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Abstract 

There are four standard products of graphs: the direct product, the Cartesian product, the strong 
product and the lexicographic product. The chromatic number turned out to be an interesting 
parameter on all these products, except on the Cartesian one. A survey is given on the results 
concerning the chromatic number of the three relevant products. Some applications of product 
colorings are also included. 

1. Introduction 

Graphs considered in this paper are undirected, finite and contain neither loops nor 

multiple edges (unless stated otherwise). 

A graph product G • H of  graphs G and H most commonly means a graph on the 

vertex set V(G) × V(H), while its edges are determined by a function on the edges of  

the factors. There are many such products but only four o f  them are really important: 

the direct product (known also as the tensor product, the categorical product, the 

Kronecker product, the cardinal product, the conjunction, the weak direct product, or 

just the product), the Cartesian product, the strong product (known also as the strong 
direct product or the symmetric composition) and the lexicographic product (known 

also as the composition or the substitution). 

The direct product, the Cartesian product, the strong product and the lexicographic 

product o f  graphs G and H will be denoted by G × H,  G []  H,  G []  H and G[H], 
respectively. Let (a,x), (b,y)  E V(G) × V(H). Then (a,x)(b,y) belongs to 

E(G × H )  whenever ab E E(G) and xy E E(H) ;  

E(G [] t-I) whenever ab C E(G) and x -- y, or a = b and xy  C E(H) ;  
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E(G []H) whenever (a,x)(b, y) E ( E(G x H ) U E ( G  [] H));  
E(G[H]) whenever ab E E(G), or a = b and xy E E(H). 

Note that E(G xH) U E(G [] H) = E(GDH) C_E(G[H]). 
The notation x, [] and [] is due to Ne~etfil. It is a nice notation because x, [] 

and [] looks like the direct, the Cartesian and the strong product, respectively, of an 
edge by itself. We use the (standard) notation G[H] to emphasize that the lexicographic 
product is noncommutative. 

Whenever possible we shall denote the vertices of one factor by a, b, c, ... and the 
vertices of the other factor by x, y, z . . . .  just as it is done in the above definitions. Let 
G a n d H b e  graphs and let • be a graph product. F o r x E  V(H) set Gx=G*{x}  
and for a E  V(G) set Ha= { a } * H .  We call Gx and Ha a l a y e r  of G and of H, 
respectively. If • is the Cartesian product, the strong product or the lexicographic 
product, then Gx is isomorphic to G and Ha to H. 

A homomorphism G --* H is an edge-preserving map, i.e. a mapping f : V(G) 
V(H) such that f ( x ) f ( y )  E E(H) whenever xy E E(G). A subgraph R of a graph G 
is a retract of G if there is a homomorphism r : V(G) ~ V(R) with r(x) = x, for all 
x E V(R). The map r is called a retraction. An n-coloring of a graph G is a function 
f from V(G) onto ~n = {1, 2 . . . . .  n}, such that xy E E(G) implies f (x)  ~ f(y) .  
Equivalently, n-coloring of G is a homomorphism G ~ Kn. The smallest number n for 
which an n-coloring exists is the chromatic number z(G) of G. Note that if there is a 
homomorphism G --+ H,  then z(G)~< z(H). The size of a largest complete subgraph of 
a graph G will be denoted by og(G) and the size of a largest independent set by cffG). 

The following result, proved in 1957 by Sabidussi [31] and later rediscovered several 
times, says all about the chromatic number of the Cartesian product. 

Proposition 1.1. z(G [] H)  = max{g(G), z(H)}. 

In the next section we briefly review (new) results on the famous Hedetniemi's 
conjecture. We also mention the concept of multiplicativity and results concerning the 
conjecture on infinite graphs. In Section 3 upper and lower bounds are presented for 
the chromatic number of the strong and the lexicographic product. These bounds then 
yield to several exact chromatic numbers. In the last section we give three applications 
of product colorings. Due to the compactness of the paper some proofs will be omitted 
and some will be sketched only. 

2. Hedetniemi's conjecture 

Let f be an n-coloring of a graph G and let H be a graph. Then g(a,x) = f(a) 
is an n-coloring of the graph G xH.  It follows that z(G xH)~< min{x(G), z(H)}. In 
1966, Hedetniemi [14] conjectured that for all graphs G and H, 

z(G x H )  = min{z(G), z(H)}. 
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The conjecture is also known as the Lov~isz-Hedetniemi's conjecture. In fact, to prove 
the conjecture it is enough to show that for all graphs G and H, z(G) = z(H) = n 
implies z(G × H )  = n. 

Let G 74 H denotes that there is no homomorphism G --~ H. A graph G is called 

multiplicative, if G1 74 G and G2 74 G imply GI × G2 74 G for all graphs G1 and G2. 
We can now rephrase Hedetniemi's conjecture to: the graphs Kn are multiplicative. 

To settle the conjecture is the most tempting problem connected with product colo- 
rings. A nice overview of the results on the conjecture was done in 1985 by Duffus 
et al. [4]. We will therefore briefly give only results which have appeared after their 

paper. 
In [29] Poljak and R6dl introduced the function 

f ( n )  = m i n { z ( G x H )  I Z( G ) =  Z( H ) = n } .  

It is somehow surprising that it is not even known whether f ( n )  tends to infinity for 
n --+ ~ .  It is proved in [29] that if f is bounded then f ( n )  <~ 16 for all n. Poljak [28] 

improved the result from 16 to 9: 

Theorem 2.1. The minimum chromatic number of a direct product of  two n-chromatic 
graphs is either bounded by 9, or tends to infinity. 

We have already mentioned that the Hedetniemi's conjecture can be formulated using 
the concept of multiplicativity. This was the motivation to H/iggkvist, et al. [11] to gain 
insights for the eventual proof or disproof of the conjecture. However, the concept of 
multiplicativity is not a new one, cf., for example, [27] (where multiplicativity is called 
"productivity"). In [11] it is proved among others: 

Theorem 2.2. (i) A directed cycle Cn is multiplicative i f  and only i f  n is a prime 
power. 

(ii) Each cycle Cn is multiplicative. 

Zhou [43,44] obtained new classes of multiplicative graphs and digraphs, and some 
classes of nonmultiplicative digraphs. He also introduced weak multiplicativity and very 
weak multiplicativity. A connected graph G is weakly multiplicative if  the following 
holds for all graphs/-/1 and/-/2: if G is not a retract of H1 and G is not a retract of 
H2, then G is not a retract of H~ xH2. Since the theory of multiplicativity has no direct 
connection to the Hedetniemi's conjecture, we mention here just one result of Zhou. 

Theorem 2.3. An oriented path P is multiplicative i f  and only i f  P contains a directed 
path Pn as its retract. 

The concept of multiplicativity was introduced to ordered sets by Sauer and Zhu 
[32]. Anyhow, it remains to wait whether the theory of multiplicativity can help to 
solve the Hedetniemi's conjecture. 



138 s. Klav~ar/Discrete Mathematics 155 (1996) 135-145 

Duffus et al. [4] proposed another approach to the conjecture, which is based on a 
result of Hajrs [13]. Their idea was further developed by Sauer and Zhu [33]. 

The Hajrs sum of graphs G and H, with respect to edges ab C E(G) and xy E 
E(H), is the graph obtained from the disjoint union of G and H by contracting the 
vertices a and x, removing the edges ab and xy, and joining b with y. Haj6s [13] 
proved that every graph G with x(G) > n can be constructed from copies of Kn+l 
by the following three operations: Haj6s sum, adding vertices and edges, contracting 
nonadjacent vertices. For abbreviation let us call these operations the three operations. 
It is easy to see that none of the three operations decrease the chromatic number. 

Fix an integer n. Call a graph G, z(G) > n, persistent, if x(G x H )  = n +  1, 
for any graph H with z(H)  = n + 1. Clearly, Hedetniemi's conjecture (for the fixed 
n) is equivalent to asserting that every graph G, x(G) > n, is persistent. In view of 
the Hajrs theorem it is enough to prove that every graph constructed by the three 
operations is persistent. Furthermore, it is easy to see that Hedetniemi's conjecture is 
essentially equivalent to the statement: the Hajrs sum of persistent graphs is persistent. 

Theorem 2.4 (Duffus et al. [4]). Let G be constructed from copies of  Kn+l by perfo- 
rming the three operations in such a way that any contractions of  nonadjacent vertices 
are performed after all other operations. Then G is persistent. 

Call a graph G strongly persistent if G is persistent and the Haj6s sum with any 
other persistent graph is again persistent. 

Theorem 2.5 (Sauer and Zhu [33]). Let G be constructed from copies of  Kn+l by 
performing the three operations where at most one contraction is performed. Then G 
is strongly persistent. Furthermore, the Hajrs sum of  two strongly persistent graphs 
is a strongly persistent graph. 

In [10, 12,25,36] direct products of infinite graphs and direct products of infinite 
number of factors are considered. Miller [25] has shown that the direct product of 
infinitely many odd cycles is a bipartite graph. Hence the Hedetniemi's conjecture 
does not hold for the direct product of infinitely many graphs. Greenwell and Lov~tsz 
[10] considered infinite products of complete graphs. They proved that each n-coloring 
of such a product is induced by n-colorings of the factors and a measure /~ of the 
index set. Hajnal [12] and Soukup [36] proved several results on the direct product of 
infinite graphs. 

3. Bounds for the strong and the lexicographic product 

In this section we survey lower and upper bounds for the chromatic number of the 
strong and the lexicographic product. Bounds are given in terms of different parameters 
of factors. A recent result of Feigenbaum and Sch~iffer [6], that the strong product 
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admits a polynomial algorithm for decomposing a given connected graph into its factors, 
makes such results important also from the algorithmic point of view. 

Clearly, any upper bound for the lexicographic product is also an upper bound for 
the strong product and any lower bound for the strong product is a lower bound for 
the lexicographic product. The lexicographic product is not "far away" from the strong 
product, for example G[K,] ~- G [] K,, n >~ 1. Hence it is no surprise that bounds are 
similar for these two products. 

Clearly, z(G[H])<<.z(G)z(H). This trivial upper bound is attained for any G and 
H with z(G) = og(G) and z(H) = oXH). But it was shown by Pug [30], that there is 
no graph product • for which z(G * H) = z(G) z(H) holds for all graphs G and H. 

The following result of Geller and Stahl [9] says that it is enough to consider 
lexicographic products with the second factor being complete. 

Theorem 3.1. I f  z (H)  = n, then z(G[H]) = z(G[Kn]) holds for any graph G. 

Proof. By the assumption, there is a homomorphism f : H  ~ Kn and hence also a 
homomorphism G[H] ~ G[Kn]. It follows z( G[H]) <~ z( G[K,]). 

Conversely, let f be an optimal coloring of G[H] and let a C V(G). As z (H)  = 
n, f restricted to Ha intersects at least n color classes. Choose n of them and in 
every class choose a vertex in Ha. Connect by an edge (if necessary) any two of the 
selected vertices. If we repeat this procedure for all vertices of G, we end up with a 
graph isomorphic to G[Kn]. It is straightforward to verify that it is properly colored. 
It follows that z(G[Kn])<..z(G[H]). [] 

We next give an upper bound which generalizes several previously known upper 
bounds. Let < X >  denote the subgraph of G induced by the vertices X C_ V(G). 

Theorem 3.2 (Kaschek and Klav~ar [18]). Let G and H be any graphs and let 

z (H)  = n. Let {X,-}ie{],2,...,k} be a partition of  a set X C_ V(G). Let for all i, 
z( G - Xi ) = mi and let z ( < X > )  = s. Then, 

z(G[H]) <-. (ml + m 2 W ' " + m r ) [ k  ] 

+ (mr+l + mr+2 + " " + mk + s) [k ] 

+ z ( < x ~  u x 2  u . . .  u x , . > ) ,  

where n = pk + r, O <~r < k. [] 

Theorem 3.2 implies the next corollary from [20], which in tum includes a result 
on X-critical graphs from [9]. 

Corollary 3.1. I f  G is a x-critical graph, then for any graph H, 

z(G[H]) < z ( H ) ( z ( G  ) - 1) + [ Z(H)] 
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Proof. Let ct(G) = k and let X = {xl, X2 . . . . .  Xk} be an independent set of  G. Set 

Xi = {xi}. Then apply Theorem 3.2. After a short calculation the result follows. [] 

Corollary 3.2 (Geller and Stahl [9]). I f  G is a x-critical and not complete graph, and 
if  z (H)  >- ct(G), then 

z(G[H]) ~< z(G)z(H)- z(H) (~(G)-1). 
L~(G).J 

Proof. Follows from Corollary 3.1 since for all k,n>~ 1 the following holds: n -  I~] ~> 

[~J ( k -  1). [] 

We remark that the assumption z(H)>~a(G) of the last corollary is redundant. Some 
more applications of  Theorem 3.2 can be found in [18]. 

Let L(G) denote the line graph of a graph G. We conclude giving upper bounds 
with the following result of  Linial and Vazirani [22]. 

Theorem 3.3. There is a constant c, such that 

z(L(G)[L(H)]) <~ c .  max{z(L(G)), z(L(H))} 

holds for all graphs G and H. [] 

We next consider lower bounds. Vesztergombi [39] showed that if  both G and H 

have at least one edge then z(G I~IH)~> max{z(G) ,z (H)}  + 2. In [17] Jha extended 

this lower bound to z(G[]H)>~z(G ) + n, where n = ~o(H). However, in [37] Stahl 
introduced the n-tuple colorings of a graph G as an assignment of  n distinct colors to 
each vertex of G, such that no two adjacent vertices share a color. Let zn(G) be the 

smallest number of  colors needed to give G an n-tuple coloring. As Zn(G) ---- z (G [] Kn ), 
Stahl essentially proved: 

Theorem 3.4. I f  G has at least one edge, then for any H, 

z(G[H])  /> z(G) + 2z (H)  - 2. 

Proof. Let z(H)  = n. Due to Theorem 3.1 it is enough to prove the theorem for 

H = Kn. We may also assume n>~2. Let z(G[Kn]) = n + s. Since G has at least 
one edge, s>~n. Let f : V(G[K,]) ~ V(Kn+s) be a coloring of G[Kn]. Let V(K,) -- 
{xl, x2 . . . . .  x.}. 

For a E V(G) set m~ = min{f(a,  xl), f (a ,  x2) . . . . .  f (a ,  Xn)}. Note that ma<~S + 1. 
Define a mapping g : G ~ Ks+2_, by 

= ~ too, ma<<.s+ 1 - n ;  
g(a) 

( s + 2 - n ,  m ~ > ~ s + 2 - n .  
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We claim that g is a coloring of G. Suppose that ab E E ( G )  and g(a) = g(b). I f  
g(a) = g(b)<~s + 1 - n ,  then ma = mb, which is impossible since ab E E(G) .  Suppose 

that g(a) = g(b) = s + 2 - n. As ab E E(G)  the vertices {a, b} × V(Kn) induce a 

complete graph K2n in G[K,]. Hence, these 2n vertices should be colored with different 

colors from the set { s + 2 - n ,  s + 3  - n  . . . . .  s + n }  which contains only 2 n -  1 elements. 

This contradiction proves the claim. 

It follows from the claim that x(G)<~s + 2 -  n. Since s -- z ( G [ K n ] ) -  n we get 

z (G)  <<. z ( G [ K n ] ) - 2 n +  2. [] 

Geller [8] improved this lower bound in one particular case. He proved that if G 

is uniquely m-colorable, m > 2, then z(G[K2])>~rn + 3. He also conjectured that for 

every uniquely m-colorable graph G, z(G[Kn]) = mn holds. As far as we know, the 
conjecture is still open. 

We give two more lower bounds. In the proof of  the first we will repeat an elegant 

argument of  Linial and Vazirani [22]. 

Theorem 3.5. For any graphs G and H, 

z(G[H])  
( z ( G ) - 1 ) z ( H )  

lnlV(G)[ 

Proof. Let z ( G )  = m and z ( H )  = n. Let x(G[H]) = k and let f be a k-coloring of 

G[H]. Let Ci -- {a E V(G)I~x E g ( n ) :  f ( a , x )  = i}, i = 1, 2 . . . . .  k. 

Since Ci is an independent set, Ui~s ci  # V(G)  for every index set S with ISI -- 
m -  1. Furthermore, UiesCi  = V(G)  for every index set S with IS] = k -  n +  
1. Indeed, for otherwise the layer Ha, a E ( V ( G ) -  U i E s f i ) ,  would be colored 
using k -  ( k -  n + 1) --- n -  1 colors. We thus have the following two condi- 
tions: 

If  ISI = m - 1 then Ni~s Ci ~ O. 

I f  laB = k - n + 1 then NiGs Ci : O. (*) 
Now, in every index set S, ISI -- m - 1, choose a canonical element from Nies  Ci. We 
have, using the condition ( .) :  

IV(G)[ >t number of distinct canonical elements 

number of choices of  S >~ 
max. number of  sets S with same canonical element 

~> ( m k l ) / ( k - ] )  

(k_~n)m-I : ( l _ n ~  -(m-l) 

(m - -  L ) n  

~>e k [] 
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The next lower bound was first proved by Stahl in [37], while in [3] a straightforward 
and simple proof is given. Here we give an elegant and short proof due to Zhu [45]. 

Theorem 3.6. Let G be a nonbipartite graph. Then for any graph H, 

z (G[H])>~2~(H)+[~- ) ] ,  

where 2k + 1 is the length of  a shortest odd cycle in G. 

Proof. Let z (H)  = n. Clearly, it is enough to prove the theorem for G = C2k+l. 

Suppose that x(C2k+I[H]) = m, and let S1, $2 . . . . .  S,n be the coloring classes of an 
m coloring of C2k+I[H]. 

Since ~(C2k+1 ) =  k we have 

I{v E C2k+llSi N Hv # 0}[~k  

for i = 1, 2 . . . . .  m. On the other, because z (H)  = n the inequality 

[{/IS, NHo # ~}l~>n 

holds for every vertex v C C2k+l. Therefore n(2k+ 1)<~mk which immediately implies 
the result. [] 

In the rest of the section we collect several exact results. The vertices of Kneser 
graph KGn, k are the n-subsets of the set {1, 2 . . . . .  2n+k} and two vertices are adjacent 
if and only if the corresponding subsets are disjoint. The result involving Kneser graphs 
is included to be used in the last section. 

Theorem 3.7. (i) ([39,15]) For k>~2 and n>>.2, z(C2k+l []C2n+l) = 5. 
(ii) ([3]) For n>>.k>~2, z(C2k+I[C2n+I]) = 8, k -- 2,anditis7 fork>>.3. 
(iii) ([20]) For k>>.2, z(Cs[]Cs[]C2k+I) = 10+  [~]. 
(iv) ([37]) For k>>.2 and n>~l, z(C2k+I []Kn) = 2n + [~1' 
(v) ([21]) For k>~O andn>~l, z(KGn, k[]Kn) = 2n+k. 

Proof. (i) As ~(C2k+l []  C2n+l)~(C2k+l []K2) = ~(C2k+l[K2]), the lower bound fol- 
lows from Theorem 3.4. To construct a 5-coloring we first color C5 [] C5 and then 
extend this coloring. See [39] for details, of. also [15]. 

(ii) The lower bound follows from Theorem 3.6. Furthermore, it is not difficult to 
construct a coloring with desired number of colors. See [3] for details. 

(iii) Note first that ~(C2k+1) = k and ~(C5 [] C5) = 5. If we apply the following 
result from [35, p. 142] 

=(C5 [] C5 [] C2k+1) = =(C5 [] C5)~(C2k+1), 

we obtain 

5 x 5 × ( 2 k + l )  5 
~((C5 [] C5 [] C2k+l) ~ 5 x k = 10 + ~. 
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On the other hand, writing z(C5 [] C5 [] C2k+1) = z(Czk+1 [] (C5 [] C5)) and using 
Corollary 3.1 we get 

z(C2k+l [] (C5 []  C5)) ~< 15 - 5 + F~I- 

(iv) The lower bound follows from Theorem 3.6. It is also not difficult to construct 
a coloring with desired number of colors. In fact, one can use a similar approach as 
in the proof of Theorem 3.6. 

(v) Lov~isz proves in [23] that z(KGn, k) = k+2,  thus settling a conjecture of Kneser. 

Combining this result with Theorem 3.4 we get z(KGn, k [] Kn) >i k + 2 + 2n - 2 = 

2n + k. Since Vesztergombi observed in [40] that z(KGn, k [] K,)<<.2n + k, the result 
follows. [] 

We conclude the section with the following problem. Determine the chromatic 
number of the strong product of several odd cycles. In particular, for k, n, m i> 2 de- 

termine z(C2k+1 [] C2,+1 [] C2m+I ). 

4. Appficafions 

We will give three applications of product colorings, one for each product. Greenwell 
and Lov~isz [10] proved the following application of the direct product: 

Theorem 4.1. For all n >~ 3 there is a uniquely n-colorable graph without odd cycles 

shorter than a given number s. 

Proof. Let G be a graph with z(G)  > n, and let G be without odd cycles shorter 
than a given number s (it is well-known that such graphs exist for all n and s). 
Then neither G × K, does contain odd cycles shorter than s. It is also not hard to see 
that z(G ×Kn) = n. Furthermore, the graph G ×Kn is uniquely colorable (for brief 
proofs of the last two facts see [24], problems 9.7(c) and 9.7(d)). This completes the 
proof. [] 

Results about the chromatic number of strong products turned out to be important 
in understanding retracts of strong products [16,19,21]. It is shown in [16] that every 
retract R of G [] H is of the form R = G I [] H ~, where G ~ is a (isometric) subgraph of 
G and H I is a (isometric) subgraph of H. Furthermore, if G and H are triangle-free, 
then G ~ and H ~ are retracts of G and H,  respectively. However, using Theorem 3.7(v) 
we have: 

Theorem 4.2. For every n >>.2 there is an infinite sequence o f  pairs o f  graphs G and 

G' such that G' is not a retract o f  G while G'I~I Kn is a retract o f  G [] Kn. 
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Proof .  Let k >/2 and let Hn, k be a graph which we get from a copy o f  the graph KGn, k 

and a copy o f  the complete graph K~+I by  joining a vertex x of  KGn, k with a vertex 

y o f  Kk+l. Using Theorem 3.7(v) it is easy to see that z(Hn, k ) =  n(k + 1). It follows 

that we have a retraction from Hn, k 15lKn onto the subgraph Kk+l 151Kn (take any color 

preserving map).  But since z(H,,k)  = k + 2  and the chromatic number is preserved by 

a retraction, there is no retraction V(H~,k) ~ V(Kk+1). [] 

Linial and Vazirani [22] applied colorings o f  the lexicographic product. They used 

Theorem 3.5 together with the trivial upper bound to study approximation algorithms 

for computing the chromatic number o f  a graph. However,  the idea o f  using products 

o f  a given graph with certain fixed graphs goes back to Garey and Johnson [7]. 

Some other graph products have also been treated with respect to their chromatic 

numbers. The Cartesian sum of  graphs was studied by Yang [42], Borowiecki [1], 

Hell  and Roberts [15], Pu~ [30], Ci~ek and Klav~ar [3] and the alternative negation 

by Borowiecki [1] and Sch/iffer and Subramanian [34]. Although we didn ' t  consider the 

Cartesian sum it turned out that it is natural to study in parallel  the chromatic number 

o f  the strong product, the lexicographic product and the Cartesian sum of  graphs (cf. 

[15,3]). 
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