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The hyper-Wiener indexWW of a graphG is defined asWW(G) ) (∑d (u, V)2 + ∑d (u, V))/2, where
d (u, V) denotes the distance between the verticesu andV in the graphG and the summations run over all
(unordered) pairs of vertices ofG. We consider three different methods for calculating the hyper-Wiener
index of molecular graphs: the cut method, the method of Hosoya polynomials, and the interpolation method.
Along the way we obtain new closed-form expressions for the WW of linear phenylenes, cyclic phenylenes,
poly(azulenes), and several families of periodic hexagonal chains. We also verify some previously known
(but not mathematically proved) formulas.

INTRODUCTION

The hyper-Wiener indexWW is one of the recently
conceived distance-based graph invariants, used as a structure-
descriptor for predicting physicochemical properties of
organic compounds (often those significant for pharmacol-
ogy, agriculture, environment-protection, etc.). The hyper-
Wiener index was introduced by Randic´1 and has been
extensively studied; see, for instance, refs 2-11. The formula
below suggests thatWWclearly encodes the “compactness”
of a structure. Furthermore, the squared term gives relatively
more weight to extended structures, andWWshould therefore
be a good predictor of effects that depend more than linearly
on the physical size of a molecule.

Randić’s original definition of the hyper-Wiener index is
applicable to trees only. Klein, Lukovits, and Gutman4 put
forward that for both trees and cycle-containing structures

where d (u, V) denotes the usual shortest path distance
between the verticesu and V in the graphG and the
summations run over all (unordered) pairs of vertices ofG.
The right-hand side of this equality is now accepted as the
definition of the hyper-Wiener index of a connected graph.

In this paper we consider three different methods for
calculating the hyper-Wiener index of molecular graphs: the
cut method, the method of Hosoya polynomials, and the
interpolation method. We discuss their advantages, draw-
backs, and obtain several new closed-form expressions for
the WW of infinite families of molecular graphs. We also

verify some previously known (but not mathematically
proved) formulas.

A benzenoid graphis constructed in the following man-
ner.12 Let H be the hexagonal (graphite) lattice and letZ be
a cycle on it. Then a benzenoid graph is formed by the
vertices and edges ofH, lying on Z and in the interior ofZ.
Viewing a benzenoid graphG as a geometric figure in the
plane, anelementary cutis defined as follows. Choose an
edgee of G and draw a straight line through the center ofe,
orthogonal toe. This line intersects the perimeter ofG in
(at least) two pointsP1 andP2. The straight line segmentC,
the end-points of which areP1 andP2, is the elementary cut
pertaining to the edgee. The set of edges intersected by an
elementary cut will be called anelementary edge-cut.

Berris et al.13 introduced [N]phenylenesby analogy with
the catacondensed benzenoids, whereN is the number of
benzene rings. In [N]phenylenes, each benzene ring is
separated from each neighboring benzene ring by a cyclo-
butadiene. Figure 3 depicts the hydrogen-suppressed graph
representing4 phenylene. Pericondensed benzenoids do not
have analogous [N]phenylenes, but the catacondensed chain
may close on itself to form a super-ring. Thus, Figure 4
depictscyc[6]phenylene, the phenylene analogue of coronene.

THE CUT METHOD

The cut method is based on the results from Klavzˇar,
Gutman, and Mohar14 and was first introduced for calculation
of the Wiener index of benzenoid graphs.15 Subsequently it
was applied in Klavzˇar, Gutman, and Rajapakse.16 Moreover,
it was shown that the same approach can be used for
calculation of the Wiener index for the so-calledl1-graphs.17

As the cut method for the calculation of the hyper-Wiener
index works for all partial cubes, we next briefly recall some
basic facts about this class of graphs.
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A graph is apartial cubeif it is isomorphic to an isometric
subgraph of a hypercube. (For an extensive study of partial
cubes see Chapter 2 of Imrich and Klavzˇar.18) Partial cubes
were also called binary Hamming graphs14 where it was
observed that benzenoid graphs are partial cubes, a fact that
turned out to be very useful for investigations of the Wiener
number of benzenoid graphs, see refs 15, 17, 20, and 21.

Clearly, partial cubes are bipartite, as they are subgraphs
of (bipartite) hypercubes. We say that edgesxy andab of a
graphG are in relationΘ if d (x, a) + d (y, b) * d (x, b) +
d (y, a). Using this definition Winkler21 proved that a
connected graph is a partial cube if and only ifG is a bipartite
graph in whichΘ is transitive. In other words,G must be
bipartite and for any triplets of edgese, f, andg of G, e, and
g are in relationΘ (eΘg) whenevereΘf and fΘg. As Θ is
trivially reflexive and symmetric, it is thus an equivalence
relation on a partial cubeG and partitions the edge set ofG
into equivalence classes. The main insight for our consid-
eration is that theΘ-equivalence classes of a benzenoid graph
G coincide with its elementary edge-cuts. By extending the
concept of elementary cuts to include sets of edges that are
in relationΘ, a similar observation holds for the phenylenes
and cyclic phenylenes to be considered later. A key result
here is that, for even-membered (isometric) cycles, opposite
edges are in relationΘ.

Let G be a benzenoid graph onn vertices. Then an
elementary cutC divides G into two components, say
G1(C) and G2(C). Let n1 ) n1(C) and n2 ) n2(C) be the
number of vertices ofG1(C) andG2(C), respectively, where,
of course,n1 + n2 ) n. Then the Wiener index ofG can be

calculated as

where the summation goes over all elementary cuts ofG.
Klavžar22 proved that this method can be extended for the
calculation of the hyper-Wiener index. The method was later
further elaborated in the paper by Klavzˇar, Žigert, and
Gutman.23 We do not wish to recall here all the details but
rather describe the method intuitively. First, the hyper-Wiener
index of a benzenoid graphG can be written as

whereWW*(G) consists of a summation over all pairs of
elementary cuts obtained as follows. LetC1 andC2 be two
elementary cuts of a benzenoid graphG. There are two
different cases, as shown in Figure 1. Witha, b, c, andd we
denote the number of vertices in the corresponding parts of
G. Then the contribution of the pairC1, C2 to WW*(G) is ab
+ cd in the first case andab in the second one.

For instance, naphthalene (Figure 2) contains five elemen-
tary cutsC1, C2, C3, C4, andC5. The contributions of pairs
of cuts

are, respectively

ThereforeWW(G) ) W(G) + 108 ) 109 + 108 ) 217.
In Klavžar, Žigert, and Gutman23 this method was applied

to obtain the general expression for the hyper-Wiener index
of the linear polyacenesLh, and in Žigert, Klavžar, and
Gutman24 for the coronene/circumcoronene seriesHk

and

NEW APPLICATIONS OF THE CUT METHOD

We now demonstrate the use of the cut method on two
infinite classes of molecular graphs, linear phenylenes and
cyclic phenylenes.

We first consider linear phenylenesFh, whereh denotes
the number of its hexagons;13 an example is shown in Figure
3.

A linear phenyleneFh has four types of elementary cuts,
namely, a single lengthwise cut;h - 1 cuts across a square;
h cuts across a hexagon from upper left to lower right; and
h cuts across a hexagon from lower left to upper right. Thus,
there are seven possible combinations of two elementary cuts
that contribute toWW*(Fh): (1) lengthwise and across a
square, (2) lengthwise and across a hexagon, (3) across two
squares, (4) across a square and across a hexagon, (5) across

Figure 1. Different positions between two elementary cuts.

Figure 2. Naphthalene and its elementary cuts.

Figure 3. The linear phenyleneF4.

Figure 4. The cyclic phenyleneR6.

W(G) ) ∑
i

n1(Ci)n2(Ci)

WW(G) ) W(G) + WW*(G), (1)

C1, C2; C1, C3; C1, C4; C1, C5; C2, C3; C2, C4; C2, C5;
C3, C4; C3, C5; C4, C5

3‚3 + (1‚1 + 2‚6) + 3‚3 + (2‚4 + 1‚3) + 3‚3 +
(1‚1 + 2‚6) + (1‚3 + 2‚4) + (1‚1 + 2‚6) + 3‚3 +

(1‚3 + 2‚4) ) 108

WW(Lh) ) 1
3

(8 h4 + 32h3 + 46h2 + 37h + 3)

WW(Hk) ) 548
15

k6 + 82
5

k5 - 55
6

k4 - 3k3 + 17
15

k2 + 1
10

k
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two hexagons in the same direction, (6) across the same
hexagon in both directions, and (7) across different hexagons
in different directions.

Contributions of the seven types toWW*(Fh) are the
following. Number 3 (5 and 7) assumes cuts through theith
andjth squares (hexagons),j > i. Number 4 assumes theith
hexagon and thejth square but does not assumej > i. Note
that (5) and (7) are the same, indicating that cuts across two
different hexagons make the same contribution regardless
of direction.

and

The sum of these seven expressions is

Gutman25 showed that

therefore

Indeed, this is identical to the polynomial obtained by
Cash26 using the interpolation method described below,
except that the polynomial in ref 27 was expressed in terms
of n, which ish - 1 in the present notation.

As the second example let us consider cyclic phenylenes
Rh, h g 2. The cyclic phenyleneRh consist ofh subunits of
a hexagon and a square arranged in a cycle (see Figures 4
and 5).

It is not difficult to verify that cyclic phenylenesRh are
partial cubes, thus the cut method can be applied. The

elementary cuts corresponding toΘ equivalence classes are
somewhat different forh even andh odd. The h-even
structures haveh/2 cuts across the cycle that each bisect two
hexagons andh/2 more that each bisect two squares. The
h-odd structures haveh cuts across the cycle that each bisect
a hexagon and a square. All structures also haveh “tangen-
tial” cuts that pass through a contiguous hexagon-square-
hexagon component.

The sets of two cuts that contribute toWW*(Rh) are of
six types: (1) two across the cycle, (2) one tangential and
one across, intersecting in a hexagon, (3) one tangential and
one across, intersecting in a square, (4) one tangential and
one across, not intersecting at all, (5) two tangential,
intersecting, and (6) two tangential, not intersecting.

For h even, type 1 is further divided into three subtypes,
namely, (1a) two cuts passing through hexagonsi and j, or
squaresi andj, j > i, (1b) one cut passing through hexagon
i and one passing through squarej, j g i, and (1c) one cut
passing through hexagoni and one passing through square
j, j < i.

Using the method of Gutman and Klavzˇar,15 it is not
difficult to determine that

Contributions of the six types of cut pairs toWW*(Rh)
are (1) (1/2)(6h4 - 9h3 + 3h2), (2) 36h2 - 20h, (3) 18h2 -
18h, (4) 18h3 - 54h2, (5) 12h2 - 4h, and (6) 18h2 - 54h.

The sum of these is

Therefore,

THE METHOD OF HOSOYA POLYNOMIALS

For a connected graphG we denote byd(G, k) the number
of pairs of its vertices that are at distancek. Then theHosoya
polynomial H(G) of G is defined as27

The method of Hosoya polynomials for obtaining the
hyper-Wiener index of a graph is based on the following
relation between the two concepts28

2 ∑
i)1

h-1

3i(3h - 3i) ) 3h3 - 3h, (1)

2 ∑
i)1

h

((3i - 1)(3h - 3i + 2) + (3i - 2)(3h - 3i + 1)) )

6h3 + 4h, (2)

∑
i)1

h-2

∑
j)i+1

h-1

(36ih - 36ij ) )
1

2
(3h4 - 6h3 - 3h2 + 6h), (3)

2(∑
i)2

h

∑
j)1

i-1

6j(6h - 6i + 3) + ∑
i)1

h-1

∑
j)i

h-1

(6i - 3)(6h - 6j)) )

6h4 - 6h2, (4)

2 ∑
i)1

h-1

∑
j)i+1

h

(6i - 3)(6h - 6j + 3) ) 3h4 - 6h3 + 6h2 - 3h,

(5)

∑
i)1

h

((6i - 4)(6h - 6i + 2) + 1) ) 6h3 - 6h2 + 5h, (6)

2 ∑
i)1

h-1

∑
j)i+1

h

(6i - 3)(6h - 6j + 3) ) 3h4 - 6h3 + 6h2 - 3h

(7)

WW*(Fh) ) (1/2)(27h4 - 3h2 + 6h)

W(Fh) ) 18h3 + 9h2

WW(Fh) ) W(Fh) + WW*(Fh) ) 1
2
(27h4 + 36h3 + 15h2 + 6h)

Figure 5. The cyclic phenyleneR5.

W(Rh) ) 9h3 + 36h2 - 36h

WW*(Rh) ) 1
2
(6h4 + 27h3 + 63h2 - 192h)

WW(Rh) ) W(Rh) + WW*(Rh) )
1
2
(6h4 + 45h3 + 135h2 - 264h)

H(G) ≡ H(G, x) ) ∑
kg0

d(G, k) xk
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whereH′(G, 1) andH′′(G, 1) denote the first, respectively.
The second derivative ofH(G, x) at x ) 1. Thus, if the
Hosoya polynomial of a graph is known, one can easily
compute its hyper-Wiener index. For instance, the Hosoya
polynomial was recently computed for several composite
graphs.29

We illustrate this method with several examples. For
Hosoya polynomials of the poly(azulenes)An (see Figure
6), it is not difficult to construct the recurrence

where

for n g 1, while

Summation of geometric series yields

from which we obtain

using formula (2).
This result differs from that given in the paper by Cash26

because that reference contains an error. Namely, the diagram
and the polynomial in ref 27 are for different poly(azulene)
structures. Using the standard way of designating vertices
and edges, the azulene subunits are fused 2, 1- f in that
diagram and here in Figure 6 (consecutive five membered
rings separated by a vertex and two edges), while the
polynomial,WW(G) ) 24n4 + 84n3 + 116n2 - 78n + 60,
is for the poly(azulene) formed by fusing the subunits 2, 1
- e, i.e., so that consecutive five-membered rings are
separated only by an edge.

For Hosoya polynomials of the [N]phenylenesPn, n g 1,
we have the following recurrence:

with initial condition

Again, by summation of geometric series we find

whence by (2)

Gutman et al.30 presented an extensive treatment of the
Hosoya polynomials of periodic hexagonal chains. Most
relevant to the present work is their demonstration of a
method for producing the generating functions,f (x, z), for
the Hosoya polynomials of a periodic benzenoid chain,Bn,
wheren is the number of hexagons. That is

Periodic hexagonal chains are defined by a string of length
n over the alphabet{1,2,3}, where 1, 2, and 3, respectively,
signify left bend, no bend, and right bend at the correspond-
ing hexagon in the chain. The first and last members of the
string are meaningless, since no bend occurs on the first or
last hexagons. Thus,{x2y} encodes anthracene, while{x1y}
(or {x3y}) encodes phenanthrene. Chain lengths are not
restricted to even multiples of the fundamental string length;
a string encoding a benzenoid chain may terminate in a
portion of the fundamental string. Thus, from the zigzag
chain,s ) 13, phenanthrene is{131}, chrysene is{1313},
and picene is{13131}. The Hosoya polynomial for the chain
encoded by a string of lengthn is just thenth term of the
Maclaurin series expansion of the generating function for
its fundamental string. For the example just given, the
fundamental string iss ) 13, and its Hosoya-polynomial
generating function is

The relevance for this work is that, as stated above,WW(G)
) H′(G, 1) + H′′(G, 1)/2. Then, just as the Hosoya
polynomial of thenth benzenoid chain in a series is the
coefficient of thenth term of the Maclaurin expansion of
the generating function,f (x, z), so the hyper-Wiener index
is thenth coefficient of the Maclaurin expansion off ′(x, z)
+ (1/2)f ′′(x, z), evaluated atx ) 1. (Similarly, the ordinary
Wiener index, W(G), of the nth benzenoid is thenth
coefficient of the Maclaurin expansion off ′(x, z) evaluated
at x ) 1 becauseW(G) ) H′(G, 1).) In theMathematica
package, if hgf is the Hosoya-polynomial generating function
for some periodic benzenoid chain, then the polynomial in

Figure 6. The poly(azulene)A3.

H(P1) ) 12 + 14x + 20x2 + 15x3 + 10x4 + 6x5 + 2x6

H(Pn) ) [n(x5 - 2x4 - 3x3 + 2x2 - 4x + 6) +

2(x3n+4(1 + x) + x4 - 4x3 + x2 - 3x + 3)]/[(x - 1)2]

WW(Pn) ) 3
2
(28 + 84n + 95n2 + 48n3 + 9n4)

f (x, z) ) ∑
n)0

∞

H(Bn, x)zn

f (x, z) ) [(x7 + 2x6 - 2x4 - x3)z3 + (x5 - 2x3)z2 -
(2x3 + 4x2 + 4x + 2)z - x - 2]/[(z - 1)2(x2z - 1)]

WW(G) ) H′(G, 1) + 1
2
H′′(G, 1) (2)

H(An) ) H(An-1) + x(1 + x + x2 + x3)un-1 +

(x + x2)Vn-1 + 2x3 x4n-3 - 1
x - 1

+ 2x4 x4n-3 - 1
x - 1

+

8 + 8x + 10x2 + 8x3 + 2x4

un ) 1 + 2x
x4n-1

x - 1
+ x4n+1

Vn ) 1 + 2x + 3x2 + 2x3 x4n-2 - 1
x - 1

H(A0) ) x + 2, u0 ) V0 ) x + 1

H(An) ) [x4n + 2(x + 3) + 2n(x6 - 3x4 - x3 + 2x2 -

3x + 4) - x6 + 2x5 - 2x3 - 2x2 - 3x + 2]/[(x - 1)2]
(n g 1)

WW(An) ) 2
3
(64n4 + 112n3 + 68n2 + 74n - 9) (n g 1)

H(Pn) ) H(Pn-1) + 6 + 6x + 6x2 + 3x3 +

2(x + 2 ∑
k)2

3n

xk + x3n+1) + 2(x2 + 2 ∑
k)3

3n+1

xk + x3n+2) +

2(x3 + 2 ∑
k)4

3n+2

xk + x3n+3)
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n for the hyper-Wiener indices is obtained from

where SeriesTerm is a function provided by the standard
package RSolve.m. Substituting a value forn into this
polynomial gives the hyper-Wiener index of thenth ben-
zenoid in the series. The advantage here is that the
polynomials inn obtained in this way are guaranteed to be
valid for all values ofn, with the condition in some cases
that n g 1 or n g 2.

For most of the fundamental strings given in ref 31, one
polynomial expression forWW(Bn) is sufficient for alln. In
a few cases, the expressions are much simplified by
computing separateWW(Bn) for each possible value ofn
modulo the length of the fundamental string. Thus, the
double-step zigzags ) 2123 has

for all n g 2, while the triple-step zigzags) 221223 requires
a separateWW(Bn) for each of the six values ofn mod 6.
Results for the others, for which Hosoya-polynomial
generating functions are given elsewhere30 are as follows:
s ) 2:

s ) 1, n g 1:

s ) 13, n g 1:

s ) 221223,n g 1:

s ) 21, n g 2:

s ) 221,n g 1:

s ) 1133,n g 1:

s ) 111333,n g 1:

THE INTERPOLATION METHOD

The third method we consider is the so-called interpolation
method which is appropriate when the hyper-Wiener index
of a series of graphsGn, n g 1, is a polynomial functionp
of n. Now, if we know an upper boundr for the degree of
p, then we computeWW(Gn) for n ) 1, 2, ...,r + 1, and
construct the interpolating polynomial through the points (n,
WW(Gn)). In this way, the closed-form expression for
WW(Gn) is obtained.

Note that the above method needs two assumptions in
order to be exact. First, the corresponding function must be
a polynomial, and second, we must have an upper bound of
its degree. As to the second assumption, in practice we
proceed as follows. We keep computingWW(Gn) for larger
and largern, and, at each step, we construct the interpolating
polynomial through all the points computed so far. Suppose
that after some time the interpolating polynomial stops
changing and remains the same for several consecutive steps.
Then we can be quite convinced that we have indeed found
the correct polynomial. This is, of course, not a proof that
the polynomial will never change again, but in practice it
seems quite reliable.

Cash26 found several polynomial expressions forWW(G)
using this method, including some in two variables for two-
dimensional benzenoid sheets. These included sheets in the
shape of hexagons, parallelograms, triangles, and extended
perylene-type structures. One-dimensional systems examined
were the[N]phenylenes, poly(azulenes), and a set ofC20+10n

fullerenes consisting of an all-hexagon nanotube capped on
each end with a set of six pentagons. The fullerene set was
the only system examined that did not give a polynomial.
This was a mysterious result, since it seems that annealing
another ring of hexagons into the tube should be analogous
to annealing another benzene ring onto a periodic benzenoid
chain. Indeed, looking at the Hosoya polynomials for this
series revealed the problem: The first three members of the
series (C20, C30, andC40, corresponding ton ) 0, 1, 2) are
anomalous. This is probably due to the fact that distances

SeriesTerm[Factor[(D[hgf,x]+D[hgf,{x,2}]/2)/.xf1],{z,0,n}]

WW(Bn) ) 1
3
(8n4 + 24n3 + 28n2 + 213n + 656- 88(- 1)n)

WW(Bn) ) 1
3
(8n4 + 32n3 + 46n2 + 37n + 3)

WW(Bn) ) 1
3
(2n4 + 28n3 + 154n2 - 169n + 111)

WW(Bn) ) 1
3
(8n4 + 24n3 + 28n2 + 147n - 81)

WW(B6n) ) 3456n4 + 1728n3 + 336n2 + 590n - 131

WW(B6n+1) ) 3456n4 + 4032n3 + 1776n2 + 910n - 62

WW(B6n+2) ) 3456n4 + 6336n3 + 4368n2 + 1902n + 155

WW(B6n+3) ) 3456n4 + 8640n3 + 8112n2 + 3950n + 680

WW(B6n+4) ) 3456n4 + 10944n3 + 13008n2 + 7438n + 1557

WW(B6n+5) ) 3456n4 + 13248n3 + 19056n2 + 12750n + 3206

WW(B2n) ) 24n4 + 96n3 + 152n2 - 146n + 89

WW(B2n+1) ) 24n4 + 144n3 + 320n2 + 54n + 94

WW(B3n) ) 150n4 + 340n3 + 318n2 - 285n + 157

WW(B3n+1) ) 150n4 + 540n3 + 718n2 - 13n + 162

WW(B3n+2) ) 150n4 + 740n3 + 1358n2 + 675n + 283

WW(Bn) ) 1
2
(3n4 + 20n3 + 60n2 + 18n - 54),n even

WW(Bn) ) 1
2
(3n4 + 20n3 + 54n2 - 2n + 9), n odd

WW(B6n) ) 1536n4 + 2176n3 + 1382n2 - 74n - 27

WW(B6n+1) ) 1536n4 + 3200n3 + 2544n2 + 454n + 42

WW(B6n+2) ) 1536n4 + 4224n3 + 4528n2 + 1782n + 215

WW(B6n+3) ) 1536n4 + 5248n3 + 6896n2 + 3654n + 636

WW(B6n+4) ) 1536n4 + 6272n3 + 9648n2 + 6166n + 1401

WW(B6n+5) ) 1536n4 + 7296n3 + 13168n2 + 10246n + 2862

HYPER-WIENER INDEX OF MOLECULAR GRAPHS J. Chem. Inf. Comput. Sci., Vol. 42, No. 3, 2002575



around the tube and distances along the tube are commingled
when the “tube” is enough like a sphere. Removing these
three members from the series gives a fourth-order poly-
nomial in n, as might be expected:

The polynomial for the poly(azulenes) in this reference
does not match the structure given in the figure but is for a
different poly(azulene). (See explanation in the preceding
section.)

CONCLUDING REMARKS

The cut method, while somewhat tedious to apply, works
for any family of structures that can be divided intoΘ
equivalence classes. This general relationship suggests that
Θ classes may be related to other mathematical indices as
well or perhaps directly related to physicochemical proper-
ties.

The method of Hosoya polynomials is applicable to
structures that can be built up by annealing and for which
recurrences satisfied by the Hosoya polynomial can be found.

The interpolation method is applicable to any series of
structures that satisfy its two assumptions. A negative result,
however, does not demonstrate anything, since it is impos-
sible to tell whetherWW(G) is not expressible as a
polynomial or the estimate of the upper boundr was merely
too low.
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