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Abstract 

Let G[H] be the lexicographic product of graphs G and H and let G @ H be their 
Cartesian sum. It is proved that if G is a nonbipartite graph, then for any graph H, 
x(G(H]) >2~(H)+r ,y(H)/k 1, where 2k+ 1 is the length of a shortest odd cycle of G. Chromatic 
numbers of the Cartesian sum of graphs are also considered. It is shown in particular that for 
X-critical and not complete graphs G and H, x( G $ H) <x( G)x(H)- 1. These bounds are used 
to calculate chromatic numbers of the Cartesian sum of two odd cycles. Finally, a connection of 
some colorings with hypergraphs is given. 

1. Introduction 

In the last few years graph products became again a flourishing topic in graph 

theory. Chromatic numbers of products were investigated as well. Since some of the 

graph products admit polynomial algorithms for decomposing a given connected 

graph into its factors (see, for example [a]), chromatic numbers of graph products are 

interesting for their own sake. The chromatic number is in close connection with 

graph retracts. Therefore, information on chromatic numbers of graph products helps 

to understand retracts of products (see, for example [S]). 

Graphs considered in this paper are undirected, finite and contain neither loops for 

multiple edges. An n-coloring of a graph G is a function f from V(G) onto 

R&=(1,2, . . . ,n}, such that x~GE(G) implies f(x)#f(y). The smallest number n for 

which an n-coloring exists is the chromatic number x(G) of G. G is called X-critical if 

x(G - v) <x(G) for every VE V(G). Every nontrivial graph contains a X-critical sub- 

graph with the same chromatic number. A complete graph is a trivial X-critical graph. 
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The size of a largest complete subgraph of a graph G will be denoted by re(G) and 
the size of a largest independent set by e(G). Clearly co(G)<~x(G) and co(G)=e(G). 

The lexicographic product G [HI  of graphs G and H is the graph with vertex set 
V(G) x V(H) and (a, x)(b, y)eE(G [HI  whenever abeE(G), or a = b and xyeE(H). The 
Cartesian sum or the disjunction G • H of graphs G and H is the graph with vertex set 
V(G)x V(H) and (a,x)(b,y)eE(G~ H) whenever abeE(G) or xyeE(H). Let * be 
a graph product. For xe V(H) set Gx= G * {x}. Analogously we define H, for ae V(G). 
We call G~ and Ha layer of G and H, respectively. Let f be a coloring of G * H. The set 
of all colors with respect to f in a layer Gx will be briefly denoted by f(G~). 

In the next section we prove a lower bound for the chromatic number of the 
lexicographic product of graphs: if G is a nonbipartite graph, then for any graph H, 
)~(G I-HI) >~ 2x(H) + F )~(H)/k -], where 2k + 1 is the length of a shortest odd cycle of G. 
In Section 3 we consider chromatic numbers of the Cartesian sum of graphs. We prove 
that for nontrivial z-critical graphs G and H, )~(G (~ H)<% z(G)x(H)- 1, thus general- 
izing two results from [10, 12]. In the last section we apply these bounds to show that 
for n>>.k>~2. 

x(C2k+l @C2n+l)=)~(C2k+l[C2n+l])={ 8'7, k=2,k~>3. 

We finally give a connection of some colorings with hypergraphs. 

2. A lower bound for the lexicographic product 

Chromatic numbers of the lexicographic product have been investigated in 
[3,4,6, 7, 11]. Geller and Stahl [3] proved that if G has at least one edge, then 
z(G[H])>~x(G)+2)~(H)--2 for any graph H. This bound is the best general lower 
bound known so far. A short proof of the bound is given in [7]. The main theorem of 
this section (Theorem 2) implies another lower bound and is essentially proved in [11, 
Theorem 6]. However, our proof is straightforward and simple. For the proof we need 
the following lemma. 

Lemma 1. Let X, A and B be any (finite) sets. Then 

IAcaBI+IXI>~IA~XI-t-IBnXI. 

Theorem 2. For any oraph H and any k >~ 1, 

x(C2k + 1 [H])---- 2x(H ) +[- ;~(H)/k-]. 

Proof. We first prove the lower bound: )~(C2k+I[H])>~2z(H)+rx(H)/kT. Let 
z(H) = n. It is easy to verify that the bound holds for k = 1 and for k >~ n. We may hence 
assume 1 < k < n. 
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Suppose that ~(C,,+~tH])=2n+r,~<rn/kl. Let f be a (2~+r)-coloring of 
c 2k+l[H] and let {Hs-k,.,.r H,_l, H,, Hsel, . ..Hstk} be the H-layers correspond- 
ing to consecutive vertices of Czk+ 1. Write 

xj=f(H,-,j)nf(H,+2j)l j=O,l~**.,~&J* 

We claim 

lxjl an-2jr, j=O, l,..., /_$I. 

The claim will be proved by induction on j. It is clearly true for j = 0. 
Suppose now that the claim holds for i=O, 1, , , . , j, where 0 <j <Lk/2]. Let 

If(N,-,j)J=n+t,If(N,,,j)l=n+t’andIXjl=(n-22jr)+p,p3O(notethatt’=twhen 
j=O). Since If(H,-zj)Uf(Hs-,j_r)l>,2n, we have 

If(H,-2(j-+l))nf(Hs-zj)l~‘-r+t, 

and analogously 

If(Hs+2cj+l))nf(Hs+zj)lZn-r+t’. 

By the induction hypothesis we obtain 

~f(Hs-~rj+~~)nXj~~(~-~+t)-(2j~+t-~)=~?-_(2~+l)r+~, 

and 

If(as+zcj+1))AXjl3(n-rft’)-(2jrft’-p)=n-(2j+l)r+p. 

By Lemma 1 we get 

IXj+1132(n-(Zj+f)r+p)-IXj( 

=2(n-(2j+ lfr+p)-(n-2jr+p) 

=n-2(j+I)r+p&n-2(j+l)r, 

The claim is proved. There are two cases to consider. 
Case 1. k is even. 

By the claim, l~(~~_~)n~(~~+~)l >n-kr. F’urthermore, since r<fn/kJ and therefore 
n>rk, If(Hs-k)l?f(H,+k)l >O. A contradiction. 

Case 2. k is odd. 
Again by the claim, and the assumption r <m/k], 

It follows that If(Hs_k)uS(H,+k)J<2n, another contradiction. The lower bound is 
proved. 

As it is easy to construct a coloring of C 2k+l [H] with 2n+r n/k 1 colors, the proof 
is complete. Cl 
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Another way to prove the upper bound of Theorem 2 is the following. In [6] it is 

proved that if G is a X-critical graph, then for any graph H, 

X(GCH1)6X(H)(X(G)- I)+@/]. 

As odd cycles are X-critical, x(Czk+r)=3 and cr(Czk+r)=k we conclude 

X(c,,+,CHi)~2X(H)+rX(H)/ki, 
If G is a bipartite graph then for any graph H, x(G[H])=2x(H) (cf. [3]), while for 

a nonbipartite graph G we have the following corollary. 

Corollary 3. Let G be a nonbipartite graph. Then for any graph H, 

X(G[H1)22XW)+r~ 1, 

where 2k+ 1 is the length of a shortest odd cycle in G. 

3. Coloring Cartesian sums of graphs 

The Cartesian sum (also called the disjunction in [4]) of graphs was introduced by 

Ore in [9, p. 361. Some simple observations on the chromatic number of the Cartesian 

sum of two graphs were first demonstrated in [12,1]. Much later, the chromatic 

number of the Cartesian sum turned out to be of interest in [lo]. 

It is shown in [12] that x(C, @ C5)< 8. This result is extended in [lo] to 

x(Czk+ r 0 Czn+ r)<8, k, n 32. In this section we generalize these two results to 

X-critical graphs. But first we summarise some basic observations on chromatic 

numbers of the Cartesian sum of graphs. 

Proposition 4. Let G and H be any graphs. Then 

(9 x(G @ H) < AGMH), 
(ii) x(K, 0 H) = q(H), 

(iii) Ifx(G)=o(G) then x(G 0 H)=x(G)x(H), 
(iv) cc(G @ H)=cc(G)a(H). Furthermore, if X is a maximum independent set of 

G @ H, then X = G’ x H’ where G’ and H’ are maximum independent sets of G and H, 

respectively. 

(v) f is a coloring of G @ H tf and only tf every layer of G and every layer of H is 

properly colored and in addition, for every edge abeE( f (H,)nf (Hb) =8 and for 

every edge xygE(H), f(G,)nf (G,)=@. 

Proof. (i) This was first observed in [12] and rediscovered in [l]. 

(ii) Forany H-layer H,,lf(HII)l>x(H).Furthermore,fora#b, f(H,)nf(H,)=@ 
(iii) Let x(G) = n. By assumption, K, is a subgraph of G. It follows that K, 0 H is 

a subgraph of G 0 H. By (ii), x(K, @ H)=q(H) and therefore 

nX(H)=X(K 0 H)<x(G 0 H)~x(G)x(H)=~x(H). 
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(iv) This is shown in [12], the second part only implicitly. 

(v) See [lo]. 0 

Theorem 5. Let x(G) = n, x(H) = m. Let a and b be nonadjacent vertices of G, and let 

x and y be nonadjacent vertices of H. Zf x(G-a)<x(G), x(G-b)<x(G), 

x(H-x)<x(H) and x(H-y)<x(H) then x(G@ H)<nm-1. 

Proof. Let G,=G-a, G,=G-b, H,=H-x and H,=H-y. By the assumption of 

the theorem there exist the following colorings: 

9.: G,+N,-1, h,: H,+N,_ Ir 

gb: Gb-‘N,- 1, h,: Hy-+N,,_-l, 

According to Proposition 4(i), the subgraph G, @ H, can be colored with (n- 1) 

(m- 1) colors. Then we use n new colors for the layer G,, where the vertex (b,x) is 

colored with its own color and Gb with the remaining (n - 1) colors. Let c be the color 

of the vertex (a, x). Next we color the vertex (a, y) with the same color as (b, x) and the 

color class of (a,x) (in the layer H,) with the color c. For the rest of the layer H, we 

need m-2 new colors. 

More formally, assume wlog. gb(a) = h,,(x) = 1 and define: 

’ (g,(c)> h,(z)), (c, zk VGa) x VHx), 

(gbtC), mh &,(c)>l and z=x, 

f(c, z)= { (n, h,(z)), c=a and h,(z)> 1, 

(l,m), (gb(c)=l and z=x) or (c=a and Iz,(z)=l), 

\ (n, l), (c,z)=(~,Y) or (c,z)=(b,x). 

The function f is schematically shown in Fig. 1. 

Observe that f: G @ H+N, x N,- { (n,m)}. Furthermore, it is straightforward to 

verify that f is a coloring of G @ H, and the proof is complete. 0 

Corollary 6. Let G and H be nontrivial X-critical graphs. Then 

x(G 0 H)<x(G)x(H)- 1. 

We conclude this section with a lower bound. It follows from Corollary 3, the fact 

that G[H] is a subgraph of G @ H and the fact that G @ H is, roughly speaking, the 

lexicographic product in both directions. 

Corollary 7. Let G and H be nonbipartite graphs. Then 

z(G 0 H)>max~~(H)+[~l, 2,(c)+[ql}, 

where 2k + 1 and 2n + 1 are the lengths of shortest odd cycles of G and H, respectively. 
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Fig. 1. The function f1 

4. Products of odd cycles 

It is well known that x(G~+~ x G,+r)=3, x(G+~ 3 CZn+r)=3 and 
x(C~~+~ EZ CZnf1)=5, where k,na2. Here x, q and q denote the categorical, the 

Cartesian and the strong product of graphs, respectively. The result for the lexi- 

cographic product is contained in Theorem 2. In this section we add to these results 

the chromatic numbers for the Cartesian sum of two odd cycles. 

Throughout this section we will use the facts that a lower bound for the lexi- 

cographic product is a lower bound for the Cartesian sum and that an upper bound 

for the Cartesian sum is an upper bound for the lexicographic product. 

Corollary 8. For n>,2, x(C, @ Czn+r)=~(CS[Cz,+i])=8. 

Proof. Follows from Theorem 2 and Corollary 6. 0 

Let us prove that x(C, @ Cs)> 8 holds also by the following alternative argument. 

Since x(C, @ C,)> 6, suppose x(C, @ C,) = 7. By Proposition 4(iv), cc(C, @ Cs)=4. 

Note first that when we color a maximum independent set of C5 @ C5, the number of 

uncolored vertices in any layer remains odd. As 1 V( Cs @ C,) I= 25, in a 7-coloring of 

C5 0 C5 there are at least 4 color classes of size 4. Suppose that the fifth class is of size 

4 as well. Then the remaining 5 vertices are all in different layers of the product. But 

these vertices cannot be colored by 2 colors. It follows that in a 7-coloring there are 

4 color classes of size 4 and 3 classes of size 3. Consider now any configuration of 

4 color classes of size 4 and 2 classes of size 3. It is easy to see that the remaining 

3 vertices belong to 3 different layers of the product, hence they cannot be colored by 

a single color. 

We continue the investigation of the Cartesian sum of two odd cycles. 



Lemma 9. x(C, @ C,)=x(C,[C,])=7. 

Proof. Using Proposition 4(v) it is easy to check that the following matrix determine 
a coloring of C7 $ CT: 

2123123 
4565456 
7127121 
4543453 
7167176 
4323423 
7567656 

The lower bound follows from Theorem 2. 0 

Theorem 10. For n> k>2, 

x(c2k+l @ CZni-t )=x(c2k+IcGn+,I)= 

Proof. It remains to prove the theorem for n 3 k > 3. By Lemma 9, x(C, 0 C,) = 7 
and let f: V(C,)x V(C,)-+N, be a 7-coloring of C7 8 C,. Define 
g: V(C2k+ 1) x V(Cz,+ l)--+N, in the following way: 

where 

j= 
j67, 

j>7 

and 

j'< 7, 
(i’mod2)+1, j’>7. 

The mapping g repeats the color pattern of the first two layers in every direction of the 
product. It is easy to check that g is a 7-coloring, therefore x(C& + 1 @ Cz, + i) d 7. As 
the lower bound follows from Theorem 2, the proof is complete. EZ 

We conclude the paper by showing that some colorings give us 3-regular 
3-uniform hypergraphs. 

Proposition 11. Let G and H be graphs isomorphic to C7. Let f he a 7-coloring of 

GOH. Let F,={,~(G,)IxEV(H)) and let FH={f(Ha)la~V(G)). Then(N7,FG) and 
(FU,, FH) are 3-regular 3-uniform hypergraphs. 



Proof. It is enough to prove the proposition for (N 7, FG). Let V(H) = { vl, 02, . . . , u7 }. 

We claim that lf(G,‘)I=3, i~{1,2 ,..., 7f. Clearly, 1 f(G,) 1 d 4, for otherwise 

If(G,,)uf(G,,+,)l>8. Suppose now that lf(G,,)I=4. Then f(G,)=f(G,,) and 
I f(WI=3. Hence f(G,,) COG,,) and f(G,,) SG,,). Therefore, 

I f(G,,) uf( G,,) I 2 2. But then there are at most 5 colors left to color the layers G,, and 

Go,. This contradiction proves the claim. It follows that ( N7, F,) is 3-uniform. 

Furthermore, as I F,I = I N, I = 7 we conclude that (N,, F,) is a 3-regular 

hypergraph. 0 
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