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Three Methods for Calculation of the Hyper-Wiener Index of Molecular Graphs
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The hyper-Wiener indexVW of a graphG is defined aswWG) = (3d (u, »)? + 5d (u, v))/2, where

d (u, v) denotes the distance between the verticasid v in the graphG and the summations run over all
(unordered) pairs of vertices @. We consider three different methods for calculating the hyper-Wiener
index of molecular graphs: the cut method, the method of Hosoya polynomials, and the interpolation method.
Along the way we obtain new closed-form expressions for the WW of linear phenylenes, cyclic phenylenes,
poly(azulenes), and several families of periodic hexagonal chains. We also verify some previously known
(but not mathematically proved) formulas.

INTRODUCTION verify some previously known (but not mathematically

Y . . proved) formulas.

The_ hype_r Wiener mdeX\NW_ls one of the recently A benzenoid graplis constructed in the following man-
conceived distance-based graph invariants, used as a structur(%—er 12 et H be the hexagonal (graphite) lattice andZedte
descri.ptor for predicting physicophgmical properties of a c.ycle on it. Then a benzenoid graph is formed by the
organic pompounds (often those S|gn_|f|cant for pharmacol- vertices and edges &f, lying onZ and in the interior ofZ.
ogy, agr!culture, enywonment—protectlo,n,'etc.). The hyper- Viewing a benzenoid brapﬁ‘; as a geometric figure in the
W'e”ef index vyas. mtroduc_:ed by Rafitiiand has been plane, anelementary cuts defined as follows. Choose an
extensively studied; see, for instance, refsl2. The formula edgee of G and draw a straight line through the centeeof
below suggests that/Weclearly encodes the “compactness” orthogonal toe. This line intersects the perimeter &f in
of a structure. Furthermore, the squared term gives relatively(at least) two pbint@l andP. The straight line segme.
more weight to extended structures, akivshould therefore end-points of which a@l' andP,, is the elementary cut
be a good predictor of effects that depend more than linearly pertaining to the edge. The set of édges intersected by an
on the physical size of a molecule.

. - I . . . elementary cut will be called aglementary edgeut
Randics original definition of the hyper-Wiener index is . 13 ; ;
applicable to trees only. Klein, Lukovits, and Gutrhamut Berris et ak* introduced Nphenylenedy analogy with

o the catacondensed benzenoids, whérs the number of
forward that for both trees and cycle-containing structures benzene rings. In [N]phenylenes, each benzene ring is
separated from each neighboring benzene ring by a cyclo-
WWG) = E(Zd (u, U)Z + Zd (u, v)) butadiene. Figure 3 depicts the hydrogen-suppressed graph
2 representinyphenylene. Pericondensed benzenoids do not
) have analogous [N]phenylenes, but the catacondensed chain
where d (u, v) denotes the usual shortest path distance may close on itself to form a super-ring. Thus, Figure 4

between the verticesi and v in the graphG and the  genictseyd6]phenylene, the phenylene analogue of coronene.
summations run over all (unordered) pairs of vertice&of

The right-hand side of this equality is now accepted as the THE CUT METHOD
definition of the hyper-Wiener index of a connected graph.
In this paper we consider three different methods for
calculating the hyper-Wiener index of molecular graphs: the
cut method, the method of Hosoya polynomials, and the
interpolation method. We discuss their advantages, draw-
backs, and obtain several new closed-form expressions for
the WW of infinite families of molecular graphs. We also

The cut method is based on the results from Kéayz
Gutman, and Mohét and was first introduced for calculation
of the Wiener index of benzenoid grapiisSubsequently it
was applied in Klavar, Gutman, and Rajapak¥&Vioreover,
it was shown that the same approach can be used for
calculation of the Wiener index for the so-callgdjraphst’

As the cut method for the calculation of the hyper-Wiener

*Corresponding  author  phone: +386-2-2293-604; e-mail.  Indexworks for all partial cubes, we next briefly recall some
Sandi.Klavzar@uni-lj.si. basic facts about this class of graphs.
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o C ¢ Ca c calculated as

v \ W(G) = Z n(CHNy(C)
/ o\ '

where the summation goes over all elementary cut&.of

Figure 1. Different positions between two elementary cuts. Klavzar®? proved that this method can be extended for the
calculation of the hyper-Wiener index. The method was later
¢ ¢ further elaborated in the paper by Klarz Zigert, and
wcs Gutman?® We do not wish to recall here all the details but
rather describe the method intuitively. First, the hyper-Wiener
W index of a benzenoid grapB can be written as
Figure 2. Naphthalene and its elementary cuts. WWG) = W(G) + WWHG), (D)

where WWX(G) consists of a summation over all pairs of
elementary cuts obtained as follows. &tandC, be two
elementary cuts of a benzenoid gra@h There are two
different cases, as shown in Figure 1. Wattb, ¢, andd we
denote the number of vertices in the corresponding parts of
G. Then the contribution of the pa@;, C, to WWr(G) is ab
+ cdin the first case andb in the second one.

For instance, naphthalene (Figure 2) contains five elemen-
tary cutsCy, C,, Cs, C4, andCs. The contributions of pairs
of cuts

c,C;C,C;CLC, CLG, C,Cy C,, Cys Gy, G
G Gy G5, G5, Gy, G

Figure 3. The linear phenylen€&,.

are, respectively

33+ (11+26)+ 33+ 24+ 1-3)+ 33+
21+ 2-6)+ (1-3+2:4)+ (-1 + 2-6) + 3-3+

A graph is gpartial cubeif it is isomorphic to an isometric (1-3+2-4)=108
subgraph of a hypercube. (For an extensive study of partial . _ _
cubes see Chapter 2 of Imrich and KlavZ®) Partial cubes ThereforevWV\v(G) =WG) +108= 109+ 108=217.
were also called binary Hamming graphsvhere it was In K"’?‘Vzaf’ 4gert, and Gutma%ﬁtms method was appll_ed
observed that benzenoid graphs are partial cubes, a fact that® Obta”.‘ the general expression forvthe hyper-VvV|ener index

of the linear polyaceneg;, and in 4gert, Klavar, and

turned out to be very useful for investigations of the Wiener Gutmart* for th ronene/circumeoronen fibs
number of benzenoid graphs, see refs 15, 17, 20, and 21. utmari™for the coronene/circumeoronene se

Clearly, partial cubes are bipartite, as they are subgraphs 1 4 3 )
of (bipartite) hypercubes. We say that edggsndab of a WWLy) =3 (8h"+ 32h" + 460"+ 37h + 3)
graphG are in relation® if d (x, @) + d (y, b) = d (x, b) +
d (y, a). Using this definition Winklet' proved that a  and
connected graph is a partial cube if and onlgiis a bipartite
graph in which® is transitive. In other wordsi; must be WWH,) = @kfi + 82 K — 25 K — 318+ 17 2 + 1 k
bipartite and for any triplets of edgesf, andg of G, e, and k 5 6 15 10
g are in relation® (e®g) whenevere®f andf@g. As © is
trivially reflexive and symmetric, it is thus an equivalence NEW APPLICATIONS OF THE CUT METHOD
relation on a partial cub& and partitions the edge set Gf We now demonstrate the use of the cut method on two
into equivalence classes. The main insight for our consid- infinite classes of molecular graphs, linear phenylenes and
eration is that th@-equivalence classes of a benzenoid graph cyclic phenylenes.
G coincide with its elementary edge-cuts. By extending the  We first consider linear phenylen&s, whereh denotes
concept of elementary cuts to include sets of edges that arehe number of its hexagori$an example is shown in Figure
in relation®, a similar observation holds for the phenylenes 3.
and cyclic phenylenes to be considered later. A key result A linear phenylend-, has four types of elementary cuts,
here is that, for even-membered (isometric) cycles, oppositenamely, a single lengthwise cuit;— 1 cuts across a square;
edges are in relatio®. h cuts across a hexagon from upper left to lower right; and

Let G be a benzenoid graph on vertices. Then an  hcuts across a hexagon from lower left to upper right. Thus,
elementary cutC divides G into two components, say there are seven possible combinations of two elementary cuts
G1(C) and G,(C). Let n; = ny(C) and n, = ny(C) be the that contribute toWWr(Fy): (1) lengthwise and across a
number of vertices o6,(C) andG,(C), respectively, where,  square, (2) lengthwise and across a hexagon, (3) across two
of coursen; + np = n. Then the Wiener index db can be squares, (4) across a square and across a hexagon, (5) across

Figure 4. The cyclic phenylenés.
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two hexagons in the same direction, (6) across the same
hexagon in both directions, and (7) across different hexagons
in different directions.

Contributions of the seven types WW+(F,) are the
following. Number 3 (5 and 7) assumes cuts throughithe
andjth squares (hexagon$); i. Number 4 assumes tlih
hexagon and thgh square but does not assujne i. Note
that (5) and (7) are the same, indicating that cuts across two
different hexagons make the same contribution regardless
of direction.

> th 3i(3h — 3i) = 3 — 3h, 1) Figure 5. The cyclic phenylen&s.

1= elementary cuts corresponding@equivalence classes are

h somewhat different forh even andh odd. The h-even

P _ P o _ structures havh/2 cuts across the cycle that each bisect two

2) @ =D =3i+2)+ @ —2)@En =3 +1) hexagons andi/2 more that each bisect two squares. The
h-odd structures havecuts across the cycle that each bisect
a hexagon and a square. All structures also hettangen-
h—-2 h-1 1 tial” cuts that pass through a contiguous hexagon-square-
Z (36ih — 36ij) ==(3n* — 6h> — 3n*+ 6h), (3)  hexagon component.
=1 =1 2 The sets of two cuts that contribute YWW+(R,) are of
six types: (1) two across the cycle, (2) one tangential and

6h® + 4h, (2)

iz . it . one across, intersecting in a hexagon, (3) one tangential and
Z(Z Z 6j(6h — 6i + 3) + zl z (6 — 3)(6h — 6))) = one across, intersecting in a square, (4) one tangential and
== = . 5 one across, not intersecting at all, (5) two tangential,
6h™ — 6h%, (4) intersecting, and (6) two tangential, not intersecting.
h—1 h For h even, type 1 is further divided into three subtypes,
2 Z Z (61 — 3)(6h — 6] + 3) = 3h* — 6h° + 6h% — 3h, namely, (1a) two cuts passing through hexagoasdj, or
& 47 squares andj, j > i, (1b) one cut passing through hexagon
(5) i and one passing through squgre¢ = i, and (1c) one cut
h passing through hexagarand one passing through square
i — — 6 =6h% — 6h? Ll =n
;((GI A6 =6l +2)+ 1)=6h"—6h"+ 5h, (6) Using the method of Gutman and KlaZ® it is not
difficult to determine that
and
. W(R,) = 9h° + 36n” — 36h

P - _ 4 3 2
2 ; .;1 (6i = 3)(6n — 6] + 3) = 3n" — 6~ + 6" — 3N Contributions of the six types of cut pairs WW(Ry)
: @) are (1) (1/2)(6* — 9h® + 3n?), (2) 3&n? — 20h, (3) 1&? —
18h, (4) 1&® — 542, (5) 12h? — 4h, and (6) 18? — 54h.

The sum of these seven expressions is The sum of these is

WWH(F,) = (1/2)(2Th* — 3h? + 6h
(Fr) = (172)( ) WWH(R,) = %(6h4 + 27h* + 63n% — 192h)

Gutmari® showed that
Therefore,

WWR,) =WR,) + WW(R,) =
%(Gh“ + 4503 + 13572 — 264h)

W(F,) = 18h° + 9h?
therefore

WW(F,) = W(F,) + WWA(Fy) = 5(27h + 36 + 15 + 6h)
THE METHOD OF HOSOYA POLYNOMIALS

Indeed, this is identical to the polynomial obtained by For a connected grap®we denote byi(G, k) the number

6 . . ;
CasH uhsmgh the Ilnterppl;a'tlon fnzwsthod descnbe((jj .below, of pairs of its vertices that are at distarkcd hen theHosoya
except that the polynomial in re was expressed in terms polynomial HG) of G is defined a&

of n, which ish — 1 in the present notation.
As the second example let us consider cyclic phenylenes _ _ k
Rn, h = 2. The cyclic phenylen®&, consist ofh subunits of H(G) = H(G, %) k; d(G, k) x
a hexagon and a square arranged in a cycle (see Figures 4
and 5). The method of Hosoya polynomials for obtaining the
It is not difficult to verify that cyclic phenyleneR, are hyper-Wiener index of a graph is based on the following
partial cubes, thus the cut method can be applied. Therelation between the two concefits
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WWG) = H (G, 1)+ 3H'(G, 1) (2)

whereH'(G, 1) andH" (G, 1) denote the first, respectively.
The second derivative dﬂ(G, X) at x = 1. Thus, if the Figure 6. The poly(azuleneps.
Hosoya polynomial of a graph is known, one can easily N
compute its hyper-Wiener index. For instance, the Hosoya With initial condition
olynomial was recently computed for several composite
gra)éhsz_g y comp P H(P,) = 12+ 14x + 20X + 15¢ + 10x* + 6x° + 2x°
We llustrate this method with several examples. For
Hosoya polynomials of the poly(azulenes) (see Figure
6), it is not difficult to construct the recurrence

Again, by summation of geometric series we find

H(P,) = [n(x* — 2x* — 3x* + 2 — 4x + 6) +

H(AY) = H(A, ) + XL+ X+ X + XUy, + 207 L4 %) +x* = 4¢ + % = 3x+ 3)[(x — 1]
X4n73 -1 4X4n 3 -1
(x+ )(Z)Un_l + ZXSﬁ + 2X ﬁ + whence by (2)
8+ 8x + 10 + 8x° + 2x* WWP,) = g(zs + 84n + 95n2 + 48n° + 9n’)
where
Gutman et af® presented an extensive treatment of the
xin-1 Antl Hosoya polynomials of periodic hexagonal chains. Most
u, =1+ ZXXT]_ X relevant to the present work is their demonstration of a
method for producing the generating functioh§x, z), for
¥N-2 _ 1 the Hosoya polynomials of a periodic benzenoid chBip,
U =1+ X+ 3+ 2= — wheren is the number of hexagons. That is

f(x,2 =S H(B, xZ
HA) =X+ 2,up=y,=x+1 n=

Periodic hexagonal chains are defined by a string of length
nover the alphabdtl,2,3, where 1, 2, and 3, respectively,

for n = 1, while

Summation of geometric series yields

H(A) = [X Wan+ 2(x +3)+ 2n(x6 VNI V- signify left bend, no bend, and right bend at the correspond-
6 ) , ing hexagon in the chain. The first and last members of the
3x+4) = x°+ 2 — 2 — 2¢ = 3x + 2J/[(x — 1)7] string are meaningless, since no bend occurs on the first or

(n=1) last hexagons. Thu§x2y} encodes anthracene, whilely}
(or {x3y}) encodes phenanthrene. Chain lengths are not
restricted to even multiples of the fundamental string length;
2 4 5 5 a string encoding a benzenoid chain may terminate in a
WWA,) =§(64n + 110" +68n"+74n—9) (n= 1) portion of the fundamental string. Thus, from the zigzag
chain,s = 13, phenanthrene 131}, chrysene i§1313,
using formula (2). and picene i$1313%. The Hosoya polynomial for the chain
This result differs from that given in the paper by C&sh encoded by a string of lengthis just thenth term of the
because that reference contains an error. Namely, the diagranMaclaurin series expansion of the generating function for
and the polynomial in ref 27 are for different poly(azulene) its fundamental string. For the example just given, the
structures. Using the standard way of designating verticesfundamental string is = 13, and its Hosoya-polynomial
and edges, the azulene subunits are fused 2,flin that generating function is
diagram and here in Figure 6 (consecutive five membered 4 3 5 3
rings separated by a vertex and two edges), while thef (X 2 =[(X"+2¢ —2¢ —x)Z + (° — 2)7 -
polynomial, WWG) = 24n* + 84n3 + 11602 — 78n + 60, (2 + HC + 4x+ 2)z— x — 2]/[(z — 1)°(¢z — 1)]
is for the poly(azulene) formed by fusing the subunits 2, 1
— e i.e. so that consecutive five-membered rings are The relevance for this work is that, as stated abwv(G)

from which we obtain

separated only by an edge. = H(G, 1) + H"(G, 1)/2. Then, just as the Hosoya
For Hosoya polynomials of the [N]phenylen@g n = 1, polynomial of thenth benzenoid chain in a series is the
we have the following recurrence: coefficient of thenth term of the Maclaurin expansion of
the generating functiorf,(X, 2), so the hyper-Wiener index
H(P,) = H(Pnﬂ) + 6+ 6x+ 6+ 3+ is thenth coefficient of the Maclaurin expansion bf(x, 2)
3+l + (1/2) " (x, 2), evaluated ax = 1. (Similarly, the ordinary
2(x + 2 ZX + X3n+1) + 2(x2 +2 Z K4 X3n+2) + Wiener index, W(G), of the nth benzenoid is thenth
& & coefficient of the Maclaurin expansion bf(x, z) evaluated
3n+2 at x = 1 becauseMG) = H'(G, 1).) In the Mathematica

20C + 2 Z X+ 33 package, if hgf is the Hosoya-polynomial generating function
= for some periodic benzenoid chain, then the polynomial in
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n for the hyper-Wiener indices is obtained from

SeriesTerm[Factor[(D[hgf,¥D[hgf {X,2}1/2)/. x—1]{z,0,}]

where SeriesTerm is a function provided by the standard

package RSolve.m. Substituting a value forinto this
polynomial gives the hyper-Wiener index of tiéh ben-

zenoid in the series. The advantage here is that the
polynomials inn obtained in this way are guaranteed to be
valid for all values ofn, with the condition in some cases

thatn > 1 orn = 2.

For most of the fundamental strings given in ref 31, one

polynomial expression foWW(B,) is sufficient for alln. In

a few cases, the expressions are much simplified by

computing separat®VW(B,) for each possible value of

modulo the length of the fundamental string. Thus, the

double-step zigzag = 2123 has
WWEB,) = %(Sn“ + 24n° + 287 + 2130 + 656 — 88(— 1))
for all n > 2, while the triple-step zigzag= 221223 requires
a separat&®VW(B,) for each of the six values af mod 6.
Results for the others, for which Hosoya-polynomial
ge:ne;r.ating functions are given elsewliérre as follows:
WWEB,) = %(sn4 + 320 + 46n% + 37n + 3)
s=1,n= 1
WW@B,) = %(Zn“ + 28n° + 154n* — 16 + 111)
s=13,n > 1:
WWB,) = %(8n4 + 24n° + 28n° + 147n — 81)
s=221223n > 1:

WW@B,) = 345" + 172&° + 336n° + 5900 — 131
WW(B,,,,) = 34561" + 4031° + 17760° + 910n — 62
WW(B,,,,) = 345" + 633a° + 43687 + 190 + 155
WW(B, ) = 34561" + 8640 + 8111” + 395M + 680

WW(B,,, ,) = 3456" + 10944° + 13008 + 743& + 1557
WW(B,,.5) = 34561" + 13248 + 190561° + 12750 + 3206
s=21,nx> 2:
WW(B,,) = 24n* + 96n° + 152n° — 146n + 89
WW(B,,,,) = 24n* + 1440 + 320n° + 54n + 94
s=221,n=> 1:
WW(B,,) = 150n* + 340n° + 3187° — 2850 + 157

WWB,,,,) = 150n" 4 540n° + 718" — 130 + 162

J. Chem. Inf. Comput. Sci., Vol. 42, No. 3, 20®&75

WW(B,,,,) = 150n* + 740n° + 135& + 6750 + 283

s=1133,n = 1:

WWB,) = %(3n4 + 200 + 60n + 181 — 54), n even

WWB,) = %(3n4 + 200 + 54n — 2n + 9), n odd
s=111333,n > 1:

WW(B,,) = 153" + 2176° + 13817 — 74n — 27
WW(B,,.,) = 153&" + 32000° + 25447 + 454n + 42
WW(B,,,,) = 153" + 42240° + 45287 + 1781 + 215
WW(By,.5) = 153" + 524&° + 68967° + 365 + 636
WW(B,,,,) = 1536 + 6271° + 96487 + 6166 + 1401

WW(By,.s) = 153" + 7296° + 131687 + 102461 + 2862

THE INTERPOLATION METHOD

The third method we consider is the so-called interpolation
method which is appropriate when the hyper-Wiener index
of a series of graph&,,, n = 1, is a polynomial functiomp
of n. Now, if we know an upper boundfor the degree of
p, then we computdVWG,) forn =1, 2, ...,r + 1, and
construct the interpolating polynomial through the poimts (
WWGy)). In this way, the closed-form expression for
WWG,) is obtained.

Note that the above method needs two assumptions in
order to be exact. First, the corresponding function must be
a polynomial, and second, we must have an upper bound of
its degree. As to the second assumption, in practice we
proceed as follows. We keep computmMg/MG,) for larger
and largen, and, at each step, we construct the interpolating
polynomial through all the points computed so far. Suppose
that after some time the interpolating polynomial stops
changing and remains the same for several consecutive steps.
Then we can be quite convinced that we have indeed found
the correct polynomial. This is, of course, not a proof that
the polynomial will never change again, but in practice it
seems quite reliable.

Cashi® found several polynomial expressions ¥\(G)
using this method, including some in two variables for two-
dimensional benzenoid sheets. These included sheets in the
shape of hexagons, parallelograms, triangles, and extended
perylene-type structures. One-dimensional systems examined
were the[N]phenylenes, poly(azulenes), and a s€Lefion
fullerenes consisting of an all-hexagon nanotube capped on
each end with a set of six pentagons. The fullerene set was
the only system examined that did not give a polynomial.
This was a mysterious result, since it seems that annealing
another ring of hexagons into the tube should be analogous
to annealing another benzene ring onto a periodic benzenoid
chain. Indeed, looking at the Hosoya polynomials for this
series revealed the problem: The first three members of the
series Cao, Cso, andCyg, corresponding tm = 0, 1, 2) are
anomalous. This is probably due to the fact that distances
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around the tube and distances along the tube are commingled
when the “tube” is enough like a sphere. Removing these

three members from the series gives a fourth-order poly-
nomial inn, as might be expected:

= 1(100n“ +900n° + 2975° + 14475 +

WWG,) =¢
1050),n = 3

The polynomial for the poly(azulenes) in this reference
does not match the structure given in the figure but is for a
different poly(azulene). (See explanation in the preceding
section.)

CONCLUDING REMARKS

The cut method, while somewhat tedious to apply, works
for any family of structures that can be divided in@®

equivalence classes. This general relationship suggests that
S

© classes may be related to other mathematical indices a
well or perhaps directly related to physicochemical proper-
ties.

The method of Hosoya polynomials is applicable to
structures that can be built up by annealing and for which

recurrences satisfied by the Hosoya polynomial can be found.

The interpolation method is applicable to any series of

structures that satisfy its two assumptions. A negative result,
however, does not demonstrate anything, since it is impos-

sible to tell whetherWWG) is not expressible as a
polynomial or the estimate of the upper bounadas merely
too low.
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