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An Algorithm for the Calculation of the Szeged Index of Benzenoid Hydrocarbons 
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An algorithm is designed for the calculation of the Szeged index of benzenoid hydrocarbons, based on the 
examination of their elementary cuts. The method requires the finding of all elementary cuts of a benzenoid 
system and counting the vertices lying on each side of these cuts-a task significantly simpler than the 
calculation of the Szeged index directly from its definition. 

1. INTRODUCTION 

The Szeged index (Sz) is a recently proposed1q2 structural 
descriptor, based on the distances of the vertices of the 
molecular graph. In order to be able to study the properties 
of this novel topological index it would be advantageous to 
possess an easy method for its calculation. The calculation 
of Sz directly from its definition (see below) is quite 
cumbersome, especially in the case of large polycyclic 
molecules. In this paper we put forward a procedure for 
computing Sz that is significantly simpler. The algorithm, 
in the form elaborated in this paper, applies to benzenoid 
molecules, but its extension to other types of polycyclic 
systems would easily be possible. 

THE SZEGED INDEX 

Let G be a connected graph and x and y two of its vertices. 
Let d(x,ylG) be the distance between x and y ,  Le., the number 
of edges in a shortest path that connects x and y .  

Let e be an edge of the graph G,  connecting the vertices 
u and u. Define two sets. I/i(elG) and. 4$(elG) as 

“$(elG) = ( x ( x  E V ( G ) ,  d(x,ulG) < d(x,u(G)}  

and denote by nl(e) = nl(elG) and n2(e) = nz(elG) their 
cardinalities (= number of elements). In other words, 
nl(elG) is the number of vertices closer to u than to v, and 
nz(e1G) is the number of vertices closer to u than to u; vertices 
equidistant to u and v are not counted. 

The Szeged index is defined 

where the summation goes over all edges of the graph G. 
In the case of bipartite graphs there are no vertices 

equidistant to the both ends of an edge and therefore for all 
edges e of a bipartite graph G 
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n,(eJG) + n2(elG) = n(G) = number of vertices of G 
(2) 

Notice that eq 2 applies, in particular, to benzenoid systems. 
For further details conceming the definition of the Szeged 

index, for the reasons to introduce a new topological index 
via eq 1 as well as for the basic properties of Sz see the 
previous papers.’V2 In the article2 also the correct pronuncia- 
tion of “Szeged” and “Sz” is explained. 

BENZENOID SYSTEMS AND THEIR NORMAL CUTS 

Throughout this paper the term benzenoid system (or 
benzenoid graph) is used for graphs constructed in the 
following manner.3 Consider the hexagonal (graphite) lattice 
YZT Let 2 be a circuit on this lattice. Then benzenoid systems 
are formed by the vertices and edges of % lying on some 
circuit 2 or in its interior. The vertices and edges belonging 
to 2 form the perimeter (sometimes called boundary) of the 
respective benzenoid system. The vertices (if any) not 
belonging to the perimeter are said to be the internal vertices 
of the respective benzenoid system. 

The number of vertices, intemal vertices, edges, and 
hexagons of a benzenoid system B will be denoted by3 n = 
n(B), ni = ni(B), m = m(B), and h = h(B), respectively. The 
following relations between these parameters are well- 
known3 

n = 4 h  + 2 - ni (3) 

m = 5 h + l - n ,  (4) 

In Figure 1 we illustrate the above definition on the case 
of the benzenoid graph BO for which h = 8, ni = 6 ,  n = 28, 
m = 35. 

If a benzenoid system is considered as a geometric figure 
in the plane then an elementary cut is defined as follows. 
Choose an edge e of the benzenoid system and draw a 
straight line through the center of e, orthogonal on e.  This 
line will intersect the perimeter in two4 points PI and P2. 
The straight line segment C whose end points are PI and P2 
is the elementary cut, intersecting the edge e .  Clearly, C 
intersects not only the edge e but also all edges that lie 
between P1 and PZ (inclusive the two edges on the perimeter 
to which the points PI and P2 belong). 

In Figure 2 the elementary-cut-concept is illustrated on 
the example of the benzenoid system BO. 
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Figure 1. (a) The hexagonal lattice and a circuit Z on it. (B) The 
benzenoid system Bo determined by the circuit 2 Bo has six internal 
vertices and its perimeter is of size 22. 

la 
Figure 2. The elementary cut C corresponding to an edge of the 
benzenoid system Bo, indicated by a heavy line; observe that C is 
an elementary cut intersecting the edges of Bo marked by asterisks. 

c, c9 c,Q 
Figure 3. All elementary cuts of the benzenoid system Bo; C(Bo) 
= {CI, cz, ..., C,l>. 

(a) @) 

Figure 4. Structural details needed for the formulation and proof 
of Lemma 1. 

Elementary cuts play an important role in the theory of 
benzenoid  system^.^^^,^ 

The set of elementary cuts of a benzenoid system B, that 
involves all the edges of B, will be called a complete set of 
elementary cuts (CSEC) and will be denoted by C = C(B). 
It should be noticed that C(B) possesses much fewer elements 
that there are edges in B. For instance, Bo has 35 edges, but 
its CSEC possesses only 11 elements (see Figure 3). 

ELEMENTARY CUTS AND THE NUMBERS nl(eJB) and 
m(elB) 

If C is an elementary cut of the benzenoid system B,  then 
by deleting from B the edges intersected by C,  we obtain a 
subgraph of B consisting of two disconnected parts, B’ and 
B” (see Figure 4a). These subgraphs may, but need not, be 
benzenoid systems themselves. 

Let n(B’) and n(B”) be the number of vertices of the 
fragments B‘ and B”, respectively. Of course, 

n(B’) + n(B”) = n(B) (5  1 
Let e be an edge intersected by C, that connects the vertices 
u and Y (see Figure 4b). Then we have the following simple, 
but important auxiliary result:6 

Lemma 1. n,(elB) = n(B’) and n2(elB) = n(B”). 
Proot Suppose there is a vertex x in B‘ which lies closer 

to v than to u (see Figure 4b). Then a shortest path between 
x and v must intersect C at an edge different from e = (u,v) 
and, clearly, there can be only one such edge. Let this be 
the edge e’ = (x’J’’), see Figure 4b. Then 

d(x,vlB) = d(x,x’lB’) + d(x”,vlB”) + 1 

On the other hand, d(x”,vlB”) = d(x’,u/B’) because the 
shortest paths between x” and u as well as between x‘ and u 
evidently go along the elementary cut C (see Figure 4b). 
From Figure 4b is also seen that d(x,x’lB’) + d(x’,ulB’) 2 
d(x,ulB’). Therefore 

d(x,vlB) = d(x,x’lB’) + d(x’,ulB’) + 1 > d(x,ulB) 

which is in contradiction with the supposition that x lies 
closer to v than to u. Hence any vertex in B’ lies closer to 
u than to Y and, consequently 

n, (e (B)  L n(B’) (6) 

In an analogous manner we conclude that 

n,(elB) L n(B”) (7)  

Bearing in mind eqs 2 and 5 we immediately see that in (6) 
and (7) only the equality sign can occur. By this we arrive 
at Lemma 1. 

Lemma 1 applies to all edges that are intersected by the 
elementary cut C. This observation immediately yields the 
following: 

Lemma 2. Let el,  e2, ..., e,, r L 2, be the edges of a 
benzenoid system B, intersected by the elementary cut C. 
Then for all i = 1,2, ..., r 

n,(eilB) = n(B’) and n,(eilB) = n(B”) 

where B’ and B“ are the fragments of B, depicted in Figure 
4a. 

THE ALGORITHM 

In view of Lemma 2, an algorithm for the calculation of 
the Szeged index, eq 1, of benzenoid systems is readily 
conceived. 

Let C be an elementary cut that divides the benzenoid 
system B into components B’(C) and B”(C). Let C intersects 
r(C) distinct edges of B.  Then 

with the summation going over the CSEC of B .  When 
applying formula (8) we need to count only the vertices of 
the fragment B‘, because the number of vertices of B” is 
determined via eq 5. 
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As an illustration of our algorithm we calculate Sz(B0) 
using the CSEC from Figure 3. Recall that n(B’h) = n(Bo) 
- n(B6) = 28 - n(Bb). 

elementary cut C r n(Bh) n(B’h) 
CI 3 5 23 
c2 4 13 15 

4 7 21 
2 3 25 
4 10 18 
3 11 17 
3 5 23 
2 3 25 
4 10 18 
4 10 18 
2 3 25 

r n(B’)n(B”) 
345 = 3 x 5 x 23 
780 
588 
150 
720 
561 
345 
150 
720 
720 
150 
total: 5229 

Hence, Sz(B) = 5229. 
Needless to say that we may always choose for B’ the 

smaller of the two fragments obtained by dissecting B along 
the elementary cut C. 

In large benzenoid system the counting of the vertices of 
the fragments B’ and B” may become somewhat tedious and 
error prone. Formula (8) can be further simplified in the 
following manner: instead of counting the vertices of B’ and 
B” we may count the hexagons and the intemal vertices of 
B, lying in B’ and B”. 

Let B’ and B” possess h(B’) and h(B”) hexagons, respec- 
tively. Let ni(B’) and ni(B”) be the number of intemal 
vertices of the benzenoid system B that belong to B’ and 
B”, respectively. Then 

h(B’) + h(B”) + r - 1 = h 

n,(B’) + n,(B”) = n, 

(9) 

(10) 

where h and ni refer to the benzenoid system B and where 
r = r(C) is the number of edges connecting B‘ and B”, 
intersected by the elementary cut C. Bearing in mind eq 3, 
we arrive at 

n(B’) = 4h(B’) + 2r - 1 - n,(B’) 

n(B”) = 4h(B”) + 2r - 1 - n,(B”) 

(1 1 )  

( 12 )  

In order to obtain eq 11 consider the (true) benzenoid system 
which embraces the hexagons of B’ and the r - 1 hexagons 
intersected by C. This benzenoid system has h(B’) + r - 1 
hexagons, ni(B’) intemal vertices, and 2r - 1 vertices more 
than B’. Equation 3 has to be applied to it, and then the 
number of vertices has to be diminished by 2r - 1 in order 
to obtain n(B’). Equation 12 is deduced in a fully analogous 
manner. 

When eqs 11 and 12 are substituted back into (8), we 
obtain after a straightforward, but lengthy calculation 

Sz(B) = Zr[4h(B’ )  - ni(B’)][4h(B”) - ni(B”)] - 
~~ 

(4h - ni + 3 ) C r  + 2(4h + 4 - ni)Cr2 - 4 C r 3  (13) 

All the four summations on the right-hand side of (1 3) go 
over the CSEC of the benzenoid system B.  Observe that 
Cr = m, and therefore using eq 4 

c, 
c* 

Ck 

‘k+1 

c,,., 

Hk; k=4 

Figure 5. The polyacene (Lh) and the coronene/circumcoronene 
series (Hh) and their elementary cuts. 

Sz(B) = Cr[4h(B’ )  - ni(B’)][4h(B”) - ni(B”)] - 
(4h-ni + 3).(5h + 1 - nj)  + 2(4h + 4 - ni)Cr2  - 

4Cr3 (14) 

Now, although (13) and (14) have a seemingly more 
complicated form than eq 8, the finding of h(B’) and ni(B’) 
is usually an easier task than the counting of the vertices of 
B’. As before, it is not necessary to independently search 
for h(B”) and ni(B”), because these quantities are directly 
obtainable from eqs 9 and 10. 

In the case of catacondensed benzenoid systems, which 
are characterized by the condition3 ni = 0, formulas 13 and 
14 are significantly simplified 

Sz(B) = 16xrh(B’)h(B”) - (4h + 3)Cr  + 8(h + 
1)Cr’ - 4 C r 3  = 16Crh(B’)h(B”) - (4h + 3)(5h + 

1) + 8(h + 1 ) C r 2  - 4Zr3  

TWO APPLICATIONS 

To further illustrate the efficiency of our algorithm, we 
find general expressions for the Szeged index of the 
polyacenes (Lh) and of the members of the coronenel 
circumcoronene series (Hk). The respective structures and 
elementary cuts are depicted in Figure 5. 

Polyacenes. Using the notation from Figure 5 we im- 
mediately see that the CSEC of the polyacenes is given by 
C(Lh) = {CO, Cia, Cibli = 1,2 ,..., h}. For CO: r = h + 1 ,  
n(B’) = n(B”) = 2h + 1 .  For both Cia and c i b :  r = 2, n(B’) 
= 4(i - 1) + 3 = 4i - 1, n(B”) = 4h + 2 - (4i - 1) = 4h 
- 4i + 3. Applying eq 8 we get 
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Sz(L,) = (h  + 1)(2h + 1)' + 2 c 2 ( 4 i  - 1)(4h - 4i + 3) 
h 

i= 1 

GUTMAN AND KLAV~AR 

which by direct calculation yields 

The CoronendCircumcoronene Series. In Figure 5 are 
indicated only the 2k + 1 horizontal elementary cuts of Hk. 
There exist two additional groups of 2k + 1 symmetry- 
equivalent elementary cuts, obtained by rotating the former 
group by +60° and by -60". Therefore, if one applies eq 
8 to only the horizontal elementary cuts, the result will be 
equal to '/3 Sz(Hk). 

It should also be observed that because of symmetry, the 
contribution to the right-hand side of (8) of the elementary 
cut C, is equal to the contribution of Czk-i, i = 1,2 ,..., k-1. 

It can be shown that n(Hk) = 6k2 and that for the 
elementary cut Ci: r = k + i, n(B') = i(2k + i), i = 1,2 ,..., k. 

Talung into account all the above properties of the 
elementary cuts of Hk and using eq 8 we obtain 

k- 1 1 
-Sz(H,) = 18k5 + 2 z ( k  + i)i(2k + i)[6k2 - i(2k -I- i ) ]  
3 i= 1 

After a lengthy calculation this results in the formula 

3 
2 SZ(H,) = -k2(36k4 - k2 + 1 )  
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