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Abstract

All cubic partial cubes (i.e., cubic isometric subgraphs of hypercubes)
up to 30 vertices and all edge-critical partial cubes up to 14 vertices are
presented. The lists of graphs were confirmed by computer search to be
complete. Non-trivial cubic partial cubes on 36, 42, and 48 vertices are
also constructed.

1 Introduction

Partial cubes are, by definition, graphs that admit isometric embeddings into hyper-
cubes. They were introduced by Graham and Pollak [9] and first characterized by
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Djoković [6]. Several additional characterizations followed in [2, 4, 19, 20]. Partial
cubes found different applications (see, for example, [5, 7, 12]), while recognition
algorithms for these graphs have been developed in [1, 10]. For an extensive presen-
tation of partial cubes we refer the reader to the book [11].

For the (probably) most important subclass of partial cubes, median graphs,
Mulder [17] proved that hypercubes are the only regular median graphs. In other
words, the only regular median graphs are Cartesian products of copies of K2. This
result has been in [3] extended to the so-called “tree-like” partial cubes. Hence,
it is natural to ask which graphs are regular partial cubes. (Regular subgraphs of
hypercubes are studied in [18]). Despite the fact that the structure of partial cubes
has been well clarified by now, this question seems to be a difficult one.

The Cartesian product of two (regular) partial cubes is a (regular) partial cube.
Since even cycles are regular partial cubes, one may wonder whether we get all regular
partial cubes as Cartesian products of copies of K2 and even cycles. In particular, are
all cubic partial cubes of the form C2k2K2, k ≥ 2? This was believed to be true for
quite a while, until two sporadic examples appeared: the generalized Petersen graph
P (10, 3) on 20 vertices, cf. [13], and the graph B1 (see Fig. 1) on 24 vertices from
[8], (see also [11]). Calling the graphs C2k2K2, k ≥ 2, trivial cubic partial cubes, we
have verified that besides these two graphs there is only one other nontrivial cubic
partial cube on at most 30 vertices. The third example, denoted B ′

1
(see Fig. 2), has

30 vertices. It can be obtained from the nontrivial partial cube on 24 vertices by the
so-called expansion and was also found by computer search.
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Figure 1: Graphs B1 and B2

Edge-critical partial cubes are partial cubes G for which G − e is not a partial
cube for all edges e of G. The 3-cube and the subdivision graph of K4 are the only
edge-critical partial cubes on at most 10 vertices [14].

In this note we present all cubic partial cubes up to 30 vertices and all edge-critical
partial cubes up to 14 vertices. The lists of graphs were confirmed by computer search
to be complete. We also give further larger non-trivial cubic partial cubes on 36, 42,
and 48 vertices.
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2 Cubic partial cubes

A graph G is called prime (with respect to the Cartesian graph product) if G =
G12G2 implies either G1 or G2 is the one-vertex graph K1.

The Cartesian product of two regular partial cubes is a regular partial cube.
Therefore the problem of characterizing regular partial cubes reduces to prime (with
respect to the Cartesian product) partial cubes. For the cubic case, this fact leads
to the following observation:

Proposition 2.1 Let G be a cubic partial cube. Then either G = C2n2K2 for some

n ≥ 2 or G is a prime graph.

Proof. Assume G = G12G2, where G1, G2 6= K1. As G is connected, then so are
G1 and G2. Since G is cubic and the degree of (u, v) ∈ V (G12G2) is the sum of the
degrees of u ∈ G1 and v ∈ G2, then one of the factors, say G2, contains only vertices
of degree one or less. Therefore G2 = K2. Furthermore, G1 must be 2-regular, and
hence a cycle. Moreover, it is an even cycle since partial cubes are bipartite graphs.
2

We now construct the nontrivial cubic partial cubes B ′

1
, B′′

1
, B′′′

1
, and B2 on 30,

36, 42, and 48 vertices, respectively. The last graph is shown in Fig. 1, while the
others are given in in Fig. 2. These graphs can be constructed by expansions from
B1, and hence we first introduce the concept of expansion.

Let G′ be a connected graph. A proper cover consists of two isometric subgraphs
G′

1
, G′

2
of G′ such that G′ = G′

1
∪ G′

2
, G′

0
= G′

1
∩ G′

2
is a nonempty subgraph, and

there are no edges between G′

1
\ G′

2
and G′

2
\ G′

1
. (The subgraph G′

0
is called the

intersection of the cover.) The expansion of G′ with respect to G′

1
, G′

2
is the graph

G constructed as follows: Let Gi be an isomorphic copy of G′

i
, for i = 1, 2, and, for

any vertex u′ in G′

0
, let ui be the corresponding vertex in Gi, for i = 1, 2. Then G

is obtained from the disjoint union G1 ∪ G2, where for each u′ in G′

0
the vertices u1

and u2 are joined by an edge.
Chepoi [4] proved that a graph is a partial cube if and only if it can be obtained

from K1 by a sequence of expansions. This result was later independently obtained
in [7] and is analogous to the convex expansion theorem for median graphs [16].

An expansion is called peripheral if at least one of the graphs G′

1
or G′

2
is equal

to G. In this situation the other graph equals the intersection, and is necessarily
isometric in G. We recall from [3] that a regular, prime partial cube on at least three
vertices can not be obtained by peripheral expansion from some partial cube.

For the proof of the next result we also need the following concept of isometric
dimension. Two edges e = xy and f = uv of a graph G are in the Djoković-Winkler
[6, 20] relation Θ if dG(x, u) + dG(y, v) 6= dG(x, v) + dG(y, u). Winkler [20] showed
that a bipartite graph is a partial cube if and only if Θ = Θ∗ (where Θ∗ denotes the
transitive closure of Θ). Thus Θ defines an equivalence relation on the edges of a
partial cube. The isometric dimension, idim(G), of a partial cube G is defined as
the number of its Θ-classes.
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Figure 2: Graphs B1, B′

1
, B′′

1
, and B′′′

1

Theorem 2.2 Graphs B ′

1
, B′′

1
, B′′′

1
, and B2 are cubic prime partial cubes.

Proof. We know already that B1 is a partial cube. Now, B ′

1
, B′′

1
, B′′′

1
, and B2 can be

obtained from B1, B′

1
, B′′

1
, and B′′′

1
, respectively, by an expansion. These expansions

are schematically explained in Fig. 2 in the following way. A proper cover in each
expansion is chosen as follows: G′

1
is induced by the vertices denoted by filled circles,

G′

2
is induced by the vertices denoted by filled squares and their intersection is formed

by the remaining vertices; that is, the vertices denoted by filled circles surrounded
by another circle. It is easy to verify that in this way we really obtain a proper cover;
that is, G′

1
and G′

2
are isometric subgraphs of the corresponding graphs B1, B′

1
, B′′

1
,

and B′′′

1
, and there are no edges between G′

1
\G′

2
and G′

2
\G′

1
. Hence, by the theorem

of Chepoi the obtained graphs are partial cubes. Clearly, they are cubic.
We now show that these four graphs are prime. Observe first that idim(B1) = 6

and therefore idim(B ′

1
) = 7, idim(B′′

1
) = 8, idim(B′′′

1
) = 9, and idim(B2) = 10. If any

of these four graphs were not prime, then by Proposition 2.1 it would be isomorphic
to C152K2, C182K2, C212K2, and C242K2, respectively. Two of these graphs are
not bipartite, while the isometric dimensions of the other two; that is, of C182K2,
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Figure 3: Edge-critical partial cubes on 11, 12, and 13 vertices

and C242K2, are 10 and 13. 2

It seems tempting to continue the expansion procedure with B2 to obtain new
cubic partial cubes. However, we were not able to obtain more examples in this way.
In particular, the graph that is constructed from B2 analogously as B2 is constructed
from B1 is not a partial cube.

3 Computer search for cubic and edge-critical partial cubes

Using the Djoković-Winkler relation, we have implemented a recognition algorithm
for partial cubes and applied it to all connected bipartite cubic graphs up to 30 ver-
tices. (These graphs were constructed using Brendan McKay’s Nauty program [15].)
The examination of the entire set of graphs was run concurrently on a cluster of 16
pentium-class machines, and doubled-checked on an 8 processor Sun Sparc server.
The obtained results are summarized in the following table:

n n

< 8 - 20 C102K2 P (10, 3)
8 C42K2 22 - -
10 - 24 C122K2 B1

12 C62K2 26 - -
14 - 28 C142K2 -
16 C82K2 30 - B′

1

18 -

The above table shows that, up to 30 vertices, there are only 3 nontrivial cubic
partial cubes.
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Figure 4: Edge-critical partial cubes on 14 vertices.

Recall that a partial cube G is called edge-critical if for any edge e of G, G − e

is not a partial cube. In [14] it was shown that the 3-cube Q3 and the subdivision
graph of K4, S(K4), are the only edge-critical partial cubes on at most 10 vertices.
Moreover, two such graphs on 12 vertices and one on 13 vertices are listed. We have
now searched for all edge-critical partial cubes on at most 14 vertices and established
the following complete list of edge-critical partial cubes. The computation is a variant
of that used for cubic partial cubes; for each connected bipartite graph G on at most
14 vertices, if G is determined to be a partial cube, then all of the non-isomorphic
graphs obtained by deleting a single edge from G are tested. Brendan McKay’s
Nauty program [15] is used to also filter isomorphic graphs from the edge deletions.
The results are summarized in the following table.

n < 8 8 9 10 11 12 13 14
– Q3 – S(K4) E1 E2, E3, E4 E5 E6, . . . , E11

We note that there is one previously undiscovered graph on each of 11 and 12
vertices (E1 and E2 respectively), and six on 14 vertices. These are given in Fig. 3
and 4.
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