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, Sandi Klavžarb,c,d, J. Celin Fionaa,

Krishnan Balasubramaniane

aDepartment of Mathematics, Loyola College, Chennai 600034, India

bFaculty of Mathematics and Physics, University of Ljubljana, Slovenia

cFaculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

dInstitute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

eSchool of Molecular Sciences, Arizona State University, Tempe AZ 85287-1604, USA

The recently reported results by Akhter et al. [International Journal of Quantum Chemistry, 121(5)

(2021) e26520] on the Mostar indices of SiO2 nanosheet, C8 layer structure and melem chains are flawed

and in error. We establish here that this is due to the incorrect technique employed by Akhter et al., and

various computational flaws in their work. In this comment, we correct all of the erroneous results by

employing the correct mathematical methods and validate the present results with independent compu-

tational programming methods.

1 Introduction

A silicon dioxide unit cell is comprised of an octahedron by connecting the SiO2 molecular units containing

one silicon atom bonded to four oxygen atoms. When these octagon units are joined together we obtain a

silicon dioxide nanosheet and a C8 layer structure obtained by removing all the pendant bonds as shown

in Figures 1 and 2. Melem unit cell consists of three hexagons arranged in a triangular manner and a

unit cell of the melem structure with hydrogen atoms is given in Figure 3a and without hydrogen atoms

in Figure 3b. Recently [1], vertex, edge and total versions of the Mostar index have been computed for

SiO2 nanosheet, C8 layer structure and melem chains. We show here that all of the computed results
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in [1] are incorrect due to inappropriate mathematical techniques used for the SiO2 nanostructures and

computational as well as constructional flaws on melem chains. Furthermore, our analytical results were

independantly validated using TopoChemie-2020 package for the computation of these indices [2].

Figure 1: SiO2 nanosheet of dimension [3, 4]

Figure 2: C8 layer of dimension [3, 4]

(a) (b)

Figure 3: Unit cell of melem structure (a) with hydrogens, (b) without hydrogens
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In order to proceed with the mathematical definitions of Mostar indices [4, 5], we define the various

graph-theoretical terms employed in our study. A graph G consisting of vertex set V (G) and edge set

E(G) defines the open neighborhood NG(v) as the set of vertices adjacent to v. For any two vertices

u, v ∈ V (G), the distance between them denoted as dG(u, v) is the number of edges in a shortest path

from the vertex u to v. The shortest distance between the vertex u and the edge f = xy ∈ E(G) is defined

as dG(u, f) = min{dG(u, x), dG(u, y)}. The cardinalities of the bond-additive sets of an edge h = uv are

defined in the following.

(i) nu(h|G) = | {x ∈ V (G) : dG(u, x) < dG(v, x)} |.

(ii) mu(h|G) = | {f ∈ E(G) : dG(u, f) < dG(v, f)} |.

(iii) tu(h|G) = nu(h|G) + mu(h|G).

(iv) nv(h|G), mv(h|G) and tv(h|G) are analogous to (i)-(iii).

A graph G with strength-weighted functions (SWV , SWE) assigned to the vertex set V (G) and edge

set E(G) is a strength-weighted graph [3] Gsw = (G,SWV , SWE), where SWV is the pair (wv, sv) of a

vertex weight function wv : V (G)→ R+
0 and a strength function sv : V (G)→ R+

0 , while SWE is the pair

(we, se) of an edge weight function we : E(G) → R+
0 and a strength function se : E(G) → R+

0 . To study

the Mostar indices, the function we does not require and henceforth Gsw = (G,SWV , se). The distance

function of the strength-weighted graph Gsw remains the same as in the graph graph G, while the bond

additive set parameters of a vertex u and an edge h = uv are defined as follows.

(i) nu(h|Gsw) =
∑

x∈Nu(h|Gsw)

wv(x).

(ii) mu(h|Gsw) =
∑

x∈Nu(h|Gsw)

sv(x) +
∑

f∈Mu(h|Gsw)

se(f).

(iii) tu(h|Gsw) = nu(h|Gsw) + mu(h|Gsw).

The vertex, edge and total versions of the Mostar index are defined in the following for G and for the

strength-weighted graph Gsw, each absolute measure is multiplied with the corresponding edge strength

value.

� Mov(G) =
∑

h=uv∈E(G)

∣∣nu(h|G)− nv(h|G)
∣∣.

� Moe(G) =
∑

h=uv∈E(G)

∣∣mu(h|G)−mv(h|G)
∣∣.

� Mot(G) =
∑

h=uv∈E(G)

∣∣tu(h|G)− tv(h|G)
∣∣.

3



Furthermore, it should be noted that Mot(G) = Mov(G) + Moe(G) whenever nu(h|G) ≥ nv(h|G)

and mu(h|G) ≥ mv(h|G) or nu(h|G) ≤ nv(h|G) and mu(h|G) ≤ mv(h|G) for every edge h in G. On

the other hand, Mot(G) 6= Mov(G) + Moe(G) whenever nu(h|G) > nv(h|G) and mu(h|G) < mv(h|G)

or nu(h|G) < nv(h|G) and mu(h|G) > mv(h|G) for some h in G which is possible when the graph is

clustered as shown in Figure 4.

Figure 4: An example of G in which Mot(G) 6= Mov(G) + Moe(G)

The computational technique for the Mostar indices relies on the cut method which is in turn based on

the Djoković-Winkler relation defined on the edge set of a graph G as follows. Two edges e1 = c1d1 and

e2 = c2d2 are in relation Θ if dG(c1, c2) + dG(d1, d2) 6= dG(c1, d2) + dG(c2, d1). The relation Θ is reflexive

and symmetric, but not transitive in general whereas the transitive closure Θ∗ forms an equivalence

relation thereby enabling the Θ∗-partition of the edge set E(G) as E1, . . . , Ep. These classes split each of

the graphs G−Ei into two or more smaller components. The quotient graph G/Ei is defined as a graph

in which the vertices are the connected components of G−Ei, and two components A1 and A2 are linked

by an edge if there exists an edge xy ∈ Ei such that x ∈ A1 and y ∈ A2. The computational technique for

the Mostar indices was developed in [5] as follows. Let G be a molecular graph that admits a Θ∗-partition

E (G) = {E1, . . . , Ep}. If Mo ∈ {Mov,Moe}, then

Mo(G) =

p∑
i=1

Mo(G/Ei, (w
i
v, s

i
v), sie),

where

(i) wi
v : V (G/Ei)→ R+

0 , wi
v(X) =

∑
x∈V (X)

wv(x), ∀ X ∈ V (G/Ei),

(ii) siv : V (G/Ei)→ R+
0 , siv(X) =

∑
xy∈E(X)

se(xy) +
∑

x∈V (X)

sv(x), ∀ X ∈ V (G/Ei),

(iii) sie : E(G/Ei)→ R+
0 , sie(XY ) =

∑
xy∈Ei

x∈V (X), y∈V (Y )

se(xy), ∀ XY ∈ E(G/Ei).
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2 Corrected Results

The inappropriate mathematical construction of Θ-classes of SiO2 nanosheet, i.e., failing to satisfy tran-

sitive property with respect to Djoković-Winkler relation and failing to locate suitable Θ∗-classes in the

recent paper [1] are the causes of incorrect results in [1] as demonstrated here. Subsequently, we show

the correct construction of Θ∗-classes. On the basis of that, we have obtained the correct Mostar indices

by utilizing the concept of strength-weighted graphs.

To illustrate, consider the SiO2 nanosheet of dimension [2, 3] and its vertices a1, a2, a3, b1, b2, b3, c1,

c2, and c3 as shown in Figure 5.

Figure 5: Construction of Θ∗-class in SiO2 nanosheet

Let D = {a1b1, a2b2, a3b3}. Then it is claimed in [1] (see Figure 4 of Ref [1]) that the edges from D

form a convex cut (alias a Θ-class), which is in fact false. First of all, the vertices b1 and b2 are members

of opposite edges on the 8-cycle, and hence they need to lie in different parts of the asserted convex cut.

But since the same holds for the pair b1 and b3 and for the pair b2 and b3, we get a contradiction. In the

language of the relation Θ, we easily see that a1b1 is in relation Θ with a2b2, and that a2b2 is in relation

Θ with a3b3. However a1b1 is not Θ related to a3b3. By the transitivity, the edges from D must lie in a

common Θ∗-class. Let next D′ = {b1c1, b2c2, b3c3}, see the yellow edges in Figure 5. As for D we infer

that the edges from D′ must also lie in a common Θ∗-class. Note now that b1c1 is Θ related with a3b3.

Using the transitivity again we see that all the edges from D∪D′ must lie in a common Θ∗-class. Finally,

observe that no edge from D∪D′ is Θ related with any edge outside this set. This fact can be most easily

deduced by noticing that between an edge in D∪D′ and an edge outside of this set, we can find a shortest

path (in a Manhattan metric’s style) with these two edges being the end edges of the path. For the latter

argument we recall that no two edges of a shortest path are Θ related. Thus, since no edge from D ∪D′
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is Θ related with any edge outside this set, we conclude that D ∪D′ is a Θ∗-class of the SiO2 nanosheet

of dimension [2, 3]. By symmetry, it is clear from here as to which members are all the other Θ∗-classes.

The arguments as explained above will be used throughout the section without detailed explanations.

Though the preceding graphic representation clearly shows the mathematical computational defects

that happened in calculating the Mostar indices of SiO2 nanosheets, we now present the numerical in-

accuracies that occurred in Mostar analytic expressions. It was found in [1] that Mov(SiO2[p, q]) =

2(3pq+ 4q+ 4p+ 3)
(
(q+ 1)

(
2dp2e−p+ 1

)
+ (p+ 1)

(
2d q2e−p+ 1

))
−2(q+ 1)(3q+ 4)

(
2dp2e

(
dp2e+ 1

)
−p(p+

1)
)
− 2(p + 1)(3p + 4)

(
2d q2e

(
d q2e + 1

)
− q(q + 1)

)
, and in particular, Mov(SiO2[4, 5]) = 6942. However,

independent computational methods [2] have confirmed that Mov(SiO2[4, 5]) = 5952 is the correct value

and our numerical result was obtained for SiO2[4, 5] upon substituting p = 4, q = 5 in our expression (1)

of Theorem 1.

As previously discussed, a Θ∗-class of SiO2 nanosheet or C8 layer structure composed of all zig-zag

bonds of specific row produces a quotient graph K2,q+1, complete bipartite graph with vertex partition

sets {X1, X2} and {Yi : 1 ≤ i ≤ q + 1} with weighted measures denoted by wv(X1) = w1, sv(X1) = s1,

wv(X2) = w2, sv(X2) = s2, wv(Yi) = 1, sv(Yi) = 0 and se(XkYi) = 1 where k = 1, 2.

Theorem 1. Let SiO2[p, q] be an SiO2 nanosheet of dimension [p, q].

1. Mov(SiO2[p, q]) = 1
2(12p2q2 + 26pq2 + 26p2q + 23q2 + 56pq + 23p2 + 37p + 37q + (−1)p(q2 + 7q +

6) + (−1)q(p2 + 7p + 6) + 12)

2. Moe(SiO2[p, q]) = 8p2q2 + 16pq2 + 16p2q + 11p2 + 32pq + 11q2 + 18p + 18q + (−1)p(q2 + 4q + 3) +

(−1)q(p2 + 4p + 3) + 6

Proof. For 1 ≤ i ≤ 2(q+1), let V Pi be an SiO2 nanosheet peripheral vertical pendant bond. The quotient

graph SiO2[p, q]/V Pi is the complete bipartite graph K1,1 with partite sets {Ap
i } and {Bp

i } with vertex

weights wi
v(Ap

i ) = 1, wi
v(Bp

i ) = 3pq+4(p+q)+4, vertex strengths siv(Ap
i ) = 0, siv(Bp

i ) = 4(pq+p+q+1)−1,

and edge strength sie(A
p
iB

p
i ) = 1. For 1 ≤ i ≤ p, let V Ri be a Θ∗-class that contains all the vertical zig-zag

bonds in the ith row. In this class, the quotient graph is the complete bipartite graph K2,q+1 with weighted

measures w1 = (3q + 4)i, s1 = (q + 1)(4i − 1), w2 = (3q + 4)(p + 1 − i) and s2 = (q + 1)(4(p − i) + 3).

We consider the classes HPi (1 ≤ i ≤ 2(p + 1)) and HCi (1 ≤ i ≤ q) as analogous to vertical zig-zag

type bonds and the graph theoretical quantities are obtained by swapping the values of p and q. If we

take Mo ∈ {Mov,Moe}, and denote
2(q+1)∑
i=1

Mo(SiO2[p, q]/V Pi) +
p∑

i=1
Mo(SiO2[p, q]/V Ri) = f(p, q), then

2(p+1)∑
i=1

Mo(SiO2[p, q]/HPi) +
q∑

i=1
Mo(SiO2[p, q]/HCi) = f(q, p) and Mo(SiO2[p, q]) = f(p, q) + f(q, p).
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Theorem 2. Let C8[p, q] be a C8 layer structure of dimension [p, q].

1. Mov(C8[p, q]) = 1
2(12p2q2+10pq2+10p2q+3q2+3p2−5q−5p+(−1)p(q2+5q+4)+(−1)q(p2+5p+4)−8)

2. Moe(C8[p, q]) = 8p2q2 + 6pq2 + 6p2q+ p2 + q2− 3q− 3p+ (−1)p(q2 + 3q+ 2) + (−1)q(p2 + 3p+ 2)− 4

Proof. The proof technique is similar to SiO2[p, q] and we take V Ri (1 ≤ i ≤ p) to represent the Θ∗-class

that covers all the zig-zag vertical bonds in the ith row of C8[p, q]. The corresponding quotient graph is the

complete bipartite graph K2,q+1 with weighted measures w1 = q(3i−1)+(2i−1), s1 = 2i(2q+1)−2(q+1),

w2 = 3q(p− i) + 2(p + q − i) + 1 and s2 = (4q + 2)(p− i) + 2q. Let HCi (1 ≤ i ≤ q) be an analogous Θ∗-

class that covers all vertical zig-zag bonds and the graph theoretical measures are produced by exchanging

p and q values. If we denote
p∑

i=1
Mo(C8[p, q]/V Ri) = g(p, q), then

q∑
i=1

Mo(C8[p, q]/HCi) = g(q, p) and

Mo(C8[p, q]) = g(p, q) + g(q, p) where Mo ∈ {Mov,Moe}.

We close this section by pointing out the constructional inconsistency [1] for the melem chain due

to hydrogen atoms and also numerous inaccuracies in the computation of Mostar indices, in particular,

treating the cardinality of bond additive sets of horizontal and slanting bonds equally. The proper

construction of a melem chain [6] can be done using the unit cell shown in Figure 3b. Finally, we would

like to mention that Mot(G) = Mov(G)+Moe(G) for both SiO2 nanomaterials and melem nanostructures

because nu(h|G) ≥ nv(h|G) and mu(h|G) ≥ mv(h|G) or nu(h|G) ≤ nv(h|G) and mu(h|G) ≤ mv(h|G) for

every edge h in G.
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