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Abstract

Let G and H be graphs and let f : V (G) → V (H) be a function. The Sierpiński prod-
uct of G and H with respect to f , denoted by G⊗f H , is defined as the graph on the vertex
set V (G) × V (H), consisting of |V (G)| copies of H; for every edge gg′ of G there is an
edge between copies gH and g′H of H associated with the vertices g and g′ of G, respec-
tively, of the form (g, f(g′))(g′, f(g)). In this paper, we define the Sierpiński domination
number as the minimum of γ(G ⊗f H) over all functions f : V (G) → V (H). The up-
per Sierpiński domination number is defined analogously as the corresponding maximum.
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After establishing general upper and lower bounds, we determine the upper Sierpiński dom-
ination number of the Sierpiński product of two cycles, and determine the lower Sierpiński
domination number of the Sierpiński product of two cycles in half of the cases and in the
other half cases restrict it to two values.
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1 Introduction
Sierpiński graphs represent a very interesting and widely studied family of graphs. They
were introduced in 1997 in the paper [15], where the primary motivation for their intro-
duction was the intrinsic link to the Tower of Hanoi problem, for the latter problem see the
book [11]. Intensive research of Sierpiński graphs led to a review article [12] in which state
of the art up to 2017 is summarized and unified approach to Sierpiński-type graph families
is also proposed. Later research on Sierpiński graphs includes [2, 3, 6, 19, 23].

Sierpiński graphs have a fractal structure, the basic graphs of which are complete
graphs. In 2011, Gravier, Kovše, and Parreau [7] introduced a generalization in such a
way that any graph can act as a fundamental graph, and called the resulting graphs gener-
alized Sierpiński graphs. We refer to the papers [1, 4, 5, 13, 14, 16, 17, 20, 21, 22, 24] for
investigations of generalized Sierpiński graphs in the last few years.

An interesting generalization of Sierpiński graphs in the other direction has recently
been proposed by Kovič, Pisanski, Zemljič, and Žitnik in [18]. Namely, in the spirit of
classical graph products, where the vertex set of a product graph is the Cartesian product of
the vertex sets of the factors, they introduced the Sierpiński product of graphs as follows.
Let G and H be graphs and let f : V (G) → V (H) be an arbitrary function. The Sierpiński
product of graphs G and H with respect to f , denoted by G⊗f H , is defined as the graph
on the vertex set V (G)× V (H) with edges of two types:

• type-1 edge: (g, h)(g, h′) is an edge of G⊗f H for every vertex g ∈ V (G) and every
edge hh′ ∈ E(H),

• type-2 edge: (g, f(g′))(g′, f(g)) is an edge of G⊗f H for every edge gg′ ∈ E(G).

We observe that the edges of type-1 induce n(G) = |V (G)| copies of the graph H in
the Sierpiński product G ⊗f H . For each vertex g ∈ V (G), we let gH be the copy of H
corresponding to the vertex g. A type-2 edge joins vertices from different copies of H in
G⊗f H , and is called a connecting edges of G⊗f H . A vertex incident with a connecting
edge is called a connecting vertex. We observe that two different copies of H in G ⊗f H
are joined by at most one edge. A copy of the graph H corresponding to a vertex of the
graph G in the Sierpiński product G⊗f H is called an H-layer.

Let G and H be graphs and HG be the family of functions from V (G) to V (H).
We introduce new types of domination, the Sierpiński domination number, denoted by
γS(G,H), as the minimum over all functions f from HG of the domination number of
the Sierpiński product with respect to f , and upper Sierpiński domination number, denoted
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by ΓS(G,H), as the maximum over all functions f ∈ HG of domination number of the
Sierpiński product with respect to f . That is,

γS(G,H) := min
f∈HG

{γ(G⊗f H)}

and
ΓS(G,H) := max

f∈HG
{γ(G⊗f H)} .

In this paper, we initiate the study of Sierpiński domination in graphs. In Section 1.1
we present the graph theory notation and terminology we follow. In Section 2 we discuss
general lower and upper bounds on the (upper) Sierpiński domination number. Our main
contribution in this introductory paper is to determine the upper Sierpiński domination
number of the Sierpiński product of two cycles, and to determine the lower Sierpiński
domination number of the Sierpiński product of two cycles in half of the cases and in the
other half cases restrict it to two values.

1.1 Notation and terminology

We generally follow the graph theory notation and terminology in the books [8, 9, 10] on
domination in graphs. Specifically, let G be a graph with vertex set V (G) and edge set
E(G), and of order n(G) = |V (G)| and size m(G) = |E(G)|. For a subset S of vertices
of a graph G, we denote by G− S the graph obtained from G by deleting the vertices in S
and all edges incident with vertices in S. If S = {v}, then we simply write G − v rather
than G − {v}. The subgraph induced by the set S is denoted by G[S]. We denote the
path, cycle and complete graph on n vertices by Pn, Cn, and Kn, respectively. For k ≥ 1
an integer, we use the notation [k] = {1, . . . , k} and [k]0 = {0, 1, . . . , k}. We generally
label vertices of the considered graphs by elements of [n]. In this case, the mod function
over the set [n] is to be understood in a natural way, more formally, we apply the following
operation for t ≥ 1: t mod∗ n = (t− 1) mod n+ 1.

A vertex dominates itself and its neighbors, where two vertices are neighbors in a graph
if they are adjacent. A dominating set of a graph G is a set S of vertices of G such that
every vertex in G is dominated by a vertex in S. The domination number, γ(G), of G is
the minimum cardinality of a dominating set of G. A dominating set of cardinality γ(G) is
called a γ-set of G. A thorough treatise on dominating sets can be found in [8, 9].

If S is a set of vertices in a graph G, then we will use the notation G|S to denote that
the vertices in the set S are assumed to be dominated and hence γ(G|S) is the minimum
number of vertices in the graph G needed to dominate V (G) \ S. We note that it could be
that a vertex in S is still a member of a such a minimum dominating set no matter that we
do not need to dominate the vertices in S themselves. If S = {x}, then we simply denote
G|S by G|x rather than G|{x}.

2 General lower and upper bounds
We present in this section general lower and upper bounds on the (upper) Sierpiński domi-
nation number.

Theorem 2.1. If G and H are graphs, then

n(G)γ(H)−m(G) ≤ γS(G,H) ≤ ΓS(G,H) ≤ n(G)γ(H) .
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Proof. Let G ⊗f H be an arbitrary Sierpiński product of graphs G and H and let X be
a γ-set of G ⊗f H . Assuming for a moment that all the connecting edges are removed
from G⊗f H , we obtain n(G) disjoint copies of H for which we clearly need n(G)γ(H)
vertices in a minimum dominating set. Consider now an arbitrary connecting edge e =
(g, f(g′))(g′, f(g)) of G⊗fH . If no end-vertex of e lies in X , then clearly γ(G⊗fH−e) =
γ(G⊗fH). Similarly, if both end-vertices of e lie in X , then γ(G⊗fH−e) = γ(G⊗fH).
Hence the only situation in which e has an effect on γ(G⊗fH) is when (g, f(g′)) ∈ X and
(g′, f(g)) /∈ X (or the other way around). But in this case, the effect of the presence of the
edge e is that because (g, f(g′)) dominates one vertex of g′H , the edge e might reduce the
domination number by 1. That is, each connecting edge can drop the domination number
of G ⊗f H by at most 1, which proves the left inequality. The other two inequalities are
clear.

To show that the lower bound of Theorem 2.1 is achieved, we show later in Theo-
rem 3.10 that for n ≥ 3 and k ≥ 1, if we take G = Cn and H = C3k+1 where
n ≡ 0 (mod 4), then γS(G,H) = kn = n(G)γ(H) −m(G). The upper bound of Theo-
rem 2.1 is obtained, for example, for the Sierpiński product of two complete graphs. More
generally, to achieve equality in the upper bound of Theorem 2.1 we require the graph H
to have the following property.

Theorem 2.2. The equality in ΓS(G,H) ≤ n(G)γ(H) is achieved if and only if there
exists a vertex x ∈ V (H) such that γ(H|x) = γ(H).

Proof. Suppose that H has a vertex x that satisfies γ(H|x) = γ(H). In this case, we
consider the Sierpiński product G ⊗f H with the function f : V (G) → V (H) defined by
f(v) = x for every vertex v ∈ V (G). Consequently each connecting edge in the product
is of the form (g, x)(g′, x). Thus, if X is a γ-set of G ⊗f H , then |X ∩ V (gH)| = γ(H)
because the only vertex of gH that can be dominated from outside gH is (g, x), but we
have assume that γ(H|x) = γ(H). Therefore, ΓS(G,H) = n(G)γ(H).

For the other implication suppose that γ(H|x) < γ(H) for every vertex x ∈ V (H).
For an arbitrary edge g1g2 ∈ E(G), if D corresponds to a γ-set of the product G ⊗f H ,
then |D ∩ V ((G⊗f H)[V (g1H) ∪ V (g2H)])| ≤ 2γ(H)− 1. Consequently, ΓS(G,H) <
n(G)γ(H).

To conclude this section we describe large classes of graphs for which the second and
the third inequality of Theorem 2.1 are both equality.

Proposition 2.3. If G and H are graphs such that ∆(G) < n(H) and γ(H) = 1, then
ΓS(G,H) = γS(G,H) = n(G).

Proof. Let G and H be graphs such that ∆(G) < n(H) and γ(H) = 1. Thus, by The-
orem 2.1, γS(G,H) ≤ ΓS(G,H) ≤ n(G) and it is straightforward that the Sierpiński
product of graphs G and H can be dominated by taking one dominating vertex from each
H-layer to the dominating set. It remains to show that the inequality γS(G,H) ≥ n(G)
also holds. Suppose that γS(G,H) ≤ n(G) − 1. Let D be a dominating set of G ⊗f H ,
where f is such that it minimizes the domination number. Therefore there is an H-layer,
denote it by H ′, of G ⊗f H such that D ∩ V (H ′) = ∅. Since there are at most ∆(G)
connecting edges incident with vertices from each H-layer and ∆(G) < n(H),then all the
vertices from an H-layer cannot be dominated by the vertices from the neighboring layers.
Therefore we have D∩V (H ′′) ̸= ∅ for each H ′′-layer of G⊗f H . Thus γS(G,H) ≥ n(G)
and the result follows.
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3 The Sierpiński domination number of cycles
Let us recall firstly the domination number of a path and a cycle.

Fact 3.1. For n ≥ 3, γ(Pn) = γ(Cn) =
⌈
n
3

⌉
.

In this section, we shall prove the following results.

Theorem 3.2. For n ≥ 3, k ≥ 1, and p ∈ [2]0,

γS(Cn, C3k+p) ∈


{kn}; p = 0,

{kn, kn+ 1}; p = 1,

{kn+
⌊n
2

⌋
, kn+

⌊n
2

⌋
+ 1}; p = 2.

Moreover, if n ≡ 0 mod 4, then γS(Cn, C3k+1) = kn and γS(Cn, C3k+2) = kn+
⌊n
2

⌋
.

Theorem 3.3. For n ≥ 3, k ≥ 1, and p ∈ [2]0,

ΓS(Cn, C3k+p) =


kn; p = 0,

kn+
⌈n
3

⌉
; p = 1,

(k + 1)n; p = 2.

In order to prove Theorems 3.2 and 3.3, we consider three cases, depending on the
value of p.

3.1 The cycle Cn and cycles C3k+1

To determine ΓS(Cn, C3k+1), we prove a slightly more general result. For this purpose,
we define a class of graphs Hk as follows.

Definition 3.4. For k ≥ 1, let Hk be the class of all graphs H that have the following
properties.

(a) γ(H) = k + 1 and γ(H − v) = k for every vertex v ∈ V (H).

(b) If x, y ∈ V (H), then there exists a γ-set of H that contains x and y, where x = y is
allowed.

We show, for example, that for every k ≥ 1, the cycle C3k+1 belongs to the class Hk.

Proposition 3.5. For k ≥ 1, the class Hk of graphs contains the cycle C3k+1.

Proof. For k ≥ 1, let H ∼= C3k+1. Since γ(Cn) = γ(Pn) = ⌈n/3⌉, property (a) in Defi-
nition 3.4 holds. To prove that property (b) in Definition 3.4 holds, let x, y ∈ V (H). Since
H is vertex-transitive, every specified vertex belongs to some γ-set of H . In particular, if
x = y, then property (b) is immediate. Hence, we may assume that x ̸= y. Let H be the
cycle v1v2 . . . v3k+1v1, where renaming vertices if necessary, we may assume that x = v1.
Let y = vi, and so i ∈ [3k + 1] \ {1}.

Let H ′ = H − N [{x, y}], that is, H ′ is obtained from H by removing x and y, and
removing all neighbors of x and y. If H ′ is connected, then H ′ is a path P3(k−2)+j for
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some j where j ∈ [3]. In this case, γ(H ′) = k − 1. If H ′ is disconnected, then H ′ is the
disjoint union of two paths Pk1

and Pk2
, where k1+ k2 = 3(k− 2)+1. Thus renaming k1

and k2 if necessary, we may assume that either k1 = 3j1 and k2 = 3j2 + 1 where j1 ≥ 1,
j2 ≥ 0, and j1 + j2 = k − 2 or k1 = 3j1 + 2 and k2 = 3j2 + 2 where j1, j2 ≥ 0 and
j1 + j2 = k − 3. In both cases, γ(H ′) = ⌈k1/3⌉+ ⌈k2/3⌉ = k − 1. Letting D′ be a γ-set
of H ′, the set D = D′ ∪ {x, y} is a dominating set of H of cardinality k + 1 = γ(H),
implying that D is a γ-set of H that contains both x and y. Hence, property (b) holds.

For n ≥ 3 an integer, a circulant graph Cn⟨L⟩ with a given list L ⊆ {1, . . . , ⌊ 1
2n⌋}

is a graph on n vertices in which the ith vertex is adjacent to the (i + j)th and (i − j)th
vertices for each j in the list L and where addition is taken modulo n. For example, for
n = 3k + 1 where k ≥ 1 and L = {1}, the circulant graph Cn⟨L⟩ is the cycle C3k+1,
which, by Proposition 3.5, belongs to the class Hk. More generally, for n = k(2p+1)+ 1
where k ≥ 1, p ≥ 1, and L = [p], the circulant graph Cn⟨L⟩ belongs to the class Hk.
We omit the relatively straightforward proof. These examples of circulant graphs serve to
illustrate that for each k ≥ 1, one can construct infinitely many graphs in the class Hk. We
determine next the upper Sierpiński domination number ΓS(Cn, H) of a cycle Cn and a
graph H in the family Hk.

Theorem 3.6. For n ≥ 3 and k ≥ 1, if H ∈ Hk, then

ΓS(Cn, H) = kn+
⌈n
3

⌉
.

Proof. For n ≥ 3 and k ≥ 1, let G ∼= Cn and let H ∈ Hk. Let G be the cycle given
by g1g2 . . . gng1. In what follows, we adopt the following notation. For each i ∈ [n], we
denote the copy giH of H corresponding to the vertex gi simply by Hi. We proceed further
with two claims. The first claim establishes a lower bound on ΓS(Cn, H), and the second
claim establishes an upper bound on ΓS(Cn, H).

Claim 3.7. ΓS(Cn, H) ≥ kn+
⌈n
3

⌉
.

Proof. Let f : V (G) → V (H) be a constant function, that is, we select h ∈ V (H) and
for every vertex g ∈ V (G), we set f(g) = h. Let DG be a γ-set of G. Thus, |DG| =
γ(Cn) = ⌈n/3⌉. By property (a) in Definition 3.4, for every vertex g ∈ V (G), there
exists a γ-set of gH that contains the vertex (g, f(g)) = (g, h). If g ∈ DG, let Dg be a
γ-set of gH that contains the vertex (g, f(g)) = (g, h), and so |Dg| = γ(H) = k + 1. If
g ∈ V (G) \DG, let Dg be a γ-set of gH − (g, f(g)) = gH − (g, h), and so in this case
|Dg| = γ(H − h) = γ(H)− 1 = k. Let

D =
⋃

g∈V (G)

Dg.

The set D is a dominating set of G⊗f H , and so

γ(G⊗f H) ≤ |D| = γ(G)(k + 1) + (n− γ(G))k = kn+ γ(G) = kn+
⌈n
3

⌉
. (3.1)

For the fixed vertex h chosen earlier, we note that the set of vertices (g, h) for all
g ∈ V (G) induces a subgraph of G ⊗f H that is isomorphic to G ∼= Cn. We denote this
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copy of G by Gh. Among all γ-sets of G ⊗f H , let D∗ be chosen to contain as many
vertices of Gh as possible. Let D∗

g = D∗ ∩ V (gH) for every g ∈ V (G). Further let
D∗

G = {(g, h) ∈ D∗ : g ∈ V (G)}, that is, D∗
G is the restriction of D∗ to the copy of

G. If a vertex (g, h) /∈ D∗
G and (g, h) is not dominated by D∗

G, then D∗
g is a γ-set of

gH by the minimality of the set D∗. However in this case, we could replace the set D∗
g

be a γ-set of gH that contains the vertex (g, h) to produce a new γ-set of G ⊗f H that
contains more vertices from the copy of G than does D∗, a contradiction. Hence, the set
D∗

G is a dominating set in the copy of G, and so |D∗
g(G)| ≥ γ(G). By the minimality

of the set D∗ and by property (a) in Definition 3.4, for each vertex g ∈ V (G), we have
|D∗

g | = γ(H) = k + 1 if the vertex (g, h) ∈ D∗
G and |D∗

g | = γ(H − h) = k if the vertex
(g, h) /∈ D∗

G. Therefore,

γ(G⊗f H) = |D∗| = |D∗
G|(k + 1) + (n− |D∗

G|)k = kn+ |D∗
G|

≥ kn+ γ(G) = kn+
⌈n
3

⌉
. (3.2)

By inequalities (3.1) and (3.2), we have

γ(G⊗f H) = kn+
⌈n
3

⌉
. (3.3)

By equation (3.3), we have ΓS(Cn, H) ≥ γ(G⊗f H) = kn+ ⌈n/3⌉. This completes
the proof of Claim 3.7. (2)

Claim 3.8. ΓS(Cn, H) ≤ kn+
⌈n
3

⌉
.

Proof. Let f : V (G) → V (H) be an arbitrary function. Let Hi be the ith copy of H
corresponding to the vertex gi of G for all i ∈ [n]. Let D be the dominating set of G⊗f H
constructed as follows. Let xiyi+1 be the connecting edge from Hi to Hi+1 for all i ∈ [n],
where addition is taken modulo n. Thus, the vertex xi ∈ V (Hi) is adjacent to the vertex
yi+1 ∈ V (Hi+1) in the graph G⊗fH , that is, xi = (gi, f(gi+1)) and yi+1 = (gi+1, f(gi)).
We note that possibly xi = yi. By property (b) in Definition 3.4, there exists a γ-set of Hi

that contains both xi and yi. For i ∈ [n], we define the sets Di,1, Di,2, and Di,3 as follows.
Let Di,1 be a γ-set of Hi − xi. Let Di,2 be a γ-set of Hi that contains both xi and yi. Let
Di,3 be a γ-set of Hi − yi. We note that |Di,1| = |Di,3| = k and |Di,2| = k + 1. For
i ∈ [n], we define the set Di as follows.

Di =


Di,1; i ≡ 1 (mod 3) and i ̸= n,

Di,2; i ≡ 2 (mod 3) or i ≡ 1 (mod 3) and i = n,

Di,3; i ≡ 0 (mod 3).

For example, the set D1 dominates all vertices of H1 − x1. The set D2 contains the
vertex y2, which is adjacent to the vertex x1 of H1, and contains the vertex x2, which
is adjacent to the vertex y3 of H3, implying that D2 dominates the vertex x1 of H1, all
vertices of H2, and the vertex y3 of H3. The set D3 dominates all vertices of H3 − y3.
Thus, D1 ∪D2 ∪D3 dominates all vertices in V (H1)∪ V (H2)∪ V (H3) in the Sierpiński
product G⊗fH . Moreover, |D1|+|D2|+|D3| = k+(k+1)+k = 3k+1. More generally,
the set D3j−2∪D3j−1∪D3j dominates all vertices in V (H3j−2)∪V (H3j−1)∪V (H3j) in
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the Sierpiński product G⊗f H for all j ∈ {1, . . . , ⌊n/3⌋}. Moreover, |D3j−2|+ |D3j−1|+
|D3j | = k + (k + 1) + k = 3k + 1. If n ≡ 1 (mod 3), then the set Dn is a γ-set of Hn,
and in this case |Dn| = k + 1. If n ≡ 2 (mod 3), then the set Dn−1 ∪Dn dominates all
vertices in V (Hn−1) ∪ V (Hn), and in this case |Dn−1|+ |Dn| = k + (k + 1) = 2k + 1.
The set

D =

n⋃
i=1

Di

is therefore a dominating set of G⊗f H , implying that

γ(G⊗f H) ≤ |D| =
n∑

i=1

|Di| = kn+
⌈n
3

⌉
.

This completes the proof of Claim 3.8. (2)

The proof of Theorem 3.6 follows as an immediate consequence of Claims 3.7 and 3.8.

As a consequence of Proposition 3.5, we have the following special case of Theo-
rem 3.6.

Corollary 3.9. For n ≥ 3 and k ≥ 1,

ΓS(Cn, C3k+1) = kn+
⌈n
3

⌉
.

We consider next the Sierpiński domination number of Cn and C3k+1, and show that
γS(Cn, C3k+1) = kn if n ≡ 0 (mod 4) and γS(Cn, C3k+1) ∈ {kn, kn+ 1}, otherwise.

Theorem 3.10. For n ≥ 3 and k ≥ 1,

γS(Cn, C3k+1) ∈ {kn, kn+ 1}.

Moreover, if n ≡ 0 mod 4, then γS(Cn, C3k+1) = kn.

Proof. For n ≥ 3 and k ≥ 1, let G = Cn and let H = C3k+1. Let G be the cycle given
by g1g2 . . . gng1. We adopt our notation employed in our earlier proofs. For notational
convenience, we let V (H) = {1, 2, . . . , 3k+1} where vertices i and i+1 are consecutive
on the cycle H for all i ∈ [3k + 1] (and where addition is taken modulo 3k + 1, and so
vertex 1 and vertex 3k + 1 are adjacent).

As before, we denote the copy giH of H corresponding to the vertex gi simply by Hi

for each i ∈ [n]. Thus, Hi = C3k+1 is the cycle (gi, 1), (gi, 2), . . . , (gi, 3k + 1), (gi, 1)
for all i ∈ [n]. Recall that we denote the connecting edge from Hi to Hi+1 by xiyi+1 for
all i ∈ [n], where xi ∈ V (Hi), yi+1 ∈ V (Hi+1), and addition is taken modulo n. Thus,
yi = (gi, f(gi−1)) and xi = (gi, f(gi+1)) for all i ∈ [n].

By Proposition 3.5, the graph H belongs to the class Hk. Thus, γ(H) = k + 1 and
γ(H − v) = k for every vertex v ∈ V (H). Furthermore, if x, y ∈ V (H) where x = y is
allowed, then there exists a γ-set of H that contains x and y.

By the elementary lower bound on the Sierpiński domination number given in Theo-
rem 2.1, γS(G,H) ≥ n(G)γ(H)−m(G) = kn, noting that here n(G) = m(G) = n and
γ(H) = k + 1. It follows that γS(Cn, H) ≥ kn.
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To complete the proof we are going to prove that

γS(Cn, H) ≤ kn+
⌈n
4

⌉
−
⌊n
4

⌋
.

Let f : V (G) → V (H) be the function defined by

f(gi) =

{
1; i mod 4 ∈ {1, 2},
3; otherwise.

for all i ∈ [n] where addition is taken modulo n. Adopting our earlier notation, recall
that yi = (gi, f(gi−1)) and xi = (gi, f(gi+1)) for all i ∈ [n]. Let n = 4ℓ + j where
j ∈ [3]0 = {0, 1, 2, 3}. We note that f(g4i−3) = f(g4i−2) = 1 and f(g4i−1) = f(g4i) = 3
for all i ∈ [ℓ]. Let Di be the unique γ-set of Hi − yi ∼= P3k which consists of all vertices
at distance 2 modulo 3 from yi in the graph Hi for all i ∈ [n], and let

D =

n⋃
i=1

Di.

We note that |Di| = k for all i ∈ [n], and so |D| = kn. For all i ∈ {2, 3, . . . , ℓ − 1}, the
following four properties hold.

(P1) y4i−3 = (g4i−3, 3) and x4i−3 = (g4i−3, 1).

(P2) y4i−2 = (g4i−2, 1) and x4i−2 = (g4i−2, 3).

(P3) y4i−1 = (g4i−1, 1) and x4i−1 = (g4i−1, 3).

(P4) y4i = (g4i, 3) and x4i = (g4i, 1).

Hence for all i ∈ {2, 3, . . . , ℓ − 1}, the vertices xi and yi are at distance 2 in Hi,
implying that xi ∈ Di. We consider four cases to determine which properties hold for
the boundary conditions (that is for i ∈ {1, ℓ}) and finally to set the upper bound on the
domination number in each case.

Case 1. n ≡ 0 (mod 4), that is n = 4ℓ.
In this case, properties (P1) and (P4) also hold for i = 1 and i = ℓ, respectively. Thus,
y1 = (g1, 3) and x1 = (g1, 1), and y4ℓ = (g4ℓ, 3) and x4ℓ = (g4ℓ, 1), implying that
x1, x4ℓ ∈ D. The set D is therefore a dominating set of G ⊗f H , and so γ(G ⊗f H) ≤
|D| = kn = kn+ ⌈n/4⌉ − ⌊n/4⌋.

Case 2. n ≡ 1 (mod 4), that is n = 4ℓ+ 1.
In this case, y1 = x1 = (g1, 1), and y4ℓ+1 = (g4ℓ+1, 3) and x4ℓ+1 = (g4ℓ+1, 1). In
particular, property (P4) also holds for i = ℓ, and so x4ℓ+1 ∈ D. The set D ∪ {x1}
is therefore a dominating set of G ⊗f H , and so γ(G ⊗f H) ≤ |D| + 1 = kn + 1 =
kn+ ⌈n/4⌉ − ⌊n/4⌋.

Case 3. n ≡ 2 (mod 4), that is n = 4ℓ+ 2.
In this case, y1 = x1 = (g1, 1), and y4ℓ+2 = x4ℓ+2 = (g4ℓ+2, 1). We note that neither x1

nor x4ℓ+2 belong to the set D. The set D ∪ {x1} is a dominating set of G ⊗f H , and so
γ(G⊗f H) ≤ |D|+ 1 = kn+ 1 = kn+ ⌈n/4⌉ − ⌊n/4⌋.

Case 4. n ≡ 3 (mod 4), that is n = 4ℓ+ 3.
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In this case, y1 = (g1, 3) and x1 = (g1, 1), and y4ℓ+3 = x4ℓ+3 = (g4ℓ+3, 1). In particular,
property (P1) also holds for i = 1, and so x1 ∈ D. However, x4ℓ+3 /∈ D. The set
D ∪ {x4ℓ+3} is therefore a dominating set of G ⊗f H , and so γ(G ⊗f H) ≤ |D| + 1 =
kn+ 1 = kn+ ⌈n/4⌉ − ⌊n/4⌋.

In all four cases, γ(G⊗f H) ≤ kn+ ⌈n/4⌉ − ⌊n/4⌋.

3.2 The cycle Cn and cycles C3k+2

In this section, we determine the Sierpiński domination number γS(Cn, C3k+2) and the
upper Sierpiński domination number ΓS(Cn, C3k+2).

Theorem 3.11. For n ≥ 3 and k ≥ 1, we have ΓS(Cn, C3k+2) = (k + 1)n.

Proof. For n ≥ 3 and k ≥ 1, let G ∼= Cn and let H ∼= C3k+2. Let f : V (G) → V (H)
be a constant function, that is, we select h ∈ V (H) and for every vertex g ∈ V (G),
we set f(g) = h. For each vertex g ∈ V (G), let Hg denote the copy of H associated
with the vertex g. Let D be a dominating set of G ⊗f H , and let Dg = D ∩ V (Hg),
and so Dg is the restriction of D to the copy Hg of H . If the vertex (g, h) does not
belong to Dg , then Dg dominates all vertices on the path Hg − (g, h) ∼= P3k+1, and so
|Dg| ≥ γ(P3k+1) = k + 1. If the vertex (g, h) does belong to Dg , then Dg dominates
all vertices on the cycle Hg

∼= C3k+2, and so |Dg| ≥ γ(C3k+2) = k + 1. In both cases,
|Dg| ≥ k + 1. Therefore,

γ(G⊗f H) = |D| =
∑

g∈V (G)

|Dg| ≥ (k + 1)n,

implying that ΓS(Cn, C3k+2) ≥ (k + 1)n. By the upper bound in Theorem 2.1, we have
ΓS(G,H) ≤ n(G)γ(H) = (k + 1)n, noting that in this case γ(H) = γ(C3k+2) = k + 1.
Consequently, ΓS(Cn, C3k+2) = (k + 1)n.

Theorem 3.12. For n ≥ 3 and k ≥ 1,

γS(Cn, C3k+2) ∈ {kn+
⌊n
2

⌋
, kn+

⌊n
2

⌋
+ 1}.

Moreover, if n ≡ 0 mod 4, then γS(Cn, C3k+2) = kn+
⌊n
2

⌋
.

Proof. For n ≥ 3 and k ≥ 1, let G ∼= Cn and let H ∼= C3k+2. We adopt our notation
employed in our earlier proofs. Thus, the cycle G is given by g1g2 . . . gng1, and V (H) =
{1, 2, . . . , 3k + 2} where vertices i and i + 1 are consecutive on the cycle H for all i ∈
[3k + 2] (and where addition is taken modulo 3k + 2, and so vertex 1 and vertex 3k + 2
are adjacent). As before, we denote the copy giH of H corresponding to the vertex gi
simply by Hi for each i ∈ [n]. Thus, Hi = C3k+2 is the cycle (gi, 1), (gi, 2), . . . , (gi, 3k+
2), (gi, 1) for all i ∈ [n].

We adopt our notation from the proof of Theorem 3.6. Thus, we denote the connecting
edge from Hi to Hi+1 by xiyi+1 for all i ∈ [n], where xi ∈ V (Hi), yi+1 ∈ V (Hi+1),
and addition is taken modulo n. Thus, yi = (gi, f(gi−1)) and xi = (gi, f(gi+1)) for all
i ∈ [n].

We proceed further with two claims. The first claim establishes a lower bound on
γS(G,H), and the second claim an upper bound on γS(G,H). Combining these two
bounds yields the desired result in the statement of the theorem.
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Claim 3.13. γS(Cn, H) ≥ kn+
⌊n
2

⌋
.

Proof. Let f : V (G) → V (H) be an arbitrary function. We show that

γ(G⊗f H) ≥ kn+
⌊n
2

⌋
. (3.4)

Let D be a γ-set of G ⊗f H constructed, and let Di = D ∩ V (Hi) for i ∈ [n]. If the
vertex xi is not dominated by Di, then either xi ̸= yi, in which case xi is dominated by
the vertex yi+1 ∈ D, or xi = yi, in which case xi is dominated by the vertex xi−1 ∈ D
or the vertex yi+1 ∈ D. Analogously, if the vertex yi is not dominated by Di, then either
xi ̸= yi, in which case yi is dominated by the vertex xi−1 ∈ D, or xi = yi, in which
case yi is dominated by the vertex xi−1 ∈ D or the vertex yi+1 ∈ D. If a vertex is not
dominated by Di, then such a vertex is xi or yi, and we say that such a vertex is dominated
from outside Hi.

Similarly as before, we proceed with a claim that delivers properties of sets Di leading
to the desired lower bound on the Sierpiński domination number.

Claim 3.14. The following properties hold in the graph Hi.

(a) If d(xi, yi) ≡ 1 (mod 3), then |Di| = k. Further, both xi and yi are dominated from
outside Hi.

(b) If d(xi, yi) ̸≡ 1 (mod 3), then |Di| = k + 1.

Proof. Suppose that Di contains a vertex wi that dominates xi. Possibly, wi = xi. In
order to dominate the 3(k−1)+2 vertices in Hi not dominated by wi, at least k additional
vertices are needed even if the vertex yi is dominated outside the cycle Hi. Thus in this
case, |Di| ≥ k+1, implying by the minimality of the set D that |Di| = k+1. Analogously,
if Di contains a vertex that dominates yi, then |Di| = k + 1. Hence, if xi or yi (or both xi

and yi) are dominated by Di, then |Di| = k + 1.
Suppose that neither xi nor yi is dominated by Di, implying that both xi and yi are

dominated from outside the cycle Hi. Thus, Di is a dominating set of H ′
i = Hi−xi−yi. If

xi = yi, then H ′
i = P3k+1, and by the minimality of D we have |Di| = γ(P3k+1) = k+1.

Hence, we may assume that xi ̸= yi. If xi and yi are adjacent, then H ′
i = P3k, and by the

minimality of D we have |Di| = γ(P3k) = k. Suppose that xi and yi are not adjacent, and
so H ′ is the disjoint union of two paths Pk1

and Pk2
, where k1 + k2 = 3k. If k1 = 3j1 +1

and k2 = 3j2 + 2 (or if k1 = 3j1 + 2 and k2 = 3j2 + 1) for some integers ji and j2 where
j1+ j2 = k− 1, then |Di| = ⌈k1/3⌉+ ⌈k2/3⌉ = (j1+1)+ (j2+1) = k+1. If k1 = 3j1
and k2 = 3j2 where j1 + j2 = k, then |Di| = ⌈k1/3⌉ + ⌈k2/3⌉ = j1 + j2 = k. Hence
if neither xi nor yi is dominated by Di, then either d(xi, yi) ≡ 1 (mod 3), in which case
|Di| = k, or d(xi, yi) ̸≡ 1 (mod 3), in which case |Di| = k+1. This proves properties (a)
and (b) of the claim. (2)

By Claim 3.14, if |Di| = k for some i ∈ [n], then |Di−1| = |Di+1| = k + 1 where
addition is taken modulo n. Furthermore in this case when |Di| = k, the vertices xi and
yi are distinct and are both dominated from outside Hi, implying that yi+1 ∈ Di+1 and
xi−1 ∈ Di−1. This implies that if n is even, then |D| ≥ kn + n/2, and if n is odd, then
|D| ≥ kn+ (n+ 1)/2. This proves inequality (3.4).

Claim 3.15. γS(Cn, H) ≤ kn+
⌊n
2

⌋
+
⌈n
4

⌉
−
⌊n
4

⌋
.
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Proof. Let f : V (G) → V (H) be the function defined by

f(gi) =


1; i ≡ 1 (mod 4),

2; i ≡ 2 (mod 4),

3; otherwise.

for all i ∈ [n] where addition is taken modulo n. Adopting our earlier notation, recall that
yi = (gi, f(gi−1)) and xi = (gi, f(gi+1)) for all i ∈ [n]. Let n = 4ℓ+ j where j ∈ [3]0 =
{0, 1, 2, 3}. We note that f(g4i−3) = 1, f(g4i−2) = 2, and f(g4i−1) = f(g4i) = 3 for all
i ∈ [ℓ].

Case 1. n ≡ 0 (mod 4).
Thus, n = 4ℓ. We note that y4i−3 = (g4i−3, 3) and x4i−3 = (g4i−3, 2) for all i ∈ [n], and
so in the graph H4i−3 the vertices x4i−3 and y4i−3 are at distance 1. Moreover, y4i−1 =
(g4i−1, 2) and x4i−1 = (g4i−1, 3) for all i ∈ [n], and so in the graph H4i−1 the vertices
x4i−1 and y4i−1 are at distance 1. This implies that H4i−j − {x4i−j , y4i−j} ∼= C3k for
j ∈ {1, 3}. Let D4i−j be a γ-set of H4i−j − {x4i−j , y4i−j} for j ∈ {1, 3}, and so
|D4i−j | = k.

We also note that y4i−2 = (g4i−2, 1) and x4i−2 = (g4i−2, 3) for all i ∈ [n], and so in
the graph H4i−2 the vertices x4i−2 and y4i−2 are at distance 2. Moreover, y4i = (g4i, 3)
and x4i = (g4i, 1) for all i ∈ [n], and so in the graph H4i the vertices x4i and y4i are at
distance 2. This implies that H4i−j − N [{x4i−j , y4i−j}] ∼= C3(k−1) for j ∈ {0, 2}. Let
D4i−j be a γ-set of H4i−j that contains both vertices x4i−j and y4i−j for j ∈ {0, 2}, and
so |D4i−j | = k + 1. The set

D =

4ℓ⋃
i=1

Di

is a dominating set of G⊗f H , and so γ(G⊗f H) ≤ |D| = 4kℓ+ 2ℓ = kn+ n/2.
Case 2. n ≡ 2 (mod 4).

Thus, n = 4ℓ + 2 and in this case, f(g4ℓ+1) = 1 and f(g4ℓ+2) = 2. We note that in the
graph H4ℓ+1, the vertices x4ℓ+1 and y4ℓ+1 are at distance 1 and in the graph H4ℓ+2 we
have x4ℓ+2 = y4ℓ+2. For i ∈ [4ℓ], we define the set Di exactly as in the previous case.
Further, let D4ℓ+1 be a γ-set of H4ℓ+1 − {x4ℓ+1, y4ℓ+1} ∼= C3k, and let D4ℓ+2 be a γ-set
of H4ℓ+2 containing x4ℓ+2. We note that |D4ℓ+1| = k and |D4ℓ+2| = k + 1. The set

D =

4ℓ+2⋃
i=1

Di

is a dominating set of G⊗f H , and so γ(G⊗f H) ≤ |D| = 4kℓ+2k+2ℓ+1 = kn+n/2.
Case 3. n ≡ 1 (mod 4).

Thus, n = 4ℓ+ 1, and in this case, f(g4ℓ+1) = 1. Thus, y4ℓ+1 = (g4ℓ+1, 3) and x4ℓ+1 =
(g4ℓ+1, 1), and so in the graph H4ℓ+1, the vertices x4ℓ+1 and y4ℓ+1 are at distance 2. For
i ∈ [4ℓ], we define the set Di exactly as in the previous cases. Further, let D4ℓ+1 be a γ-set
of H4ℓ+1 that contains the vertex x4ℓ+1. We note that |D4ℓ+1| = k + 1. The set

D =

4ℓ+1⋃
i=1

Di
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is a dominating set of G⊗fH , and so γ(G⊗fH) ≤ |D| = 4kℓ+k+2ℓ+1 = kn+(n+1)/2.
Case 4. n ≡ 3 (mod 4).

Thus, n = 4ℓ + 3, and in this case, f(g4ℓ+1) = 1, f(g4ℓ+2) = 2, and f(g4ℓ+3) = 3.
In particular, y4ℓ+3 = (g4ℓ+3, 2) and x4ℓ+3 = (g4ℓ+3, 1), and so in the graph H4ℓ+3, the
vertices x4ℓ+3 and y4ℓ+3 are at distance 1. For i ∈ [4ℓ + 2], we define the set Di exactly
as in Case 2. Further, let D4ℓ+3 be a γ-set of H4ℓ+3 containing the vertex x4ℓ+3. We note
that |D4ℓ+3| = k + 1. The set

D =

4ℓ+3⋃
i=1

Di

is a dominating set of G ⊗f H , and so γ(G ⊗f H) ≤ |D| = 4kℓ + 3k + 2ℓ + 2 =
kn+ (n+ 1)/2. The desired result of the claim now follows from the four cases above. (2)

The proof of Theorem 3.12 follows as an immediate consequence of Claim 3.13 and
Claim 3.15.

3.3 The cycle Cn and cycles C3k

In this section, we determine the Sierpiński domination number γS(Cn, C3k) and the upper
Sierpiński domination number ΓS(Cn, C3k).

Theorem 3.16. For n ≥ 3 and k ≥ 1,

γS(Cn, C3k) = ΓS(Cn, C3k) = kn.

Proof. We adopt our notation from the earlier sections. Let G ∼= Cn be the cycle
g1g2 . . . gng1, and let Hi be the ith copy of C3k corresponding to the vertices gi of G
for i ∈ [n]. As before, we denote the connecting edge from Hi to Hi+1 by xiyi+1 for all
i ∈ [n].

Let f : V (G) → V (H) be an arbitrary function. Let D be a γ-set of G ⊗f H , and let
Di = D∩V (Hi) for i ∈ [n]. We show that |Di| = k for all i ∈ [n]. If both vertices xi and
yi are dominated by Di, then Di is a γ-set of Hi

∼= C3k, and so |Di| = k. If exactly one
of xi and yi is dominated by Di, say xi, then by the minimality of the set D, the set Di is
a γ-set of Hi − yi ∼= P3k−1, and so |Di| = k. Hence, we may assume that neither xi nor
yi is dominated by Di, for otherwise, |Di| = k and the desired bound follows.

With our assumption that neither xi nor yi is dominated by Di, the set Di is a γ-set of
H ′

i = Hi − {xi, yi}. If xi = yi, then H ′
i = P3k−1, and by the minimality of D we have

|Di| = γ(P3k−1) = k. Hence, we may assume that xi ̸= yi. If xi and yi are adjacent,
then H ′

i = P3k−2, and by the minimality of D we have |Di| = γ(P3k−2) = k. Suppose
that xi and yi are not adjacent, and so H ′ is the disjoint union of two paths Pk1 and Pk2 ,
where k1 + k2 = 3k − 2. If k1 = 3j1 + 1 and k2 = 3j2 for some integers ji and j2 where
j1+j2 = k−1, then |Di| = ⌈k1/3⌉+⌈k2/3⌉ = (j1+1)+j2 = k. Analogously, if k1 = 3j1
and k2 = 3j2 + 1, then |Di| = k. If k1 = 3j1 + 2 and k2 = 3j2 + 2 for some integers ji
and j2 where j1 + j2 = k − 2, then |Di| = ⌈k1/3⌉+ ⌈k2/3⌉ = (j1 + 1) + (j2 + 1) = k.
In all cases, |Di| = k, implying that

γ(G⊗f H) = |D| =
n∑

i=1

|Di| = kn.

Since f : V (G) → V (H) was chosen as an arbitrary function, and D as an arbitrary
γ-set of G⊗f H , we deduce that γS(Cn, C3k) = ΓS(Cn, C3k) = γ(G⊗f H) = kn.
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4 Concluding remarks
It seems to us that in the vast majority of cases where the lower Sierpiński domination num-
ber of the Sierpiński product of two cycles is specified to two values exactly, the larger of
the two is the correct value. However, the following example, which surprised us, demon-
strates that there are also cases where the exact value is the smaller of the two possible
values.

Let G ∼= C18 with V (G) = [18] and let H ∼= C7 with V (H) = [7] and let the function
f : V (G) → V (H) be defined as follows:

f(1) = f(4) = f(5) = f(18) = 4,

f(2) = f(3) = f(6) = f(7) = 2,

f(8) = f(9) = 7,

f(10) = f(11) = 5,

f(12) = f(13) = 3,

f(14) = f(15) = 1,

f(16) = f(17) = 6.

Then Theorem 3.2 asserts that γ(G⊗f H) ∈ {36, 37} and it is straightforward to check
that the exact value is γ(G⊗f H) = 36.
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Elżbieta Kleszcz https://orcid.org/0000-0002-1413-2413
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in generalized Sierpiński graphs, Appl. Anal. Discrete Math. 12 (2018), 49–69, doi:10.2298/
AADM160802001E, https://doi.org/10.2298/AADM160802001E.

[5] A. Estrada-Moreno and J. A. Rodrı́guez-Velázquez, On the General Randić index of
polymeric networks modelled by generalized Sierpiński graphs, Discrete Appl. Math.
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