split graphs 

For the sake of completeness we give a characterization of the absolute retracts of 

reflexive split graphs. If fact, one can deduce this characterization also by using 

Theorem 2.2 from [3] (which was discovered independently by Martin Farber 

(unpublished)). However, our result is straightforward and self-contained hence we 

include it here. Note that the situation differs from the irreflexive case in that for split 

graphs the absolute retracts are the same in the class of all graphs and the class of split 

graphs. 

Fig. 3. A bipartite split graph. 
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Theorem 4.1. For a reflexive split graph G, the following conditions are equivalent: 

(i) G is an absolute retract of reflexive split graphs. 

(ii) G is an absolute reflexive retract. 

(iii) G has no retract isomorphic to some J,, n 3 3. 

A split graph is a chordal graph, i.e. it does not contain an induced subgraph 

isomorphic to C,, n 24. It follows from Theorem 4.1 that the graphs J,, n 2 3 are not 

absolute retracts. It was observed by Bandelt and Pesch in [2] that the graph J3 is the 

smallest chordal graph (and in particular, split graph) which is not an absolute retract. 

Every retract is necessarily an isometric subgraph. A generalization of this condi- 

tion to ‘holes’ (called ‘gaps’ in [13]) was first introduced by Nowakowski and Rival in 

[13]. A hole of a graph G is a pair (K, 6) where K is a nonempty set of vertices of 

G and 6 a function from K to nonnegative integers such that no XE V(G) has 

do(x, y) d 6(y) for all ygK. We also require that if (K, 6) is a hole, then K has no proper 

subset K’ such that (K’, 6 1 K’) is also a hole. An m-hole is a hole (K, 6) with 1 K I= m. 

For more information on the concept of hole, motivations and examples we refer to 

Cl 11. 
A hole (K, S) of a subgraph H of G is separated in G if (K, 6) is also a hole of G. Being 

an isometric subgraph is equivalent to having all 2-holes separated. Having all holes 

separated is another necessary condition for being a retract, cf. [l l-l 31. As we see in 

Lemma 4.2 this is also sufficient for reflexive split graphs. 

Let (K, 6) be a hole of G with 6(x)= 1 for every ~EK. Such a hole will be called 

a f-hole. 

Lemma 4.2. Let H be a reflexive split graph and let H be an isometric subgraph of 

a reflexive graph G. Then H is a retract of G if and only if every l-hole of H is separated 

in G. 

Proof. We must show that if every I-hole of H is separated in G then H is a retract 

of G. 

Let H be a reflexive split graph, V(H)= K+S. We claim that there is a retraction 

f: V(G)+ V(H) which maps every vertex XE V(G)- V(H) onto K. 

For x6V(G)- V(H) let S,=N,(x)nS. If S,=@ let f(x) be any one fixed vertex of 

K. Suppose next that S, is nonempty and set 6(y)= 1 for every YES,. Note first that 

(S,, 6) is not a i-hole of H, for otherwise this hole would not be separated in G. Then 

either there is a vertex UEK adjacent to every vertex of S, or there exists a f-hole 

(X,SlX) of H, X c S,. The former case is impossible as every T-hole of H is 

separated in G. Hence we may define f(x)=u. It is easy to see that f: V(G)+ V(H) 

is a retraction. 0 

Lemma 4.3. Let G be a reflexive split graph with a vertex partition K + S. If (X, 6) is 

a j-hole of G then X E S. 
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Proof. Let X’=S nX and assume on the contrary X’ c X. Since G is connected, each 
VES is adjacent to some vertex of K. If 1X’/ < 1 then there is a vertex .ZCEK adjacent to 
every vertex from X, thus (X, 8) is not a i-hole. Let 1 X’ I> 2. By the definition of a hole 
(X’, 61 X’) is not a hole, hence there exists a vertex XE V(G) adjacent to every vertex 
from X’. Clearly, XEK. It follows that x is adjacent to every vertex from X hence (K, 6) 
is not a f-hole of G. 

Proof of Theorem 4.1. (i)*(iii). Suppose that G is an absolute retract of reflexive split 
graphs+ with partition K + S. and assume that it has a retract isomorphic to some J,, 
n9 3. Let f: V(G)-+ V(J,) be a retraction. According to Corollary 2.2 a partition 
V(J,)=X+ Y of the vertex set V(J,) is unique. It follows that X E: K and Y C S 
for otherwise the induced partition of V(J*) in G would induce another partition 
of V(f,). Define the graph H as follows. Let V(H)= V(G)u(x] and let 
E(H)=E(G)u((x,y)ly~Ku Y>. As every pair of vertices from Y has a common 
adjacent vertex in X it easily follows that G is an isometric subgraph of H. As H is also 
a split graph and G is an absolute retract of reflexive split graphs, there exists 
a retraction g : Y(H)+ Y(G). Then p g is a retraction V(N)+ V(Jn) and f, is a retract 
of H. But (Y,d) is a f-hole of J,, which is not separated in H, a contradiction. 

(iii)=+ii). Suppose that the reflexive split graph G, V(G) = K + S, is not an absolute 
reflexive retract. Then there exists a reflexive graph H such that G is an isometric 
subgraph of H but G is not a retract of H. By Lemma 4.2 there exists a ?-hole (Y,6) of 
G which is not separated in H. Since G is isometric in II all the 2-holes are separated, 
hence 1 Yl 3 3. By Lemma 4.3, YE S. By the definition of a hole, for every vertex ye Y 
there exists a vertex s,fK which is nonadjacent to y and adjacent to every vertex from 
Y-{y}. Clearly, if y,y’E Y and yfy’ then xy#xy~. It follows that I”= Y+(x~/~E Y) 
induce a graph J,, n 2 3. Furthermore, since ( Y, 6) is a z-hole of G there is no vertex of 
G adjacent to every YE Y. Hence if XE V(G)- Y’ and (x,y)$E(G), where ye Y, we map 
x to xy. It now easily follows that this is retraction, a contradiction. 

(ii)*(i). This part of the proof is trivial. q 
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