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On the Complexity of Recognizing Hamming Graphs and Related
Classes of Graphs

WILFRIED IMRICH AND SANDI KLAVZAR

This paper contains a new algorithm that recognizes whether a given graph G is a Hamming
graph, i.e. a Cartesian product of complete graphs, in O(m) time and O(n”) space. Here m and
n denote the numbers of edges and vertices of G, respectively. Previously this was only possible
in O(m logn) time.

Moreover, we present a survey of other recognition algorithms for Hamming graphs, retracts
of Hamming graphs and isometric subgraphs of Hamming graphs. Special emphasis is also
given to the bipartite case in which these classes are reduced to binary Hamming graphs,
median graphs and partial binary Hamming graphs.
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1. INTRODUCTION

This paper is a contribution to the recognition of classes of graphs defined by metric
properties. These classes include Hamming graphs, quasi-median graphs, partial
Hamming graphs, binary Hamming graphs, median graphs and partial binary
Hamming graphs.

We shall define the above-mentioned classes of graphs, list some of their structural
properties, in particular those which are exploited from the algorithmic point of view,
and then shortly describe the ideas behind several recognition algorithms.

Moreover, we also present a new recognition algorithm which is optimal in its time
complexity for the recognition of Hamming graphs.

All graphs considered in this paper are finite undirected graphs without loops or
multiple edges. Throughout the paper, for a given graph G, let n and m denote the
number of its vertices and edges, respectively. For a graph G and a vertex set
X = V(G), let (X) denote the subgraph of G induced by X.

A subgraph H of a graph G is an isometric subgraph if dy(u, v) = ds(u, v) for all
u, v e V(H). In addition, if a: V(H)— V(G) maps edges into edges and if a(H) is an
isometric subgraph of G, we call « an isometric embedding of H into G.

The interval I(u, v) between vertices u and v consists of all vertices on shortest paths
between u and v. A subgraph H of G is convex if, for any u, v € V(H), I(u, v) € V(H).
Clearly, a convex subgraph is an isometric subgraph, but the converse need not be true.
The convex hull of a subgraph H in G is the intersection of all convex subgraphs of G
containing H, i.e. the smallest convex subgraph containing H.

The Cartesian product G H of graphs G and H is the graph with vertex set
V(G)X V(H) and (a,x)(b,y) € E(G H) whenever ab € E(G) and x =y, or a=b
and xy € E(H).

A mapping f:V(G)—V(H) is a graph homomorphism if f(u)f(v) e E(H)
whenever uv € E(G). A subgraph H of a graph G is a retract of G if there is a
homomorphism 7 from V(G) to V(H) such that r(v) = v for every v € V(H). The map
r is called a retraction. If we allow that r maps an edge of G either to an edge or to a
single vertex in H, we call H a weak retract of G and r a weak retraction.
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2. THE BIPARTITE OR BINARY CASE

In this section we consider binary Hamming graphs, their retracts and isometric
subgraphs.

2.1. Binary Hamming graphs. Binary Hamming graphs are also known as hyper-
cubes. A d-dimensional hypercube Q, (d-cube for short) is a graph the vertices of
which are all d-tuples b,b, - - - b, with b; € {0, 1} and two vertices are adjacent if the
corresponding tuples differ in precisely one co-ordinate. Alternatively, Q, is the
Cartesian product of d copies of K,. Clearly, Q, is a connected, bipartite d-regular
graph on n =29 vertices and m =d - 2*~! edges. Moreover, its automorphism group is
vertex and edge transitive. We also note that the usual shortest path distance between
any two vertices x and y of Q, is the number of positions in which x and y differ. For
example, the distance between 0110 and 1101 is 3. This distance is also called the
Hamming distance between x and y.

Bhat [9] proposed an O(m) algorithm for recognizing binary Hamming graphs. In
fact, his algorithm can essentially be obtained by specializing the algorithm for
Hamming graphs which we will present in Section 3.1. Here we propose an alternative
algorithm of the same time complexity for recognizing binary Hamming graphs. One
can obtain it by applying an algorithm from [26] or an algorithm from [22] for
recognizing median graphs. The time complexities of these two algorithms, which will
be discussed in the next section, can be reduced for binary Hamming graphs because
we need not worry about convexity.

Let uv be an arbitrary edge of Q,. To fix ideas, let u=00---0 and v=10---0.
Then the vertices the first co-ordinate of which is zero are exactly those vertices V,, in
Q, which are closer to u than to v. Furthermore, they induce a (d — 1)-cube (V,,) in
Q,. Analogously, we obtain a (d —1)-cube (V,,) on the set V,, of vertices that are
closer to v than to u, i.e. those vertices the first co-ordinate of which is 1.

The edges not in (V,,) or (V,,) are of the form

(OXZX3 ctt xd)(IXQX3 A xd).

It is easily seen that these edges are a matching of Q, and that this matching defines an
isomorphism
(N O.XZX3 e de1x2x3 ct Xy

of (V,,) onto (V,,).

This information already suffices for an O(n log n) algorithm for recognizing binary
Hamming graphs. For, let G be a connected graph on n vertices. If it is a binary
Hamming graph its number m of edges must be (n/2) log, n = O(n log n). First, we can
check in that many steps whether G is bipartite. Then, choosing uv € E(G) arbitrarily,
we can obtain all distances ds(u, x) and dg(v, x) for x € V(G) in 2m steps. Thus, V,,
and V,, can be determined in O(m) time. In another O(m) steps one can determine
whether the edges not in (V,,) or (V,,) define a matching and an isomorphism between
(Vi) and (V,,,).

It remains to show that (V,,) which has less than m/2 edges is a binary Hamming
graph. The complexity thus is

Oo(m)+0(m/2)+O0m/4)+---+0(1)= O(m).
Since all edges have to be checked, this complexity is best possible. We formulate this
as a theorem.

THEOREM 2.1 [9]. For a given graph G on n vertices, one can decide in O(nlogn)
steps whether G is a binary Hamming graph. This complexity is optimal.
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For the next two sections we recall that for any subgraph of a binary Hamming
graph, m < jnlogn, cf. [1,18].

2.2. Median graphs. A median of a set of three vertices, u, v and w, is a vertex that
lies in I(u, v) N I(u, w) N I(v, w). In other words, x is a median of u, v and w if

d(u,x)+d(x,v)=du,v), d,x)+dx,w)y=d,w), d(u,x)+dx, w)=d(u,w).

Let uv € E(G) and let w € V(G). It is easy to verify that u, v and w have a median iff
d(u, w) # d(v, w). This observation in turn implies that G is bipartite if any three
vertices of a graph G have a median.

A connected graph G is a median graph if every triple of its vertices has a unique
median. It is easily seen that binary Hamming graphs and trees are median graphs.
Furthermore, Bandelt proved the following theorem.

THEOREM 2.2 [6]. A graph is a median graph iff it is a retract of a binary Hamming
graphs.

In fact, one could also replace retracts by weak retracts in Theorem 2.2. We also
note that a retract always is an isometric subgraph.

Next, we describe the convex expansion procedure due to Mulder [27,28] which
leads to another characterization of median graphs. Let G be a graph. Furthermore,
suppose that W = V(G) and W' < V(G) are vertex sets such that WU W' =V (G),
W N W'+ and there is no edge between WA\W' and W'\W. The expansion of G with
respect to W and W' is the graph H constructed as follows:

(i) replace every vertex v e W N W' by an edge u,u,);

(ii) join u, to the neighbors of v in WAW' and u,, to the neighbors of v in W\W;

(iii) for adjacent vertices v, w € W N W', join u, to u,, and u, to u,,.

If, in addition, (W) and (W') are convex subgraphs of G, H is a convex expansion of
G. Mulder proved the following important result.

THEOREM 2.3 [27]. A graph is a median graph iff it can be obtained from K, by a
sequence of convex expansions.

We now turn to the algorithmic point of view. As a by-product of their investigation,
Chung, Graham and Saks [11] proposed an O(n*) algorithm for recognizing median
graphs.

Jha and Slutzki have given two algorithms of complexity O(n”logn). One [25] is
based on Bandelt’s characterization, while the other one [26] uses the Mulder’s convex
expansion procedure. The main bottleneck of the latter approach from the computa-
tional point of view is a convexity test. This is partially solved by the following lemma
due to Bandelt (personal communication to Jha and Slutzki). For a graph G call a
subgraph H of G 2-convex if for any two vertices u and v of H with ds(u, v) =2, every
common neighbor of u and v belongs to H.

Lemma 2.4 [26]. Let G be a connected bipartite graph in which every triple of
vertices has a median. Then a subgraph H of G is convex iff H is a 2-convex, isometric
subgraph of G.

In fact, as pointed out by a referee, it is possible to replace isometric subgraphs by
connected subgraphs in the formulation of Lemma 2.4.

The fastest known algorithm for recognizing median graphs, however, is due to
Hagauer, Imrich and Klavzar [22]. It has time complexity O(n?logn) and is also based
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on Mulder’s convex expansion. The first part of the algorithm attempts to embed a
given graph G isometrically into a hypercube. It properly embeds every median graph
and rejects all non-embeddable graphs and some embeddable ones. (It can thus not be
used as a recognition algorithm for partial binary Hamming graphs.) This first part has
time complexity O(m logn). In a second step the convexity of certain subgraphs of G
has to be tested. (These graphs correspond to the graphs (W) and (W') introduced
before Theorem 2.3. Their number can be of order O(n).) If one performs these tests
indiscriminately one by one, the complexity may go up to O(mn). In [22] the sequence
of these tests is carefully chosen and thus allows a reduction of the complexity to
O(mn?). We can thus state the following.

THEOREM 2.5 [22].  For a given graph G on n vertices one can decide in O(n?logn)
steps whether G is a median graph.

2.3. Partial binary Hamming graphs. Graphs that can be isometrically embedded into
a binary Hamming graph are called partial binary Hamming graphs. In other words, a
graph G is a partial binary Hamming graph if its vertices can be labelled by binary
labels of a fixed length such that the distance between any two vertices of G is equal to
the Hamming distance between the corresponding labels. As median graphs are partial
binary Hamming graphs and as the cycle Cg is a partial binary Hamming graph which is
not a median graph, partial binary Hamming graphs form a proper extension of median
graphs.

Considering the structure of partial binary Hamming graphs which could be useful
for a fast recognition algorithm, the following relation plays a central role.

Let G be a connected graph. Define a relation © on E(G) as follows. If
e=xy € E(G) and f =uv € E(G), then eOf if

dx,u)+d(y,v)#d(x,v)+d(y, u).

The relation O is reflexive and symmetric, yet it need not be transitive. We denote its
transitive closure by ©*. Winkler proved the following result, which is the base for a
fast recognition algorithm.

THEOREM 2.6 [33]. Let G be a connected graph. Then G is a partial binary Hamming
graph iff G is bipartite and O* = O,

Before we continue we would like to mention that several other characterizations of
partial binary Hamming graphs are known, the first one being due to Djokovié¢ [16].
Furthermore, Chepoi [10] has proved a similar result to Theorem 2.3 for partial binary
Hamming graphs (one has to replace ‘convex expansion’ with ‘isometric expansion’).

Aurenhammer and Hagauer demonstrated in [2] how to compute the relation ©* in
O(nm) time. In [1] they used this result for deciding the transitivity of © for bipartite
graphs within the same time bound. The main idea is that one only counts the number
of pairs of edges being in relation © and then compares this number with the number
of pairs of edges in relation O%. Since, for a partial binary Hamming graph,
m<3nlogn holds, this leads to an O(n”logn) algorithm for recognizing partial
binary Hamming graphs.

A much simpler recognition algorithm of the same time complexity was proposed by
Imrich and KlavZar [24]. Its main advantage is that one only needs to compute ©* and
not @ itself. Combining this idea with an approach of Feder [17] for computing ©%*, we
obtained a simpler algorithm for recognizing partial binary Hamming graphs. We shall
present more details in Section 3.4 when the general case of partial Hamming graphs is
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TABLE 1
Complexities for the binary case.

Class of graphs Time complexity
Binary Hamming graphs nlogn
Median graphs n3logn
Partial binary Hamming graphs n*logn

treated. The algorithm for the binary case is a straightforward specialization of the
general algorithm. We thus have the following.

THeorem 2.7 [1,24]. For a given graph G on n vertices one can decide in
O(n”log n) steps whether G is a partial binary Hamming graph.

Main algorithmic results of Section 2 are summarized in Table 1.

3. THE GENERAL CASE

Binary Hamming graphs are Cartesian products of K,’s. A natural generalization are
Cartesian products of arbitrary complete graphs. These products are known as
Hamming graphs. As before, we can consider retracts and isometric subgraphs and ask
for properties and recognition algorithms. This approach yields several interesting
classes of graphs.

3.1. Hamming graphs. A Hamming graph is the Cartesian product of complete
graphs. Many characterizations of these graphs are known, we refer to [7,8] and
references there.

Suppose that we wish to recognize Hamming graphs. Then, for a given graph it is
enough to find its (prime) factor decomposition with respect to the Cartesian product
and verify whether the factors are complete graphs. The fastest known algorithm for
such a decomposition is due to Aurenhammer, Hagauer and Imrich [3] and is of time
complexity O(m logn). Here we will reduce this complexity to O(m) for the special
case of Hamming graphs.

For our purposes the following definitions will be convenient.

Let ry, 1, ..., 1, be given integers =2 and let V be the set of ¢-tuples a,a, - - - a, with
0=<a; <r,— 1. These t-tuples will be the set of vertices of our Hamming graph. We note
that there are n =[I;_, r, such ¢-tuples.

We connect any two ¢-tuples aqa, - - - a, and b\b, - - - b, by an edge if they differ in
exactly one place, i.e. if there is a j such that a; # b; but a; = b, for i #j. Let E be the set
of such edges. Then it is straightforward to see that the graph H = (V, E) is a Hamming
graph.

It is easy to see that the shortest path distance in H between any two vertices
aia,---a, and b,b,--- b, is the number of places (or components) in which these
t-tuples differ. This distance is also called the Hamming distance (cf. Section 2.1 for the
bipartite case) and the corresponding labelling of the vertices of H is called a
Hamming labelling.

Let vy=00---0 and let vy, vy,...,v, be a BFS ordering of the vertices of H.
Furthermore, let L, denote the kth level with respect to this ordering, i.e. the set of all
vertices of distance k from v,.

Clearly, L, consists only of vy and L, of all neighbors of v,. In general, we can say
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that L, consists of all those ¢-tuples a,a, - - - a, in which exactly k of the a; are 0. For
further reference we state the following observations as ‘facts’.

Fact 3.1. Let mbe a permutation of {0, 1, ..., r,— 1} If
hive—aia,---a; - a,
is a Hamming labelling of H, then
Th:ve—>aa, - Ta; "+ a,

is also a Hamming labelling.

Facr3.2. Let1<i<j<tand h be given as in Fact 3.1. Then
hjvesaiay - ;1000 0 4100540000 4

is also a Hamming labelling.

Fact 3.3  The vertices of type 0---0a,0---0, a;#0, form a complete graph G; on
r; — 1 vertices and there are no edges between G; and G; for i #].

Facr 34 Let u=aja, --a,€ L, k=1. Then every neighbor v of u in L,_, has
exactly one more vanishing component than u.

Also, if k=2, the vertex u has at least two neighbors v,w in L, _, and they differ in
exactly two co-ordinates.

Moreover, if v=>bb,---b,and w=c,c, " - ¢, then a; =max{b,, ¢;} fori=1,...,¢t

Suppose that we are given a Hamming graph H by its adjacency matrix A. Then we
can assign labels to its vertices by the following algorithm.

The Labelling Algorithm
Input: The adjacency matrix of a Hamming graph H.
Output: A Hamming labelling of H.

1. Choose a vertex v,,.

2. Arrange the vertices of H in levels Ly, L,..., L, such that L; contains all
vertices in H of distance i from v,.

3. Find the connected components of the subgraph of H spanned by the vertices in
L. Let these components be Cy, Cs, ..., C,withr,—1, n—2,...,r,— 1 vertices,
respectively.

4. Label v, with a vector of length ¢ containing only zeros.

5. Label the vertices of C; with vectors of the form 0:---0qg,0-- -0, i.e. vectors of
length ¢ in which only the ith co-ordinate g; is different from zero, but where a;
assumes all values between 1 and 7, — 1.

6. Suppose that all vertices in L;, 1 =<j <k, have already been labelled. Choose an
unlabelled vertex u in L,.,. It must have at least two neighbors v, w in L;. Let the
labels of v and w be bb,---b, and c;c,- ¢, respectively. Setting a; =
max{b;, ¢;}, we obtain a label aa, - - - a, for wu.

ProrosiTiON 3.5.  The Labelling Algorithm, applied to a Hamming graph H, yields a
Hamming labelling of H.

Proor. By Fact 3.1, there is a Hamming labelling of H in which v, has the label
00---0.
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By Fact 3.3, the labels of the vertices in L, have only one non-zero co-ordinate.
Moreover, all vertices in a C; differ in one and the same co-ordinate from v,. By Fact
3.2, these co-ordinates can be easily arbitrarily assigned.

Once all vertices of L, are labelled, the labels of L, and all higher levels are
determined by Fact 3.4. O

ProprosITION 3.6.  The time complexity of the labelling algorithms is O(m) and the
space complexity is O(n?).

Proor. The space complexity is determined by the size of the adjacency matrix.
This matrix is needed to be able to check in constant time whether edges between
given endpoints exist.

We now investigate the time complexity of the algorithm.

Steps (1) and (4) require constant time.

Steps (2), (3) and (5) can each be completed in O(m) time.

Neighbors v, w € L; of u € L;; can be chosen in constant time and the new label for
u can be formed in time O(¢). Let n = |V (H)|. Then the complexity of step (6) is O(nt).

Since every vertex of H has at least ¢ neighbors, we infer that nt<2m. Hence,
O(nt) = O(m). O

Thus, for Hamming graphs H, our Labelling Algorithm yields a Hamming labelling
in O(m) time. Given any graph G, for which we wish to find out whether or not it is a
Hamming graph, we can try to apply the Labelling Algorithm. If it cannot be
completed, G cannot be a Hamming graph. However, if it succeeds, G still need not be
a Hamming graph. Consider, for instance, a simple example from Figure 1 in which a
(bipartite) non-Hamming graph G is presented together with a labelling obtained by
the labelling algorithm. Note that this is the Hamming labelling of the 3-cube Q5 and
that G has the same number of vertices and edges as Qs.

How, and how fast, can we check if a labelled graph is indeed a Hamming graph?
We may assume that all labels of the form aa, - - - a, with 0 <a; <r, — 1 really occur,
for otherwise G is not a Hamming graph. But then we can check in one run whether all
edges which a Hamming graph with this labelling must have really occur. Every such
check can be done in constant time since we work with the adjacency matrix. If no
edges remain, G is a Hamming graph.

The Hamming Graph Algorithm
Input: The adjacency matrix A of a graph G.
Output: A Hamming labelling of G if it exists; rejection otherwise.

FIGURE 1. A non-Hamming graph G with a labelling.
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—_

Choose a vertex v,,.

2. Arrange the vertices of G in levels Ly, L,..., L, such that L; contains all
vertices in G of distance i from v,.

3. Find the connected components of the subgraph of G spanned by the vertices of
L. Let these components be Cy, Cs, ..., C,withr,—1,n—2,...,r,— 1 vertices,
respectively.

4. (a) If any of the subgraphs of G spanned by the C; is not complete, then reject.
(b) If n #II;-, r;, then reject.

(c) ¥ m #3533, (r(ri— DIIj=1,7;), then reject.

(d) Form the vertices of the Hamming graph H with the labels a;a, - - - a,, where
a;€{0,1,...,r—1}

(e) Label v, with a vector of length ¢ containing only zeros.

5. Label the vertices of C; with vectors of the form 0---0a40---0, where
a;€{1,2,...,r,—1}, and mark the corresponding vertices of H.

6. (a) Label all vertices of G according to the rule in Fact 3.4 and mark the

corresponding vertex of H.
(b) If a vertex is marked more than once, then reject.
7. Scan all edges of H in some order and check whether they correspond to an edge
in G.

The correctness of the algorithm follows from the previous discussion. Concerning
the time complexity, note first that Steps 1-5 of the algorithm can clearly be performed
in O(m) time. In particular, in Step 4(a) we only need to count the number of edges in
the C/s. The labelling algorithm, which is by Proposition 3.6 of complexity O(m), is the
essential part of Step 6. The rest can be done in O(m) time because we just need to
point from an already labelled vertex of G to a corresponding vertex of H. Thus, the
following theorem holds.

TaeoREM 3.7. For a given graph G on n vertices and m edges one can decide in
O(m) time and O(n?) space whether G is a Hamming graph. The time complexity is
optimal.

3.2. Quasi-median graphs. Median graphs were introduced as graphs in which every
triple of vertices has a unique median. Mulder [28] introduced quasi-median graphs as
a generalization of median graphs in the following way.

Let (u;, u,, us) be a triple of vertices of a graph G. A quasi-median of (uy, u, us) is
a triple (x;, x,, x3) such that, for any distinct i and j,

@) du;, u;) =d(u;, x;) + d(x;, x;) + d(x;, u;),

(i) d(x;, x;) =k,

where k is minimal with respect to (i) and (ii). G is a quasi-median graph if it satisfies
the following conditions:

(i) any triple of vertices in G has a unique quasi-median;

(ii) G does not contain K, — e as an induced subgraph;

(iii) the convex hull of any isometric Cy is Q5.

Note that if kK =0 the quasi-median reduces to a median of a considered triple of
vertices.

Median graphs were characterized in Theorem 2.5 as (weak) retracts of binary
Hamming graphs. That the definition of quasi-median graphs due to Mulder is really
the most natural generalization of median graphs is supported by the following
theorem. It was proved independently by Chung, Graham and Saks [12] and Wilkeit
[32].
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THeoOREM 3.8 [12, 32]. A graph G is a quasi-median graph iff G is a weak retract of a
Hamming graph.

For several other characterizations of quasi-median graphs, we refer to [8].

Mulder [28] and Chung, Graham and Saks [12], as well as Wilkeit [32], observed that
these characterizations lead to polynomial recognition algorithms for this class of
graphs. But for a more efficient algorithm an insight due to Hagauer [21] was helpful.

For a graph G and a vertex s € V(G) let the skeleton G, of G (with respect to s) be
the graph that we obtain from G by removing all edges uv for which d(s, u) =d(s, v).
Note that if G is connected, so is G;. The following result is the principal observation
for a fast algorithm for recognizing quasi-median graphs.

THEOREM 3.9 [21]. A skeleton of a quasi-median graph is a median graph.

The recognition algorithm for quasi-median graphs then proceeds as follows. For a
given graph G and an arbitrary vertex s of G, we first check if G; is a median graph.
For this we can use any algorithm for recognizing median graphs and, by Theorem 2.5,
this can be done in O(n2logn) time. Furthermore, there exists a binary Hamming
labelling y of G. We can find it in O(m logn) = O(n log® n) time using the approach
from [22].

When we know that G is a median graph and that we have a binary labelling vy, we
must verify whether the remaining edges fit into the skeleton. To explain this in more
detail we need some definitions.

A clique Q of G is s-gated if there exists a vertex x of Q such that d(s, x)=
d(s,y) —1, for any vertex y of Q,y#x. We then define a relation S on E(G) as
follows. Edges e and f are in relation S if they belong to the same s-gated triangle. Let
S* be the transitive closure of S. We now introduce another relation 7 defined on
E(G,). Edges e and f of E(G,) are in relation 7, if there is an edge g of E(G,) such
that eSg and the vy labels of end-vertices of g and f differ in the same co-ordinate. With
these two relations we can characterize quasi-median graphs as follows.

THeorem 3.10 [21]. Let G be a connected graph and let s € V(G). Then G is a
quasi-median graph iff the following conditions hold:
(1) G, is a median graph;
(ii) each equivalence class of S* induces an s-gated clique; and
(iii) T is an equivalence relation.

By a result from [24] it can be shown that (ii) and (iii) can be checked in O(m log n)
time. So we have the following.

THeOREM 3.11 [21]. Let MG(n) denote the complexity of recognizing median graphs
on n vertices. Then, for a given graph G on n vertices and m edges, one can decide in
O(MG(n) + mlogn) steps whether G is a quasi-median graph.

3.3. The Graham and Winkler embedding. Before we consider the last class of graphs,
partial Hamming graphs, we briefly describe the canonical embedding of a graph into a
Cartesian product due to Graham and Winkler [20]. For a more detailed treatment
and proofs, we refer to the original paper of Graham and Winkler [20] and to
[19,23, 34] for related results.

Let E|, E,, ..., E, be the equivalence classes of the relation ©*. Fori=1,2,...,k,
let G; denote the graph (V(G), E(G)\E;) and let C;;, Ci»,..., C;,, denote the
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connected components of G, Form the graphs Gf, i=1,2,...,k, by setting
V(G#)={Ci1, Cip, ..., C,,,} and by taking C,;C;; to be an edge of G} if some edge
in E; joins a vertex in C;; to a vertex in C; ..

We now define a natural contraction «;: V(G)— V(GF¥) by setting a;(v) =C;; if
v € C;;. We thus obtain a mapping

k
a:V(G)—=|] G,
i=1

where

a() = (a1(v), az(v), ..., ar(v)).

The mapping « is the canonical embedding of a graph into a Cartesian product of
graphs. Its most important property is as follows.

THEOREM 3.12 [20]. The canonical embedding is an isometric embedding of G into
the Cartesian product [1%, G¥.

The embedding « possesses several other properties, which are collected in Theorem
3.13.

We call an isometric ebmedding B: G — 1/, H; irredundant if |Hj =2 holds for
i=1,2,...,m, and if the vertex h occurs as a co-ordinate value of the image of some
g € V(G) for all h e V(H;). This means that there are no unused factors or vertices in
an irredundant embedding.

Furthermore, let us call a graph G irreducible if, for any irredundant isometric
embedding B: G 1l H, m =1 and G = H,.

THEOREM 3.13.  Let « be the canonical embedding of a connected graph G. Then:
(i) a is irredundant,
(ii) @ has the largest possible number of factors among all irredundant isometric
embeddings of G;
(iii) each factor G} is irreducible; and
(iv) « is unique among the embeddings from (ii).

In the next section we show how « can be used to obtain a simple recognition
algorithm for partial Hamming graphs.

3.4. Partial Hamming graphs. Graphs that can be isometrically embedded into a
Hamming graph are called partial Hamming graphs. Alternatively, G is a partial
Hamming graph if each vertex of G can be labelled by a word of fixed length over
some alphabet such that the distance between any two vertices of G is equal to the
Hamming distance between the corresponding words. Quasi-median graphs are partial
Hamming graphs. Furthermore, the graph which is obtained from the Cartesian
product of K, by K; by removing a vertex is a partial Hamming graph, but not a
quasi-median graph. Thus, partial Hamming graphs form a proper extension of
quasi-median graphs.

In [33], Winkler proved that any two isometric embeddings of a graph into a
Hamming graph are equivalent (in a technical sense). This result also yields a simple



Recognizing Hamming graphs 219

O(n®) recognition algorithm for recognizing partial Hamming graphs. Later, Wilkeit
[31] obtained several characterizations of partial Hamming graphs and an O(n®)
recognition algorithm. In addition, we recall that partial Hamming graphs were also
characterized by Chepoi in [10].

Winkler’s algorithm was recently modified by Aurenhammer, Formann, Idury,
Schiffer and Wagner [4] to run in O(D(m, n) + n*) time, where D(m, n) denotes the
time needed to compute the distance matrix of a graph. Thus, in general, the
complexity is O(mn). Here we will describe another O(mn) algorithm due to Imrich
and KlavZzar [24], which is very simple to formulate but we need some background to
explain the idea.

As indicated in Section 2.3, we shall now explain how to compute ©* efficiently by a
method of Feder [17]. Let T be a spanning tree of a graph G. We say the edges
e, ¢’ € E(G) are in relation O, if they are in relation © and if at least one of the edges
e, ¢’ belongs to 7. Most importantly, Feder showed that ©* = @f. Thus, instead of
computing ©* it is enough to compute @f. This can be done in O(mn) time, since we
can calculate the distances from a vertex to all other vertices in O(m) time.

Using the above-mentioned result of Winkler from [33], the following crucial
theorem for the algorithm was proved in [24].

THEOREM 3.14. Let B: G— 1l H; be an isometric irredundant embedding of a
graph G into a product of complete graphs H;. Then this embedding is the canonical
isometric embedding.

Thus, for a given connected graph G, we compute Of and the graphs G;
i=1,2,...,k Then G is a partial Hamming graphs iff all the G; are complete graphs.
In addition, if G is a partial Hamming graph, then we can obtain a corresponding
labelling from «. The next theorem follows.

THEOREM 3.15. [4,24]. For a given graph G on n vertices and m edges one can
decide in O(nm) steps whether G is a partial Hamming graph.

The main algorithmic results of this section are summarized in Table 2. Recall that
MG (n) denotes the complexity of recognizing median graphs on n vertices.

4. CONCLUDING REMARK

In this paper we have considered recognition algorithms pertaining to graphs arising
in the following hierarchy:

Hamming graphs = quasi-median graphs = partial Hamming graphs.

Where we stopped in the binary case, another hierarchy begins, the so-called
¢'-hierarchy; cf. [5, 14] and references there. It starts (for graphs) with partial binary

TABLE 2
Complexities for the general case.

Class of graphs Time complexity
Hamming graphs m
Quasi-median graphs mlogn + MG (n)

Partial Hamming graphs mn
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Hamming graphs and stops with graphs with one positive eigenvalue of their distance
matrix. More precisely (cf. [5]) it contains the following classes of graphs:

graphs embeddable in a hypercube => graphs embeddable in ¢
= hypermetric graphs
= graphs of negative type

= graphs with one positive eigenvalue

Although the hierarchy is strict, it collapses for bipartite graphs to the one
considered in Section 2, as proved by Roth and Winkler [29]. More precisely, they
proved that a graph G is a partial binary Hamming graph iff G is bipartite and has one
positive eigenvalue. In contrast to the hierarchy considered in this paper, the
¢'-hierarchy is mostly unexplored with respect to efficient recognition algorithms. It
should be noted, however, that Shpectorov [30] proved that there is a polynomial
algorithm for recognizing /,-graphs, and that at the ‘Discrete Metric Spaces’ conference
in Bielefeld (November 1994) he announced the complexity O(nm). This result has
been recently documented in [15].
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