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catacondensed benzenoid hydrocarbons
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Abstract

An algorithm is described by means of which the Kekulé structures of a cata-

condensed benzenoid molecule (with h hexagons) are transformed into binary codes

(of length h ). By this, computer–aided manipulations with, and memory–storage of

Kekulé structures are much facilitated. Any Kekulé structure can easily be recovered

from its binary code.

Key words: benzenoid hydrocarbons, benzenoid graph, resonance graph, Kekulé

structure, algorithm, binary coding

2



1. Introduction

The fact that for some polycyclic conjugated molecules (benzenoid hydrocarbons

in particular) more than one classical structural formula can be written fascinates

chemists longer than a century. These structural formulae are usually referred to

as “Kekulé structures” and a vast amount of theoretical work on them has been

done. One major direction of research is finding the number K of Kekulé structures

(Cyvin and Gutman, 1988) and trying to relate K with various physico–chemical

properties of the underlying compounds (Gutman and Cyvin, 1989). Another di-

rection is the study of individual Kekulé structures and finding relations between

them. A famous problem along these lines (never satisfactorily solved) is the iden-

tification of the Kekulé structure that provides the most faithful representation of

the true bonding in the respective molecule (Friess, 1927; Friess et al., 1935; Grao-

vac et al., 1973). Some authors consider Kekulé structures as quantum–mechanical

objects among which some (quantum–mechanical) interactions exist; for detail see

in McWeeny and Sutcliffe (1969). In the case of benzenoid molecules the simplest

model for such interactions is the following: if two Kekulé structures differ in the

position of three double bonds, then they interact (by an unspecified, but constant

amount); otherwise their interaction is neglected. Within this model the concept of

the so–called “resonance graph” occurs naturally: The vertices of the resonance graph

R(G) of the benzenoid hydrocarbon B are the Kekulé structures of B ; two vertices

of R(G) are adjacent if the corresponding Kekulé structures interact, that is if they

differ in the position of just three double bonds.

This model, together with the concept of resonance graphs, was first put forward

by Gründler (1982, 1983) and was then re-invented by El–Basil (1993a, 1993b) and,

independently, by Randić (Randić et al., 1996, Randić, 1997). In addition to this,

without any reference to quantum theory, Zhang, Guo and Chen introduced resonance

graphs and established their basic mathematical properties (Zhang et al., 1988a,

1988b; Chen and Zhang, 1997).

For examples illustrating the construction and the basic structural features of

resonance graphs see the references quoted as well as Figs. 6, 8, 9 and 10.
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Two of the present authors (Klavžar and Žigert, 2000) discovered recently an in-

triguing property of the resonance graph of catacondensed benzenoid systems, namely

that they belong to the class of median graphs. The result was later generalized by

Klavžar, Žigert and Brinkmann to the so-called catacondensed even ring systems

(Klavžar et. al., 2001). A far–from–obvious consequence of this result is that a

unique (and quite short!) binary code can be associated to every Kekulé structure.

In this paper we describe an algorithm for the construction of this binary code, as

well as for the re-construction of the Kekulé structure from the code.

The advantage of this coding/decoding procedure for computer–aided manipu-

lation with Kekulé structures (in particular, for the construction of the resonance

graph) should be obvious. The possibility of storing the complete information on a

Kekulé structure by means of a short binary string is another asset that may be-

come indispensable when dealing with benzenoid systems possessing thousands and

hundred thousands Kekulé structures (Cyvin and Gutman, 1987). Such benzenoid

hydrocarbons have recently been both synthesized (Iyer et al., 1997) and detected in

flame (Homann, 1998).

2. Mathematical background of the algorithm

The Cartesian product G2H of graphs G and H (Imrich and Klavžar, 2000) has

the vertex set V (G) × V (H) , and vertices (a, x) and (b, y) are adjacent in G2H

whenever ab ∈ E(G) and x = y , or a = b and xy ∈ E(H).

Hypercubes are of utmost importance for our algorithm and are defined as follows.

The vertex set of the n-cube Qn consists of all n-tuples b1b2 . . . bn with bi ∈ {0, 1} .

Two vertices are adjacent if the corresponding tuples differ in precisely one place. Qn

is also called a hypercube of dimension n . Note that Q1 is the complete graph on

two vertices, that is, K2 , while Q2 is the 4-cycle C4 and Q3 is the ordinary 8-vertex

cube. A useful way to represent Qn is to take two disjoint copies of Qn−1 and join

by an edge pairwise identical vertices in the corresponding copies. In other words,

Qn = Qn−12K2 .

Recently Klavžar and Žigert (2000) proved that the resonance graph R(G) of a cat-
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acondensed benzenoid graph G can be isometrically embedded into the h-dimensional

hypercube Qh , where h is the number of hexagons of G . In fact, they showed an

even stronger statement, namely that R(G) is a median graph; for more details on

median graphs see elsewhere (Mulder, 1978, 1980; Klavžar and Mulder, 1999; Imrich

and Klavžar, 2000).

The proof outlined by Klavžar and Žigert (2000), as well as the one of Klavžar,

Žigert and Brinkmann (2001), gives a (theoretical) indication how R(G) can be em-

bedded into Qh . This embedding can be roughly described as follows.

A 1-factor (or perfect matching) of a graph G on n vertices is a selection of n/2

mutually independent edges of G . Only graphs with even number of vertices may

have 1-factors, and then every vertex is the endpoint of exactly one of the selected

edges. The fact that a Kekulé structure of a conjugated molecule is in a one–to–one

correspondence with a 1-factor of the underlying molecular graph is well and long

known (e. g., Cvetković et al., 1972). In the following considerations we shall, where

appropriate, instead of “Kekulé structure” use the equivalent, but somewhat more

precise, mathematical term “1-factor”.

Let G be a catacondensed benzenoid graph that is obtained from a catacondensed

benzenoid graph G′ by attaching a hexagon H over an edge e . Suppose that G′

contains h − 1 hexagons and that we have already embedded R(G) into Qh−1 . We

partition the 1-factors of G into the sets Fe(G) , F2

e (G) , and F3

e (G) , where

Fe(G) consists of the 1-factors containing the edge e ;

F2

e (G) consists of the 1-factors not containing e , but containing (exactly)

two edges of H ;

F3

e (G) consists of the 1-factors not containing e , but containing three

edges of H .

Then one can embed R(G) into Qh = Qh−12K2 in such a way that the 1-factors

of Fe(G) ∪ F2

e (G) lie in one copy of Qh−1 , the 1-factors of F3

e (G) in the other copy

and the 1-factors of Fe(G) and F3

e (G) are pairwise joined by by an edge.

Let us explain this embedding in some more detail.

For a subset X of vertices of a graph G , the subgraph of G induced by X is
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denoted by G[X] .

We have already observed that the 1-factors of G , that is the vertices of the

resonance graph R(G) , can be partitioned as follows:

V (R(G)) = Fe(G) ∪ F2

e (G) ∪ F3

e (G) .

There is a natural bijective correspondence between the 1-factors of Fe(G) and of

Fe(G
′) . In addition, a 1-factor from F2

e (G) corresponds to a unique 1-factor from

Fe(G
′) . It follows that the subgraph G1 = R(G)[Fe(G)∪F2

e (G)] of R(G) is isomorphic

to R(G′) . Consider now a 1-factor F from F3

e (G) . In R(G) it is adjacent to a

unique 1-factor F of G1 . We note next that two 1-factors F1 and F2 of F3

e (G) are

adjacent if and only if the corresponding 1-factors F1 and F2 are adjacent. Therefore,

R(G)[Fe(G)] and R(G)[F3

e (G)] are isomorphic and R(G)[Fe(G)∪F3

e (G)] is a subgraph

of R(G) isomorphic to R(G)[Fe(G)]2K2 .

For further details of this embedding/proof we refer to Klavžar and Žigert (2000)

or/and to Klavžar, Žigert and Brinkmann (2001).

3. The algorithm

In the previous section we pointed out that the resonance graph R(G) of a cata-

condensed benzenoid system G can be (isometrically) embedded into Qh . In other

words, to each 1-factor of G we can uniquely assign a binary string of length h ,

such that each bit in the string corresponds to a unique hexagon. In particular, two

strings imply the existence of an edge in R(G) if and only if they differ in precisely

one position.

Let H be a pendant hexagon of a catacondensed benzenoid graph G . Let G′ be

the graph obtained from G by removing H (but not e). Suppose that G′ contains

h − 1 hexagons and that we have already embedded R(G′) into Qh−1 . Let S(G′) be

the set of the binary strings of length h−1 corresponding to the embedding of R(G′) .

In order to establish the embedding of G , we distinguish between three cases with

regard to the position of the double bonds, see Fig. 1.

Fig. 1 comes about here
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From the discussion in the previous section it follows that 1-factors of the cases

a., b., and c. belong to Fe(G) , F2

e (G) , and F3

e (G) , respectively.

Since R(G) can be embedded into Qh = Qh−12K2 in such a way that the 1-

factors of Fe(G) ∪ F2

e (G) lie in one copy of Qh−1 and the 1-factors F3

e (G) in the

other copy of Qh−1 , the corresponding set of strings of length h can be obtained by

concatenating the same digit (say 0) to each x ∈ S(G′) if cases a. and b. occur, and

by concatenating the other digit (say 1) to each x ∈ S(G′) if case c. occurs. G′ is

obviously a catacondensed benzenoid graph, thus the method described above, can be

applied as a recursive procedure that can be repeated till a single hexagon remains.

The two 1-factors (Kekulé structures) of a single hexagon (benzene) are shown in

Fig. 2. Their set of strings obviously consists of digits 0 and 1, where one of them

(say 0) pertains to the 1-factor on the left–hand side and the other (say 1) to the

1-factor at the right–hand side.

Fig. 2 comes about here

In Fig. 3 the three 1-factors (Kekulé structures) of naphthalene are depicted.

Based on the procedure described above they are coded with the set of strings S(G) =

{00, 01, 10} as shown in the figure.

Fig. 3 comes about here

First, the right digit is assigned as 0, 0, and 1, respectively, according to the cases

b., a., and c. of Fig. 1. Then, in G′, that is, in the left hexagon, the remaining edges

correspond to the right, to the left, and to the left case of Fig. 2. Hence the first

digits are 1, 0, and 0, respectively.

However, the recursive procedure can be awkward if the graph G has more hexagons.

Therefore, an iterative procedure would be more convenient. In order to develop

such a procedure we first examine catacondensed benzenoids without branches. Two

hexagons of a catacondensed benzenoid have either one common edge (and are then

said to be adjacent) or have no common vertices. A hexagonal chain is an un-

branched catacondensed benzenoid graph, that is, the catacondensed system in which

no hexagon is adjacent to three other hexagons.
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The inner dual of a hexagonal chain G with h hexagons is obviously the h-vertex

path. Starting from a terminal hexagon H1 we can assign consecutive numbers to

each hexagon to get the ordering H1, H2, . . . , Hh .

Let Si be the set of strings corresponding to the embedding of the resonance graph

that corresponds to a hexagonal chain consisting of the hexagons H1, H2, . . . , Hi and

suppose that Si−1 is already known. Then the determination of Si depends solely on

the previous two hexagons Hi−1 and Hi−2 . The six possible cases are shown in Fig.

4.

Fig. 4 comes about here

According to the positions of hexagons Hi−2 , Hi−1 , and Hi we arrive at two major

cases. The hexagons may be linearly arranged, see Fig. 4a or not (then a so called

kink occurs), see Fig. 4b .

Furthermore, the labeling also depends on the position of the double bonds of

Hi−1 . Let x ∈ Si−1 . Then x = y0 or x = y1 , where y is a pertinent string of length

i − 2 .

According to the cases in Fig. 4 we get:

a. (Cases without a kink). Si can be obtained from Si−1 by inserting strings x0

and x1 for each x = y1 and by inserting string x0 for each x = y0 .

b. (Cases with a kink). Si can be obtained from Si−1 by inserting strings x0 and

x1 for each x = y0 and by inserting string x0 for each x = y1 .

We are now ready to present the algorithm for the embedding of the resonance

graph of s hexagonal chain G with at least two hexagons. Since two previous hexagons

are needed at each step of the procedure, we start the algorithm with the embedding

of naphthalene, which was already determined to be {00, 01, 10} . The algorithm at

i-th step builds the new set of strings of length i (denoted by S ′) obtained from the

strings of length i − 1 (denoted by S).
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Procedure LABELS(G);
begin

1. Consecutively number the hexagons of G to get the sequence H1 , H2 , . . . , Hh;
S := {00, 01, 10};
For i := 3 to h do begin

S ′ := ∅;
If Hi induces a kink then begin

For each x ∈ S do begin

S ′ := S ′ ∪ {x0};
If x = y0 then S ′ := S ′ ∪ {x1}; end;

end

else begin

For each x ∈ S do begin

S ′ := S ′ ∪ {x0};
If x = y1 then S ′ := S ′ ∪ {x1}; end;

end

S := S ′;
end;

end.

Remark. In order to determine whether Hi induces a kink, the positions of Hi ,

Hi−1 , and Hi−2 have to be examined.

The procedure for a branched catacondensed benzenoid is a little (but not much!)

more involved. The inner dual of a catacondensed benzenoid graph G is an h-vertex

tree T . An arbitrary pendant hexagon of G is selected as the root of this tree. The

hexagons of G are then numbered such that Hi is a predecessor of Hj in T if and

only if i < j . Such a numbering can be obtained by the Depth–first search algorithm

(DFS) or by the Breadth–first search algorithm (BFS) (Kozen, 1992). Note that

the predecessor of every hexagon has to be known in order to determine whether Hi

induces a kink or not.

Based on the discussion above, Step 1 of LABELS should be replaced by the

following:

Starting at any pendant hexagon apply the Depth-first search (DFS) al-

gorithm to consecutively visit the hexagons of the graph. At each visited

hexagon do the following:

assign a consecutive index to the hexagon,

record a predecessor of the hexagon Hi .
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4. Two examples

In this section we present two examples of the algorithm described in the previous

section. In addition, at the end we also show the reverse procedure, namely how one

can construct the Kekulé structure that corresponds to a given binary code.

As the first example we consider a simple case of the resonance graph of naph-

thacene. The hexagons are numbered in a natural way as shown in Fig. 5.

Fig. 5 comes about here

In Fig. 6 the complete construction of the Kekulé structures, resonance graphs,

and the codes for the Kekulé structures are shown, starting from the data for naph-

thalene.

Fig. 6 comes about here

In our second example we consider a more complex benzenoid hydrocarbon –

benzo[s]picene, see Fig. 7.

Fig. 7 comes about here

In Fig. 8 the first part of the procedure is shown: the generation of the two–, three–

and four–digits codes for the vertices of the resonance graphs and the corresponding

Kekulé structures.

Fig. 8 comes about here

By considering the fifth hexagon of benzo[s]picene, we get the five–digits codes.

These codes and the corresponding Kekulé structures are shown in Fig. 9.

Fig. 9 comes about here

Finally, considering the sixth hexagon, we derive altogether 22 Kekulé structures,

consistent with the fact (Cyvin and Gutman, 1987) that K(benzo[s]picene) = 22 .

These are too numerous to be drawn. Instead, their codes are given in Table 1

whereas the corresponding resonance graph is shown Fig. 10.
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Table 1 comes about here

Fig. 10 comes about here

At this point the natural question is how one can reconstruct the Kekulé structure

from its binary code. This can be done just by reverting the algorithm. Of course, an

input data for such a procedure is also the selected ordering of hexagons with which

the codes were constructed.

Instead of describing the reverse procedure in all details, consider, for example, the

Kekulé structure F6 from Table 1. Its binary code is 100101. Recalling the ordering

of hexagons from Fig. 7, we can construct the Kekulé structure corresponding to

100101 as it is shown in Fig. 11.

Fig. 11 comes about here
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Figure 8: Kekulé structures, resonance graphs, and vertex codes of naphthalene,
phenanthrene and benzo[c]phenanthrene; note that these consist of the first two, first
three and first four hexagons, respectively, of benzo[s]picene, cf. Fig. 7.
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Figure 9: Kekulé structures, resonance graphs and vertex codes of benzo[g]chrysene;
note that it consists of the first five hexagons of benzo[s]picene, cf. Fig. 7.
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Figure 10: The resonance graph of benzo[s]picene, cf. Fig. 7.
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Figure 11: Constructing a Kekulé structure of benzo[s]picene from the respective
binary code, cf. Fig. 7.
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Kekulé Kekulé Kekulé
structure code structure code structure code

F1 101001 F9 101000 F17 101010
F2 001001 F10 001000 F18 001010
F3 100001 F11 100000 F19 100010
F4 000001 F12 000000 F20 000010
F5 010001 F13 010000 F21 100110
F6 100101 F14 100100 F22 000110
F7 000101 F15 000100
F8 010101 F16 010100

Table 1: The binary codes of the Kekulé structures of benzo[s]picene, cf. Figs. 7 and
10.
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Figure and Table Captions

Fig. 1. Possible arrangements of the double bonds in the hexagon H .

Fig. 2. The two Kekulé structures of benzene.

Fig. 3. The three Kekulé structures of naphthalene.

Fig. 4. Labelling of three consecutive hexagons.

Fig. 5. Naphthacene and the labelling of its hexagons.

Fig. 6. Kekulé structures, resonance graphs and vertex codes of naphthalene, an-

thracene, and naphthacene, cf. Fig. 5.

Fig. 7. Benzo[s]picene and the labelling of its hexagons.

Fig. 8. Kekulé structures, resonance graphs, and vertex codes of naphthalene, phen-

anthrene and benzo[c]phenanthrene; note that these consist of the first two, first three

and first four hexagons, respectively, of benzo[s]picene, cf. Fig. 7.

Fig. 9. Kekulé structures, resonance graphs and vertex codes of benzo[g]chrysene;

note that it consists of the first five hexagons of benzo[s]picene, cf. Fig. 7.

Fig. 10. The resonance graph of benzo[s]picene, cf. Fig. 7.

Fig. 11. Constructing a Kekulé structure of benzo[s]picene from the respective

binary code, cf. Fig. 7.

Table 1. The binary codes of the Kekulé structures of benzo[s]picene, cf. Figs. 7

and 10.
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