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Abstract 

Clique-gated graphs form an extension of quasi-median graphs. Two characterizations of 
these graphs are given and some other structural properties are obtained. An O(nm) algorithm 
is presented which recognizes clique-gated graphs. Here n and m denote the numbers of vertices 
and edges of a given graph, respectively. 

1. Introduction 

Quasi-median graphs were introduced by Mulder [15] as a generalization of 
median graphs. His motivation was to extend median graphs in the way as hypercubes 
are extended to Hamming graphs. In particular, bipartite quasi-median graphs are 
median graphs. Both, median and quasi-median graphs form well studied classes of 
graphs. Median graphs were first investigated by Avann [1] and Nebesk~, [18]. The 
more extensive investigation of these graphs was done by Mulder and Bandelt as well 
as by some other researchers, see for instance [2, 4, 9, 14--17]. 

A first characterization of quasi-median graphs is due to Mulder [15] and later 
several different characterizations were discovered. For most of them we refer to the 
paper [5] of Bandelt et al. where also (relatively) short proofs are given. Besides these 
characterizations quasi-median graphs can also be described as weak retracts of 
Hamming graphs [7, 20], as connected subgraphs of Hamming graphs closed under 
the quasi-median operation [7, 15] and as graphs with finite windex [7]. 

From the algorithmic point of view, several efficient algorithms concerning these 
graphs are known. Jha and Slutzky [13] gave an O(n 2 log n) algorithm for recognizing 
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median graphs and it is demonstrated in [ I1]  how to recognise these graphs in 
O(n 3/2 logn) time. For  quasi-median graphs an algorithm of the time complexity 
O(n 3/2 logn + m logn) is developed in [10]. 

In [20] Wilkeit suggested that it might be interesting to investigate the class of 

graphs for which every clique is gated. We call such graphs clique-gated. Clique-gated 

graphs extend the class of quasi-median graphs and contain all bipartite graphs. 

In the next section we state the necessary definitions and recall two characteriza- 

tions of quasi-median graphs. In Section 3 we consider the structure of clique-gated 
graphs. We characterize them in two different ways and propose two problems. In the 
last section an O(nm) algorithm is given that recognizes clique-gated graphs, where 

n and m denote the numbers of vertices and edges of a given graph, respectively. 

2. Preliminaries 

All graphs considered in this paper are finite undirected graphs without loops or 

multiple edges. A clique is a maximal complete subgraph. K4 - e is the graph on four 

vertices with five edges, i.e. the complete graph K4 with an edge deleted. Note that if 
a graph contains n o  K 4 - e, then each edge of G belongs to a unique clique. 

A subgraph H of a graph G is a retract of G, if there is an edge-preserving map 
r from V(G) to V(H) such that r(v) = v for every v e V(H). The map r is called 

a retraction. If we allow that r maps an edge of G either to an edge or to a single vertex 
in H, we call H a weak retract of G and r a weak retraction. 

As usual, the distance do(u, v) between two vertices u and v of a graph G is the length 

of a shortest path between u and v. Whenever the graph G will be clear from the 
context, we will shortly write d(u, v). The distance d(H, H') between two subgraphs of 

a given graph is defined as min{d(u, v); u • H, v • H'}. A subgraph H of a graph G is 

an isometric subgraph, if dn(u, v) = d~(u, v) for all u, v ~ V(H). A (weak) retract is 
necessarily an isometric subgraph. 

A set of vertices S is convex in G if for any two vertices u, v • S, the interval I (u, v) 
belongs to S. The interval between vertices u and v consists of all vertices on shortest 
paths between u and v. For  an edge uv • E(G), let Uuv be the set of vertices of G which 
are closer to u than to v and are adjacent to a vertex which is closer to v than to u. 

A subgraph H of a graph G is called gated in G, if for every v • V(G) there exists 
a vertex x e V(H) such that for every u • V(H), x lies on a shortest path from v to u. If 

such a vertex exists it must be unique. We denote the unique vertex x by kn(v) and call 
it the gate of v in H. We call a graph clique-gated if every clique is gated. 

A graph G satisfies the triangle property if, for any edge uv and a vertex w with 
d(u, w)= d (v ,w)= k ~> 2, there exists a common neighbour x of u and v with 
d (x, w) = k - 1. A graph G satisfies the quadrangle property if, for any vertices u, v, 
w and z with d (u, w) = d (v, w) = k = d (z, w) - 1 and d (u, v) = 2 with z a common 
neighbour of u and v, there exists a common neighbour x of u and v with 
d (x, w) = k - 1. These two properties are schematically shown in Fig. 1. 
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Fig. 1. The triangle and the quadrangle property. 

The Cartesian product Gi2H of graphs G and H is the graph with vertex set 
V(G) x V(H) and (a, x)(b, y) e E(G[]H) whenever ab~ E(G) and x = y, or a = b and 
xy E E(H). For a ~ V (G) set Ha = {a}z3H ~ G[2H and call it an H-layer. A Hamming 

graph is the Cartesian product of complete graphs, see [3, 5, 12] and references there. 
In the next theorem we recall two characterizations of quasi-median graphs which 

are relevant to our work. 

Theorem 2.1. For a connected graph G, the following conditions are equivalent: 

(i) G is a quasi-median graph. 
(ii) G fulfils the triangle and the quadrangle property, and G does not contain K4 - e 

or K2,3 as an induced subgraph. 
(iii) Every clique of G is gated, and, for every edge uv of G, the set U,v is convex. 

Hence the class of clique-gated graphs (properly) contains the class of quasi-median 
graphs. 

3. Two characterizations 

On the set of all cliques of a graph G we introduce the relation ~ as follows. For  
cliques Q and Q' let Q ~ Q' if exactly one of the following holds: 

(A) IQI = IQ'[ and the vertices of Q and Q' can be labeled {ul, u2,,.. .  ,Uk} and 
{ v l, v2 , . . . , Vk } , respectively, such that 

Sd(Q, Q') if i = j, 
d(ui, V j) 

[d(Q, Q') + 1 otherwise. 

(B) There exist unique vertices u e Q and u' e Q' such that d(u, u') = d(Q, Q') and 
forv ~ Q\u and v' e Q'\u',d(u, v') = d(v, u') = d(Q, Q') + 1 and d(v, v') = d(Q, Q') + 2. 

The relation ,-~ is reflexive and symmetric but it is generally not transitive. 

Theorem 3.1. For a connected graph G, the following conditions are equivalent: 
(i) G is a clique-gated graph. 

(ii) For any cliques Q and Q' of G, Q ,,~ Q'. 
(iii) G does not contain K4 - e as an induced subgraph and G satisfies the triangle 

property. 
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Proof. (i) ~ (ii). (This part of the proof is essentially done in I-7, Lemma 7.5].) Let 
Q and Q' be arbitrary cliques of G, Q ¢ Q'. As G is clique-gated, I Q n Q'I ~< 1. Let 
X ~ Q be the set of vertices u e Q such that d(u, Q') = d(Q, Q') and let X' ~ Q' be 
defined analogously. Since Q and Q' are gated, for any u e X and any u ' e  X', 
ke,(u) e X'  and ke(u' ) • X. In addition, the maps kQ, and kQ are inverses. Therefore if 
X = Q and X ' =  Q' then (A) holds. Suppose now that v ' •  Q'\X'. Then 
d(v', Q) = d(v', u) + 1 for any u • X. As the gate kQ(v') is unique, [XI = 1 and analog- 
ously IX'I = 1. Hence (B) holds. 

(ii) ~ (iii). G clearly contains no K4 - e as an induced subgraph. Assume now that 
for adjacent vertices u and v there exists a vertex w with d(w, u) = d(w, v) = k >>. 2. 
Consider a clique Q containing the edge uv and a clique Q' containing w. Since 
Q ~ Q '  then if (A) holds, there is a vertex x • Q  with d(w ,Q)=d(w ,x )  and 
d(w, x) = d(w, u) - 1. And if(B) holds there are unique vertices x • Q and x' • Q' with 
d(x, x') = d(Q, Q'). Note that x may be equal to x'. But in any case x ~ u and x ~ v, 
hence G fulfils the triangle property. 

(iii) ~ (i). Assume that a clique Q is not gated, i.e. there are vertices u, v and w such 
that uv • E(Q) and d(w, Q) = d(w, u) = d(w, v) = k ~> 1. I fk  = 1, then since wCQ, there 
exists a vertex x • Q, x # u, x ~ v, such that wxCE(G). Therefore vertices u, v, w and 
x induce a K4 - e, a contradiction. Let k/> 2. By the triangle property there is a vertex 
x adjacent to u and v with d (w, x) = k - 1. Since d(w, Q) = k, we have x ¢ Q. But then 
there is a vertex y • Q such that vertices u, v, y and x induce a K4 - e, another 
contradiction. [] 

In light of Theorem 2.1 (ii) and (iii) versus Theorem 3.1 (i) and (iii) one might ask if 
the property that the set Uuv is convex for every edge uv of G, is equivalent to the 
quadrangle property and being (K2,3)-free. The answer is negative, consider for 
example the graph G in Fig. 2. The set Uuv is convex for every edge uv of G, yet G does 
not satisfy the quadrangle property. 

We next show how to obtain new clique-gated graphs from known such graphs. 

Proposition 3.2. (i) A weak retract of a clique-gated graph is clique-gated. 
(ii) Let G and H be connected graphs. Then G[3H is clique-gated if and only if G and 

H are clique-gated. 

Fig. 2. The graph G. 
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Proof. (i) Let G be a clique-gated graph and let H be a weak retract of G. Since H is an 
induced subgraph of G, H contains no K4 - -  e as an induced subgraph. By Theorem 
3.1 (iii) it remains to show that H satisfies the triangle property. 

Assume that for uv~ E(H) there is a vertex w~ V(H) such that 
dn(w, u) = dn(w, v) = k >~ 2. As G fulfils the triangle property, there exists a vertex 
x ~ V(G) adjacent to u and v and d6(x, w} = k - 1. Let v: V(G) ~ V(H) be a weak 
retraction map. As r is non-expanding we have: 

k - 1 = dG(X, w) >1 du(r(x), r(w)) = dH(r(x) ,  w)). 

If follows that r(x) ~ u and r(x) ~ v. Furthermore, if r(x) = y, then yu ~ E(H), 
yv ~ E(H) and d(w, y) = k - 1. Thus H satisfies the triangle property. 

(ii) Straightforward. [] 

Since a graph is bipartite if and only if any of its edges is gated (cf. [20]), Proposition 
3.2 (ii) in particular implies that Gt3H is bipartite if and only if G and H are bipartite. 

To conclude this section we propose two problems. 

Problem 1. Can a clique-gated graph include any isometric odd cycle of length at 
least 5? 

In fact, if we assume that a clique-gated graph is (K2, 3)-free, then it is not difficult to 
prove the next proposition, the proof of which is left to the reader. 

Proposition 3.3. Let G be a clique-gated graph without an induced K2.3. Then 
G contains no Cs as an induced subgraph. 

It follows in particular from Proposition 3.3. and Theorems 2.1(ii) and 3.1(iii) that 
quasi-median graphs contain no C5 as an induced subgraph. We therefore also ask: 

Problem 2. Can a clique-gated graph include any induced C5? 

4. Recognizing clique-gated graphs 

In this section we propose an O(nm) algorithm which recognizes clique-gated 
graphs. Note that Theorem 3.1 (iii) immediately implies that clique-gated graphs can 
be recognized in polynomial time. For the first condition one has to check every 
quadruple of vertices and for the second condition one has to check triples of vertices. 
Thus a straightforward implemetation would yield to an O(n 4) algorithm. 

Let R be a relation defined on the edge set of a graph in the following way. Edges 
e and e' are in the relation R if they are edges of a common triangle. Let R* denote the 
reflexive and transitive closure of R. Then we have: 
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Lemma 4.1. A graph G is clique-gated if and only if 

(P) the edge set of each equivalence class induced by R* is the ed9 e set of a gated 
clique. 

Proof. If G is clique-gated then (P) holds because each edge is in a unique clique. 

Assume now that (P) holds and let Q be a clique of G. We want to show that Q is 

gated. It is enough to prove that the edge set of Q is the edge set of an equivalence 
class. Let e = uv and e' = u'v' be arbitrary edges of Q. Then uu', uv', vu' and vv' are 

edges of G and by the transitivity of R*, uv and u'v' belong to the same equivalence 

class. It follows that no other clique exists but those for which the edge set is the edge 

set of an equivalence class. []  

In order to obtain an efficient algorithm, condition (P) must be tested and carefully 
implemented. This is done by the following algorithm: 

1. Compute  R*. 
2. Test whether the edges of each equivalence class are edges of a clique. 

3. Test whether each such clique is gated. 

Theorem 4.2. One can determine in O(nm) time and O(m) space whether a given graph 

on n vertices and m edges is clique-gated or not. 

Proof. Step 1 can be done taking an edge uv and going through the sorted adjacency 

list of both u and v. If u and v have a common neighbour w then the edges uv, uw and 

vw are made equivalent using the Union-Find  data structure. 
Step 2 is done by counting the number  of different vertices and edges of a class. As 

a result we obtain cliques and the list of vertices of each clique. 
Finally, in Step 3, compute first for each vertex u the distance to all other vertices. 

For  each clique exactly one vertex must be closer to u than the other vertices. 

All three steps can be obviously computed in O(nm) time. The space bound is O(m), 
since each vertex v is in at most degree(v) different lists computed in Step 2. []  
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