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Abstract

This article discusses mutual-visibility in graphs through a game-based

version of the problem. Two players, Builder and Blocker, alternately select

an unmarked vertex on a graph keeping the property that the set of marked

vertices forms a mutual-visibility set. The game ends when no such selection

is possible. The goal of Builder is to create a largest possible mutual-visibility

set, Blocker's goal is the opposite. The central problem here is to determine the

number of vertices selected during the game assuming that both players played

optimally. Bounds on this number are proved and several general properties

of the game derived. Special attention is paid to complete mutipartite graphs

and Hamming graphs.
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1 Introduction

Let G = (V (G), E(G)) be a connected graph. The order of G will be denoted by
n(G) and the minimum and the maximum degree of G respectively by δ(G) and
∆(G). N(x) denotes the neighborhood of the vertex x of G and the girth of G
is the length of a shortest cycle of G. A set X ⊆ V (G) is a mutual-visibility set
if for every two vertices x, y ∈ X there exists a shortest x, y-path such that none
of the internal vertices of the path belongs to X. The mutual-visibility number
µ(G) of G is the cardinality of a largest mutual-visibility set in G. With computer
science motivation, these concepts were introduced into graph theory in 2022 [9],
and immediately received a great deal of attention. As a selection of these studies,
we should mention [5, 7, 8, 13,16�18,20,21].

The Builder-Blocker mutual-visibility game we are introducing in this article is
de�ned as follows. There are two players, Builder and Blocker, who alternately select
an unmarked vertex on a graph. There are two versions of the game, depending on
who goes �rst. If Builder makes the �rst move, the game is shortly called the B-
game, otherwise it is called the B'-game. At each step of each of the two games,
the set of marked vertices must form a mutual-visibility set. The game ends when
no more vertices can be selected. The goal of Builder is to create a largest possible
mutual-visibility set, while the goal of Blocker is to keep the set as small as possible
by blocking Builder. The number of vertices selected in the B-game, assuming that
both players played optimally, is called the Builder-game mutual-visibility number of
G and is denoted by µg(G). For the B'-game, this number is called the Blocker-game
mutual-visibility number of G and is denoted by µ′

g(G).

An analogous game for the case of general position sets was investigated in [15].
Let's emphasize that we are interested in the length of these games, which is closely
related to the mutual-visibility number (resp. general position number). On the
other hand, general position games in which we are only interested in the winner
were discussed in [6, 14].

In the next section, several general properties of the Builder-Blocker mutual-
visibility game are derived. In particular, the di�erences µg(G)−µ′

g(G) and µ′
g(G)−

µg(G) can be arbitrarily large, which makes this game very di�erent from the domi-
nation and related games [2]. Graphs G with µg(G) = 2 and with µ′

g(G) = 2 are also
respectively described. In Section 3, complete multipartite graphs are studied. For
t ≥ 3, r1 ≥ · · · ≥ rt ≥ 1 and r1 ≥ 2, it is derived that µg(Kr1,...,rt) ∈ {n− 2, n− 1}
and µ′

g(Kr1,...,rt) ∈ {n−2, n−1}, where n =
∑t

i=1 ri. In the main result of Section 4
it is proved that µg(Kn □ Kn) > n4/3 and that µ′

g(Kn □ Kn) > n4/3. We conclude
the article with several open problems that we �nd interesting for further research.
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2 Some general properties

In [3], Bre²ar and Yero investigated the lower mutual-visibility number µ−(G) of a
graph G, de�ned as the cardinality of a smallest maximal mutual-visibility set of G.
Since at the end of the B-game and of the B'-game the set of selected vertices forms
a maximal mutual-visibility set, we have

µ−(G) ≤ µg(G) ≤ µ(G), (1)

µ−(G) ≤ µ′
g(G) ≤ µ(G). (2)

For instance, it is known from the seminal paper [9, Lemma 2.8] that µ(Cn) = 3,
n ≥ 3. It is also straightforward to check that µ−(Cn) = 3, hence by (1) and (2) we
can conclude that µg(Cn) = µ′

g(Cn) = 3, n ≥ 3. From the game theoretic point of
view, the lower bounds in (1) and (2) are achieved by the solitaire mutual-visibility
game played by Blocker, while the upper bounds are achieved by the solitaire game
played by Builder.

The following lemma is a result parallel to [15, Lemma 1] which deals with the
Builder-Blocker general position game. Its proof proceeds along the same lines,
hence we give only a brief proof of it.

Lemma 2.1. Let G be a graph and consider the moment in a B-game or B'-game
when X is the set of vertices played so far. If X ∪ X ′ is a mutual-visibility set,
where X ′ is the set of vertices which are playable as the next move, then the game
will �nish precisely after all the vertices from X ′ have been played.

Proof. By our assumption, a vertex from V (G) \ (X ∪X ′) cannot be played at the
current state of the game, hence it cannot be played in any of the later moves. On
the other hand, since X ∪X ′ is a mutual-visibility set, playing the vertices from X ′

one by one makes a legal sequence of moves.

As an application of Lemma 2.1 we give:

Theorem 2.2. The di�erences µg(G)−µ′
g(G) and µ′

g(G)−µg(G) can be arbitrarily
large.

Proof. We �rst demonstrate that the di�erence µg(G) − µ′
g(G) can be arbitrarily

large. For this sake consider the graphs Gn obtained from n disjoint triangles and n
disjoint C4, by selecting an edge in each of these 2n graphs and identifying them into
a single edge. See Fig. 1 where G3 is shown. From the �gure, the vertex labelling
of Gn should be clear.
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Figure 1: The graph G3

Consider �rst the B-game. Let w1 be the �rst move of Builder and assume that
Blocker replies by selecting x. In this case, let the second move of Builder be w2.
After that, y is no longer playable for otherwise w1 and w2 are not visible. Because
of that, all the vertices w2, . . . , wn will be played by the end of the game. It follows
that at least n + 1 vertices are played in this case. Assume second that after the
move w1 of Builder, Blocker replies by selecting some of the vertices ui or vi, we may
assume it is the vertex u1. Then Builder replies by y and we a parallel argument as
above we see that at least n+ 1 vertices will be played. The last case to consider is
if, without loss of generality, the �rst move of Blocker is w2. Builder then selects x
and we again have a game with at least n+1 vertices played. Hence µg(Gn) ≥ n+1.

Consider next the B'-game on Gn. In this game, Blocker can assure that after
the �rst three moves of the game, both x and y are played. We can then check
that in every such situation, the game is over, that is, µ′

g(Gn) = 3. We have thus
demonstrated that µg(Gn) can be arbitrary larger than µ′

g(Gn).

For the reverse di�erence, consider the graphs Tn, n ≥ 2, which are obtained
from K2 by attaching n leaves to each of the vertices of K2. In the B-game, after
Builder selects a vertex u of Tn, Blocker selects a neighbor of u to �nish the game.
Hence µg(Tn) = 2. Consider next the B′-game. Then, no matter which vertex
Blocker selects �rst, Builder can select a vertex such that at that point the two
vertices selected are a vertex x of degree n+ 1 and a leaf y at distance two from x.
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Now, if x′ is the other vertex of degree n+ 1, then the set S ′ of playable vertices at
this moment are the n − 1 leaves adjacent to x′ di�erent from y. Since {x, y} ∪ S ′

is a mutual-visibility set, Lemma 2.1 implies that µ′
g(Tn) ≥ n + 1. (One can also

verify that µ′
g(Tn) ≤ n+1.) We can conclude that µ′

g(G)−µg(G) can be arbitrarily
large.

If xy is an edge of a connected graph G, then let Zx→y denote the set of vertices
w, such that every shortest x,w-path contains y, that is, every shortest x,w-path
passes the edge xy. The set Zy→x is de�ned analogously. Note that y ∈ Zx→y,
x ∈ Zy→x, and Zx→y ∩ Zy→x = ∅. Setting Z{x,y} = V (G) \ (Zx→y ∪ Zy→x) we
thus infer that V (G) is the disjoint union of Z{x,y}, Zx→y and Zy→x. An example
illustrating these sets can be seen in Fig. 2.

x y

Zy→x Zx→y

Z{x,y}

Figure 2: Petersen graph P , its edge xy, and sets Zx→y, Zy→x, Z{x,y}

The following result is a variant of [15, Theorem 1] for the Builder-Blocker
mutual-visibility.

Theorem 2.3. If G is a connected graph with n(G) ≥ 2, then

µg(G) ≤ 2 + max
x∈V (G)

min
y∈N(x)

∣∣Z{x,y}
∣∣ .

Proof. Let x be the �rst vertex selected by Builder in the B-game. To prove the
upper bound, let's consider a strategy of Blocker in which she replies by selecting
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a neighbor y of x. Then, by the de�nition of the sets Zx→y and Zy→x, no vertex
from their union can be played during the rest of the game. It follows that at most
2 + |Z{x,y}| vertices will be selected under the assumption that x and y were played
�rst. Now, as Builder starts the game and wishes to maximize the number of vertices
selected, the bound follows.

Corollary 2.4. If G is a connected graph of girth at least 5, then

µg(G) ≤ n(G)− 2δ(G) + 2 .

Proof. Let xy ∈ E(G). Since the girth of G is at least 5 we have N(x) ∩N(y) = ∅.
From the same reason, N(y) ⊆ Zx→y and N(x) ⊆ Zy→x. If follows that

|Z{x,y}| = n(G)− |Zx→y| − |Zy→x|
≤ n(G)− |N(y)| − |N(x)|
≤ n(G)− 2δ(G).

Since xy is an arbitrary edge of G, Theorem 2.3 implies the assertion.

For the Petersen graph P , Corollary 2.4 gives µg(P ) ≤ 6. On the other hand,
{x, y}∪Z{x,y} is a mutual-visibility set, hence Lemma 2.1 yields µg(P ) ≥ 6. We can
conclude that µg(P ) = 6 which in turn implies that the bound of Corollary 2.4 is
sharp.

Geodetic graphs are the graphs with the property that every two vertices are
joined by a unique shortest path. For instance, trees, block graphs, and k-trees
are examples of geodetic graphs, as well as it is also the Petersen graph. This
concept goes back all the way to Ore [19], an early survey is given in [1]. We also
refer to [10,12] for selected recent developments. From our perspective, the following
property of geodetic graphs is relevant, where gpg(G) and gp′

g(G) respectively denote
the Builder-game general position number and the Blocker-game general position
number [15].

Proposition 2.5. If G is a geodetic graph, then µg(G) = gpg(G) and µ′
g(G) =

gp′
g(G).

Proof. Since G is geodetic, a set X ⊆ V (G) is a mutual-visibility set if and only if
X is a general position set. The admissible sets therefore coincide in the Builder-
Blocker mutual-visibility game and the Builder-Blocker general position game played
on G, hence the conclusions.
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By Proposition 2.5, all the results from [15] derived for gpg(T ) and gp′
g(T ), where

T is a tree, immediately apply to µg(T ) and µ′
g(T ), respectively. For instance, if ℓ(T )

denotes the number of leaves of a tree T , then µ′
g(T ) ≤ ℓ(T )−∆(T ) + 2. Moreover,

it follows from [15, Corollary 2] that µg(T ) = 2 for every tree T on at least two
vertices. This result generalizes as follows, where by a starlike tree we mean a tree
which contains at most one vertex of degree at least 3.

Proposition 2.6. If G is a connected graph of order at least two, then the following
assertions hold.

(i) µg(G) = 2 if and only if G is a tree.

(ii) µ′
g(G) = 2 if and only if G is a starlike tree.

Proof. (i) As already mentioned, [15, Corollary 2] implies µg(T ) = 2 for every tree
T . Assume now that G is not a tree. If C is a shortest cycle of G, then let Builder
select a vertex of C as his �rst move. Since C is isometric, no matter whether
Blocker plays a vertex of C or not as her �rst move, Builder is able to play at least
one more move. Hence µg(G) ≥ 3 if G is not a tree.

(ii) If T is a path, then clearly µ′
g(T ) = 2. If T is a starlike tree which is not a

path, then T contains a vertex w of degree at least 3. Then Blocker starts the B'-
game by playing w and no matter which vertex is played by Builder, the game is over
afterwards. Assume next that T is a tree with at least two vertices of degree at least
3, say w and w′. Let x be an optimal �rst move of Blocker. Let Tw be the maximal
subtree of T that contains w and does not contain the edges on the w,w′-path.
De�ne the subtree Tw′ analogously. Then we may without loss of generality assume
that x /∈ V (Tw). Now, if Builder plays a leaf of Tw, then at least one more vertex
will be played, which implies µ′

g(T ) ≥ 3. Consider �nally a graph G containing a
cycle. Then considering a shortest cycle C of G again, we can infer that Builder will
be able to force Blocker to play at least two moves, hence also now µ′

g(G) ≥ 3.

3 Complete multipartite graphs

In this section, we investigate the Builder-Blocker mutual-visibility game on com-
plete multipartite graphs. Since the mutual-visibility number of the complete bipar-
tite graphs Km,n for n ≥ m ≥ 3 has already been determined in [9, Theorem 4.9],
we focus here on the complete multipartite graphs Kr1,...,rt , t ≥ 3.
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Lemma 3.1. If r1 ≥ · · · ≥ rt ≥ 1 and n =
∑t

i=1 ri, then

µ(Kr1,...,rt) =


n; if r1 = 1,

n− 1; if r1 ≥ 2 and rt ≤ 2,

n− 2; if rt ≥ 3.

Proof. Let V (Kr1,...,rt) =
⋃t

i=1 Xi, where Xi = {xi1, . . . , xiri} for i ∈ [t]. If r1 = · · · =
rt = 1, then Kr1,...,rt is a complete graph of order t for which we have µ(Kt) = t. In
the rest of the proof hence assume that r1 ≥ 2.

Assume �rst that rt ≤ 2, and let X =
⋃t−1

i=1 Xi ∪ (Xt \ {xt1}). Consider any two
vertices u and v from Kr1,...,rt . If u ∈

⋃t−1
i=1 Xi and v ∈ (Xt\{xt1}), then u is adjacent

to v and we see that u and v are X-visible. If u, v ∈
⋃t−1

i=1 Xi, the vertices u, v, and
xt1 induce a shortest u, v-path of length 2, hence u and v are X-visible. Then X is
a mutual-visibility set of Kr1,...,rt , therefore µ(Kr1,...,rt) ≥ n− 1. On the other hand,
since r1 ≥ 2, we see that Kr1,...,rt is not complete, hence µ(Kr1,...,rt) ≤ n− 1.

Assume second that rt ≥ 3, and let X ′ =
⋃t

i=1Xi \ {x11, xt1}. Using sim-
ilar arguments as to the above, X ′ is a mutual-visibility set of Kr1,...,rt , hence
µ(Kr1,...,rt) ≥ n− 2. On the other hand, since r1 ≥ · · · ≥ rt ≥ 3 we infer that no set
of cardinality n−1 can be a mutual-visibility set. It follows that µ(Kr1,...,rt) ≤ n−2
and we are done.

We now analyze the Builder-Blocker mutual-visibility game on the complete
multipartite graph Kr1,...,rt . If r1 = · · · = rt = 1, then we deal with Kt for which we
clearly have µg(Kt) = µ′

g(Kt) = t. For the case when t = 2 we have the following.

Theorem 3.2. If n ≥ m, then the following assertions hold.

(i) If m = 1, then µg(Km,n) = µ′
g(Km,n) = 2.

(ii) If m = 2, then µg(Km,n) = n+ 1 and µ′
g(Km,n) = 3.

(iii) If m ≥ 3, then µg(Km,n) = µ′
g(Km,n) = m+ n− 2.

Proof. LetM andN be the (bipartition) parts ofKm,n, where |M | = m and |N | = n.

(i) In this case, Km,n is a tree, thus by the comments made after Proposition 2.5,
µg(Km,n) = 2 and µ′

g(Km,n) ≤ n − n + 2 = 2. As µ−(Km,n) = 2 (take the central
vertex and one leaf), the conclusion follows by (2).

(ii) In the B-game, Builder's strategy is to �rst select a vertex from N , and
also play on N in the second move, unless Blocker plays on N in the �rst move.
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As two vertices of N are then selected, only one vertex from M can be selected
during the game. Thus the game ends when all the vertices from N and one vertex
from M are played. Thus µg(Km,n) ≥ n + 1. On the other hand, Lemma 3.1 gives
µ(Km,n) = n+m− 1 = n+ 1, thus (1) concludes the argument in this case.

Consider next the B'-game. As µ−(Km,n) = 3 (take both vertices from M and
then only one vertex from N can be added), µ′

g(Km,n) ≥ 3 by (2). Blocker's strategy
to achieve this is to start the game by playing a vertex from M , and also playing on
M in the second move (unless Builder does in the �rst move). Hence µ′

g(Km,n) ≤ 3.

(iii) By Lemma 3.1 and (1), µg(Km,n) ≤ m + n − 2. To achieve this, Builder's
strategy is to force at least two vertices from M and at least two from N to be
played before all vertices are played from either part of the bipartition. To achieve
this in the B-game, Builder starts by playing a vertex from N , and afterwards plays
in the opposite part of where Blocker plays.

In the B'-game, Builder plays in the opposite part as Blocker, thus after the
second move of Builder, two vertices have been played in M and two in N . Now,
all but one vertex from each part of the bipartition can be selected until the end of
the game, therefore the game lasts at least m+ n− 2 moves.

We now turn our attention to the general case of complete multipartite graphs
Kr1,...,rt for t ≥ 3 and r1 ≥ 2.

Theorem 3.3. If t ≥ 3, r1 ≥ · · · ≥ rt ≥ 1, r1 ≥ 2, and n =
∑t

i=1 ri, then

n− 2 ≤ µg(Kr1,...,rt) ≤ n− 1.

Proof. Since t ≥ 3 and r1 ≥ 2, the upper bound follows by Lemma 3.1 and (1). To
prove the lower bound we need a strategy of Builder that ensures that at least n− 2
moves are played during the game. First observe that lower mutual-visibility sets of
Kr1,...,rt are of the following form: all vertices except from one part of the partition
which contributes only one vertex to the set (or zero if this part is of size 1), or all
vertices except two vertices that belong to di�erent parts of the partition. As the
lower mutual-visibility number is a lower bound for µg(Kr1,...,rt), the lower bound
does not trivially follow only if r1 ≥ 4 and Blocker can force the game mutual-
visibility set to be all vertices except only one from a part of size at least 4. Thus
let 1 ≤ k ≤ t be such that rk ≥ 4 and rk+1 ≤ 3. Builder's strategy is to play two
vertices in each part of size r1, . . . , rk (in this order). If he is able to play the second
vertex in the part of size rk, then the game will last for at least n−2 moves. Blocker
is not able to prevent Builder from playing the second move in the part of size rk if
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and only if

(r1 − 2) + · · ·+ (rk−1 − 2) + rk+1 + · · ·+ rt ≤ 2k − 1,

which simpli�es to
2(k − 1) + (t− k) ≤ 2k − 1,

thus
k ≤ t ≤ k + 1.

If t = k, then the above bound gives

(r1 − 2) + · · ·+ (rk−1 − 2) ≤ 2k − 1,

r1 + · · ·+ rk−1 ≤ 4k − 3,

thus the only two possibilities are r1 = 5, r2 = · · · = rt = 4 and r1 = · · · = rt = 4.

If t = k + 1, then the above bound gives

(r1 − 2) + · · ·+ (rk−1 − 2) + rt ≤ 2k − 1,

r1 + · · ·+ rk−1 + rt ≤ 4k − 3,

thus the only possibility is r1 = · · · = rt−1 = 4, rt = 1.

Note that t ≥ 3. Once there exist two parts of size 4 in Kr1,...,rt , Builder can
adopt a strategy that at least two vertices are played in each in such part. The
game will end after at least n− 2 vertices have been played. We can conclude that
µg(Kr1,...,rt) ≥ n− 2.

By the proof of Theorem 3.3 and by Lemma 3.1, we obtain the following:

Corollary 3.4. If t ≥ 3, r1 ≥ · · · ≥ rt ≥ 3, and n =
∑t

i=1 ri, then

µg(Kr1,...,rt) = n− 2.

For the B'-game played on Kr1,...,rt , where t ≥ 3 and r1 ≥ 2, we have:

Theorem 3.5. If t ≥ 3, r1 ≥ · · · ≥ rt ≥ 1, r1 ≥ 2 and n =
∑t

i=1 ri, then

n− 2 ≤ µ′
g(Kr1,...,rt) ≤ n− 1.

Proof. As t ≥ 3 and r1 ≥ 2, Lemma 3.1 and (2) provide the upper bound. To prove
the lower bound we need a strategy of Builder that ensures that at least n−2 moves
are played during the game. The idea is similar as in the proof of Theorem 3.3, here
we omit the details.

Corollary 3.6. If t ≥ 3, r1 ≥ · · · ≥ rt ≥ 3, and n =
∑t

i=1 ri, then

µ′
g(Kr1,...,rt) = n− 2.
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4 Hamming graphs

Let G and H be two graphs. The Cartesian product G □ H has the vertex set
V (G) × V (H), vertices (g, h) and (g′, h′) being adjacent if either g = g′ and hh′ ∈
E(H), or h = h′ and gg′ ∈ E(G).

In this section we consider the Builder-Blocker mutual-visibility game on the
Cartesian product of two complete graphs, also known as Hamming graphs. For
the mutual-visibility of the Cartesian product of two complete graphs, the following
result is crucial.

Lemma 4.1. [7, Lemma 3.5] Let n,m ≥ 2 and let X ⊆ V (Kn □ Km). Then X
is a mutual-visibility set of Kn □ Km if and only if |X ∩ V (C)| ≤ 3 holds for each
induced 4-cycle C of Kn □ Km.

By Lemma 4.1, inequalities (1) and (2), and [7, Corollary 3.7], we deduce that

n+m− 1 ≤ µg(Kn □ Km) ≤ z(n,m; 2, 2) ,

n+m− 1 ≤ µ′
g(Kn □ Km) ≤ z(n,m; 2, 2) ,

for any m,n ≥ 2, where z(m,n; 2, 2) denotes the maximum number of 1s in a m×n
binary matrix which contains no 2 × 2 submatrix consisting of four 1s. The exact
value of z(m,n; 2, 2) is widely open, cf [22], but the following bounds are known.

Theorem 4.2. [4, 11, Brown, 1966; Erd®s-Rényi-Sós, 1966] When n is su�ciently
large,

n3/2 − n4/3 ≤ z(n, n; 2, 2) ≤ 1

4
n(1 +

√
4n− 3) .

The following result completes Theorem 4.2 for the case of the Builder-Blocker
mutual-visibility games.

Theorem 4.3. If n ≥ 2, then µg(Kn □ Kn) > n4/3 and µ′
g(Kn □ Kn) > n4/3.

Proof. An induced 4-cycle of Kn □ Kn projects on each of the two factors onto an
edge, hence Kn □ Kn contains

(
n
2

)(
n
2

)
induced 4-cycles. If X ⊆ V (Kn □ Kn), then

we say that an induced 4-cycle C is hit by X if |V (C) ∩X| ≥ 3. Since each triple
of vertices of X can hit at most one induced 4-cycle, it follows that X hits at most(|X|

3

)
induced 4-cycles of Kn □ Kn.

Assume now that X is the set of vertices selected so far by Builder and Blocker
in the B-game or in the B'-game, and set k = |X|. If the number of induced 4-cycles
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hit by the vertices from X is smaller than the number of all induced 4-cycles, then
by Lemma 4.1, in an arbitrary not yet hit induced 4-cycle, at least one vertex is
playable, that is, the game is not over yet. That is, if(

k

3

)
<

(
n

2

)(
n

2

)
, (3)

then µg(Kn □ Kn) > k and µ′
g(Kn □ Kn) > k. Inequality (3) rewrites as

k(k − 1)(k − 2)− 3

2
n2(n− 1)2 < 0 . (4)

Setting k = n4/3 we infer that (4) holds true for each n ≥ 2. We can conclude that
if k = n4/3, then the games are not over yet.

5 Concluding remarks

In this section we collect some problems that seem interesting for further research
and give some remarks on each of them.

From [7, Remark 4.5] we know that if G is a block graph, then µ(G) = s(G),
where s(G) is the number of simplicial vertices of G. In addition, in [3, Theorem 14]
it is proved that if G is a connected block graph with n(G) ≥ 2, and Q is a maximal
clique with minimum cardinality in G, then µ−(G) = |Q|. This discussion leads to:

Problem 5.1. Determine µg(G) and µ′
g(G) where G is a block graph.

In [9], µ(Km,n) is determined for all possible values of m and n. In Section 3
we extend this result to complete multipartite graphs. In the same section upper
and lower bounds for µg and µ′

g of the latter graphs are given that di�er by 1, and
an exact result is provided for the case when we have at least 3 parts and all parts
contain at least 3 vertices. It would be interesting to obtain exact values for the
remaining complete multipartite graphs, that is:

Problem 5.2. Characterize complete multipartite graphs Kr1,...,rt with µg(Kr1,...,rt) =
n− 1 and those with µ′

g(Kr1,...,rt) = n− 1.

By [9, Theorem 4.6] we have µ(Pn □ Pm) = 2min{n,m} for n,m ≥ 4, and
by [3, Corollary 4] we have µ−(Pn □ Pm) = 3 for n,m ≥ 2. Therefore, if n ≥ m ≥ 4,
then

3 ≤ µg(Pn □ Pm) ≤ 2m.
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We note that µg(P3 □ P3) = µ′
g(P3 □ P3) = 4; the strategy of Blocker is to �rst

play the central vertex (unless Builder already played it). Moreover, µg(P3 □ Pm) =
µ′
g(P3 □ Pm) = 6 as soon as m is large enough; the strategy of Builder is always to

play in the same P3-layer as Blocker and this is as far from Blocker as possible to
make enough space. For the general case we pose:

Problem 5.3. For any n and m, determine µg(Pn □ Pm) and µ′
g(Pn □ Pm).

In view of Problem 5.3 and Theorem 4.3 we also pose:

Problem 5.4. For arbitrary connected graphs G and H, derive general upper and
lower bounds on µg(G □ H) and µ′

g(G □ H).
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