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 On the Complexity of Recognizing Hamming Graphs and Related
 Classes of Graphs

 W ILFRIED  I MRICH AND  S ANDI  K LAVZ ä  AR

 This paper contains a new algorithm that recognizes whether a given graph  G  is a Hamming
 graph ,  i . e .  a Cartesian product of complete graphs ,  in  O ( m ) time and  O ( n 2 ) space .  Here  m  and
 n  denote the numbers of edges and vertices of  G ,  respectively .  Previously this was only possible
 in  O ( m  log  n ) time .

 Moreover ,  we present a survey of other recognition algorithms for Hamming graphs ,  retracts
 of Hamming graphs and isometric subgraphs of Hamming graphs .  Special emphasis is also
 given to the bipartite case in which these classes are reduced to binary Hamming graphs ,
 median graphs and partial binary Hamming graphs .
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 1 .  I NTRODUCTION

 This paper is a contribution to the recognition of classes of graphs defined by metric
 properties .  These classes include Hamming graphs ,  quasi-median graphs ,  partial
 Hamming graphs ,  binary Hamming graphs ,  median graphs and partial binary
 Hamming graphs .

 We shall define the above-mentioned classes of graphs ,  list some of their structural
 properties ,  in particular those which are exploited from the algorithmic point of view ,
 and then shortly describe the ideas behind several recognition algorithms .

 Moreover ,  we also present a new recognition algorithm which is optimal in its time
 complexity for the recognition of Hamming graphs .

 All graphs considered in this paper are finite undirected graphs without loops or
 multiple edges .  Throughout the paper ,  for a given graph  G ,  let  n  and  m  denote the
 number of its vertices and edges ,  respectively .  For a graph  G  and a vertex set
 X  ’  V  ( G ) ,  let  k X  l   denote the subgraph of  G  induced by  X .

 A subgraph  H  of a graph  G  is an  isometric  subgraph if  d H ( u ,  y  )  5  d G ( u ,  y  ) for all
 u ,  y  P  V  ( H ) .  In addition ,  if  a  :  V  ( H )  5  V  ( G ) maps edges into edges and if  a  ( H ) is an
 isometric subgraph of  G ,  we call  a   an  isometric embedding  of  H  into  G .

 The  inter y  al I ( u ,  y  ) between vertices  u  and  y    consists of all vertices on shortest paths
 between  u  and  y  .  A subgraph  H  of  G  is  con y  ex  if ,  for any  u ,  y  P  V  ( H ) , I ( u ,  y  )  ‘  V  ( H ) .
 Clearly ,  a convex subgraph is an isometric subgraph ,  but the converse need not be true .
 The  con y  ex hull  of a subgraph  H  in  G  is the intersection of all convex subgraphs of  G
 containing  H ,  i . e .  the smallest convex subgraph containing  H .

 The  Cartesian product G  H  of graphs  G  and  H  is the graph with vertex set
 V  ( G )  3  V  ( H )   and ( a ,  x )( b ,  y )  P  E ( G  H ) whenever  ab  P  E ( G ) and  x  5  y ,  or  a  5  b
 and  xy  P  E ( H ) .

 A mapping  f  :  V  ( G )  5  V  ( H ) is a graph  homomorphism  if  f  ( u ) f  ( y  )  P  E ( H )
 whenever  u y  P  E ( G ) .  A subgraph  H  of a graph  G  is a  retract  of  G  if there is a
 homomorphism  r  from  V  ( G ) to  V  ( H ) such that  r ( y  )  5  y    for every  y  P  V  ( H ) .  The map
 r  is called a  retraction .  If we allow that  r  maps an edge of  G  either to an edge or to a
 single vertex in  H ,  we call  H  a  weak retract  of  G  and  r  a  weak retraction .
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 2 .  T HE  B IPARTITE OR  B INARY  C ASE

 In this section we consider binary Hamming graphs ,  their retracts and isometric
 subgraphs .

 2 . 1 .  Binary Hamming graphs .  Binary Hamming graphs are also known as hyper-
 cubes .  A  d -dimensional  hypercube Q d   ( d - cube  for short) is a graph the vertices of
 which are all  d -tuples  b 1 b 2  ?  ?  ?  b d   with  b i  P  h 0 ,  1 j   and two vertices are adjacent if the
 corresponding tuples dif fer in precisely one co-ordinate .  Alternatively ,   Q d   is the
 Cartesian product of  d  copies of  K 2 .  Clearly ,   Q d   is a connected ,  bipartite  d -regular
 graph on  n  5  2 d   vertices and  m  5  d  ?  2 d 2 1  edges .  Moreover ,  its automorphism group is
 vertex and edge transitive .  We also note that the usual shortest path distance between
 any two vertices  x  and  y  of  Q d   is the number of positions in which  x  and  y  dif fer .  For
 example ,  the distance between 0110 and 1101 is 3 .  This distance is also called the
 Hamming distance  between  x  and  y .

 Bhat [9] proposed an  O ( m ) algorithm for recognizing binary Hamming graphs .  In
 fact ,  his algorithm can essentially be obtained by specializing the algorithm for
 Hamming graphs which we will present in Section 3 . 1 .  Here we propose an alternative
 algorithm of the same time complexity for recognizing binary Hamming graphs .  One
 can obtain it by applying an algorithm from [26] or an algorithm from [22] for
 recognizing median graphs .  The time complexities of these two algorithms ,  which will
 be discussed in the next section ,  can be reduced for binary Hamming graphs because
 we need not worry about convexity .

 Let  u y    be an arbitrary edge of  Q d .  To fix ideas ,  let  u  5  00  ?  ?  ?  0 and  y  5  10  ?  ?  ?  0 .
 Then the vertices the first co-ordinate of which is zero are exactly those vertices  V u y   in
 Q d   which are closer to  u  than to  y  .  Furthermore ,  they induce a ( d  2  1)-cube  k V u y  l   in
 Q d .  Analogously ,  we obtain a ( d  2  1)-cube  k V y  u l   on the set  V y  u   of vertices that are
 closer to  y    than to  u ,  i . e .  those vertices the first co-ordinate of which is 1 .

 The edges not in  k V u y  l   or  k V y  u l   are of the form

 (0 x 2 x 3  ?  ?  ?  x d )(1 x 2 x 3  ?  ?  ?  x d ) .

 It is easily seen that these edges are a matching of  Q d   and that this matching defines an
 isomorphism

 a  :  0 x 2 x 3  ?  ?  ?  x d  S  1 x 2 x 3  ?  ?  ?  x d

 of  k V u y  l   onto  k V y  u l .
 This information already suf fices for an  O ( n  log  n ) algorithm for recognizing binary

 Hamming graphs .  For ,  let  G  be a connected graph on  n  vertices .  If it is a binary
 Hamming graph its number  m  of edges must be ( n  / 2)  log 2  n  5  O ( n  log  n ) .  First ,  we can
 check in that many steps whether  G  is bipartite .  Then ,  choosing  u y  P  E ( G ) arbitrarily ,
 we can obtain all distances  d G ( u ,  x ) and  d G ( y  ,  x ) for  x  P  V  ( G ) in 2 m  steps .  Thus ,   V u y

 and  V y  u   can be determined in  O ( m ) time .  In another  O ( m ) steps one can determine
 whether the edges not in  k V u y  l   or  k V y  u l   define a matching and an isomorphism between
 k V u y  l   and  k V y  u l .

 It remains to show that  k V u y  l   which has less than  m  / 2 edges is a binary Hamming
 graph .  The complexity thus is

 O ( m )  1  O ( m  / 2)  1  O ( m  / 4)  1  ?  ?  ?  1  O (1)  5  O ( m ) .

 Since all edges have to be checked ,  this complexity is best possible .  We formulate this
 as a theorem .

 T HEOREM  2 . 1 [9] .  For a gi y  en graph G on n  y  ertices , one can decide in O ( n  log  n )
 steps whether G is a binary Hamming graph . This complexity is optimal .
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 For the next two sections we recall that for any subgraph of a binary Hamming
 graph ,   m  <  1 – 2 n  log  n ,  cf .  [1 ,  18] .

 2 . 2 .  Median graphs .  A  median  of a set of three vertices ,   u ,  y    and  w ,  is a vertex that
 lies in  I ( u ,  y  )  >  I ( u ,  w )  >  I ( y  ,  w ) .  In other words ,   x  is a median of  u ,  y    and  w  if

 d ( u ,  x )  1  d ( x ,  y  )  5  d ( u ,  y  ) ,  d ( y  ,  x )  1  d ( x ,  w )  5  d ( y  ,  w ) ,  d ( u ,  x )  1  d ( x ,  w )  5  d ( u ,  w ) .

 Let  u y  P  E ( G ) and let  w  P  V  ( G ) .  It is easy to verify that  u ,  y    and  w  have a median if f
 d ( u ,  w )  ?  d ( y  ,  w ) .  This observation in turn implies that  G  is bipartite if any three
 vertices of a graph  G  have a median .

 A connected graph  G  is a  median graph  if every triple of its vertices has a unique
 median .  It is easily seen that binary Hamming graphs and trees are median graphs .
 Furthermore ,  Bandelt proved the following theorem .

 T HEOREM  2 . 2 [6] .  A graph is a median graph if f it is a retract of a binary Hamming
 graphs .

 In fact ,  one could also replace retracts by weak retracts in Theorem 2 . 2 .  We also
 note that a retract always is an isometric subgraph .

 Next ,  we describe the convex expansion procedure due to Mulder [27 ,  28] which
 leads to another characterization of median graphs .  Let  G  be a graph .  Furthermore ,
 suppose that  W  ‘  V  ( G ) and  W  9  ‘  V  ( G ) are vertex sets such that  W  <  W  9  5  V  ( G ) ,
 W  >  W  9  ?  [   and there is no edge between  W  \ W  9  and  W  9 \ W  .  The  expansion  of  G  with
 respect to  W  and  W  9  is the graph  H  constructed as follows :
 (i)  replace every vertex  y  P  W  >  W  9  by an edge  u y  u 9 y  ;
 (ii)  join  u y   to the neighbors of  y    in  W  \ W  9  and  u 9 y   to the neighbors of  y    in  W  9 \ W  ;
 (iii)  for adjacent vertices  y  ,  w  P  W  >  W  9 ,  join  u y   to  u w   and  u 9 y   to  u 9 w .
 If ,  in addition ,   k W  l   and  k W  9 l   are convex subgraphs of  G ,  H  is a  con y  ex expansion  of
 G .  Mulder proved the following important result .

 T HEOREM  2 . 3 [27] .  A graph is a median graph if f it can be obtained from K 1   by a
 sequence of con y  ex expansions .

 We now turn to the algorithmic point of view .  As a by-product of their investigation ,
 Chung ,  Graham and Saks [11] proposed an  O ( n 4 ) algorithm for recognizing median
 graphs .

 Jha and Slutzki have given two algorithms of complexity  O ( n 2  log  n ) .  One [25] is
 based on Bandelt’s characterization ,  while the other one [26] uses the Mulder’s convex
 expansion procedure .  The main bottleneck of the latter approach from the computa-
 tional point of view is a convexity test .  This is partially solved by the following lemma
 due to Bandelt (personal communication to Jha and Slutzki) .  For a graph  G  call a
 subgraph  H  of  G  2- con y  ex  if for any two vertices  u  and  y    of  H  with  d G ( u ,  y  )  5  2 ,  every
 common neighbor of  u  and  y    belongs to  H .

 L EMMA  2 . 4 [26] .  Let G be a connected bipartite graph in which e y  ery triple of
 y  ertices has a median . Then a subgraph H of G is con y  ex if f H is a  2- con y  ex , isometric
 subgraph of G .

 In fact ,  as pointed out by a referee ,  it is possible to replace isometric subgraphs by
 connected subgraphs in the formulation of Lemma 2 . 4 .

 The fastest known algorithm for recognizing median graphs ,  however ,  is due to
 Hagauer ,  Imrich and Klavz ä ar [22] .  It has time complexity  O ( n

 3 – 2  log  n ) and is also based



 W . Imrich and S . Kla y  z ä  ar 212

 on Mulder’s convex expansion .  The first part of the algorithm attempts to embed a
 given graph  G  isometrically into a hypercube .  It properly embeds every median graph
 and rejects all non-embeddable graphs and some embeddable ones .  (It can thus not be
 used as a recognition algorithm for partial binary Hamming graphs . ) This first part has
 time complexity  O ( m  log  n ) .  In a second step the convexity of certain subgraphs of  G
 has to be tested .  (These graphs correspond to the graphs  k W  l   and  k W  9 l   introduced
 before Theorem 2 . 3 .  Their number can be of order  O ( n ) . ) If one performs these tests
 indiscriminately one by one ,  the complexity may go up to  O ( mn ) .  In [22] the sequence
 of these tests is carefully chosen and thus allows a reduction of the complexity to
 O ( mn

 1 – 2 ) .  We can thus state the following .

 T HEOREM  2 . 5 [22] .  For a gi y  en graph G on n  y  ertices one can decide in O ( n
 3 – 2  log  n )

 steps whether G is a median graph .

 2 . 3 .  Partial binary Hamming graphs .  Graphs that can be isometrically embedded into
 a binary Hamming graph are called  partial binary Hamming graphs .  In other words ,  a
 graph  G  is a partial binary Hamming graph if its vertices can be labelled by binary
 labels of a fixed length such that the distance between any two vertices of  G  is equal to
 the Hamming distance between the corresponding labels .  As median graphs are partial
 binary Hamming graphs and as the cycle  C 6  is a partial binary Hamming graph which is
 not a median graph ,  partial binary Hamming graphs form a proper extension of median
 graphs .

 Considering the structure of partial binary Hamming graphs which could be useful
 for a fast recognition algorithm ,  the following relation plays a central role .

 Let  G  be a connected graph .  Define a relation  Θ   on  E ( G ) as follows .  If
 e  5  xy  P  E ( G )   and  f  5  u y  P  E ( G ) ,  then  e Θ f  if

 d ( x ,  u )  1  d (  y ,  y  )  ?  d ( x ,  y  )  1  d (  y ,  u ) .

 The relation  Θ   is reflexive and symmetric ,  yet it need not be transitive .  We denote its
 transitive closure by  Θ * .  Winkler proved the following result ,  which is the base for a
 fast recognition algorithm .

 T HEOREM  2 . 6 [33] .  Let G be a connected graph . Then G is a partial binary Hamming
 graph if f G is bipartite and  Θ *  5  Θ .

 Before we continue we would like to mention that several other characterizations of
 partial binary Hamming graphs are known ,  the first one being due to Djokovic ́  [16] .
 Furthermore ,  Chepoi [10] has proved a similar result to Theorem 2 . 3 for partial binary
 Hamming graphs (one has to replace ‘convex expansion’ with ‘isometric expansion’) .

 Aurenhammer and Hagauer demonstrated in [2] how to compute the relation  Θ * in
 O ( nm )   time .  In [1] they used this result for deciding the transitivity of  Θ   for bipartite
 graphs within the same time bound .  The main idea is that one only counts the number
 of pairs of edges being in relation  Θ   and then compares this number with the number
 of pairs of edges in relation  Θ * .  Since ,  for a partial binary Hamming graph ,
 m  <  1 – 2  n  log  n  holds ,  this leads to an  O ( n 2  log  n ) algorithm for recognizing partial
 binary Hamming graphs .

 A much simpler recognition algorithm of the same time complexity was proposed by
 Imrich and Klavz ä ar [24] .  Its main advantage is that one only needs to compute  Θ * and
 not  Θ   itself .  Combining this idea with an approach of Feder [17] for computing  Θ * ,  we
 obtained a simpler algorithm for recognizing partial binary Hamming graphs .  We shall
 present more details in Section 3 . 4 when the general case of partial Hamming graphs is
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 T ABLE  1
 Complexities for the binary case .

 Class of graphs  Time complexity

 Binary Hamming graphs
 Median graphs
 Partial binary Hamming graphs

 n  log  n
 n  3 – 2  log  n
 n 2  log  n

 treated .  The algorithm for the binary case is a straightforward specialization of the
 general algorithm .  We thus have the following .

 T HEOREM  2 . 7 [1 ,  24] .  For a gi y  en graph G on n  y  ertices one can decide in
 O ( n 2  log  n )  steps whether G is a partial binary Hamming graph .

 Main algorithmic results of Section 2 are summarized in Table 1 .

 3 .  T HE  G ENERAL  C ASE

 Binary Hamming graphs are Cartesian products of  K 2 ’s .  A natural generalization are
 Cartesian products of arbitrary complete graphs .  These products are known as
 Hamming graphs .  As before ,  we can consider retracts and isometric subgraphs and ask
 for properties and recognition algorithms .  This approach yields several interesting
 classes of graphs .

 3 . 1 .  Hamming graphs .  A Hamming graph is the Cartesian product of complete
 graphs .  Many characterizations of these graphs are known ,  we refer to [7 ,  8] and
 references there .

 Suppose that we wish to recognize Hamming graphs .  Then ,  for a given graph it is
 enough to find its (prime) factor decomposition with respect to the Cartesian product
 and verify whether the factors are complete graphs .  The fastest known algorithm for
 such a decomposition is due to Aurenhammer ,  Hagauer and Imrich [3] and is of time
 complexity  O ( m  log  n ) .  Here we will reduce this complexity to  O ( m ) for the special
 case of Hamming graphs .

 For our purposes the following definitions will be convenient .
 Let  r 1  ,  r 2  ,  .  .  .  ,  r t   be given integers  > 2 and let  V  be the set of  t -tuples  a 1 a 2  ?  ?  ?  a t   with

 0  <  a i  <  r t  2  1 .  These  t -tuples will be the set of vertices of our Hamming graph .  We note
 that there are  n  5  p t

 i 5 1  r i   such  t -tuples .
 We connect any two  t -tuples  a 1 a 2  ?  ?  ?  a t   and  b 1 b 2  ?  ?  ?  b t   by an edge if they dif fer in

 exactly one place ,  i . e .  if there is a  j  such that  a j  ?  b j   but  a i  5  b i   for  i  ?  j .  Let  E  be the set
 of such edges .  Then it is straightforward to see that the graph  H  5  ( V ,  E ) is a Hamming
 graph .

 It is easy to see that the shortest path distance in  H  between any two vertices
 a 1 a 2  ?  ?  ?  a t   and  b 1 b 2  ?  ?  ?  b t   is the number of places (or components) in which these
 t -tuples dif fer .  This distance is also called the  Hamming distance  (cf .  Section 2 . 1 for the
 bipartite case) and the corresponding labelling of the vertices of  H  is called a
 Hamming labelling .

 Let  y  0  5  00  ?  ?  ?  0 and let  y  0  ,  y  1  ,  .  .  .  ,  y  n   be a BFS ordering of the vertices of  H .
 Furthermore ,  let  L k   denote the  k th level with respect to this ordering ,  i . e .  the set of all
 vertices of distance  k  from  y  0  .

 Clearly ,   L 0  consists only of  y  0  and  L 1  of all neighbors of  y  0 .  In general ,  we can say
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 that  L k   consists of all those  t -tuples  a 1 a 2  ?  ?  ?  a t   in which exactly  k  of the  a i   are  ? 0 .  For
 further reference we state the following observations as ‘facts’ .

 F ACT  3 . 1 .  Let  π   be a permutation of  h 0 ,  1 ,  .  .  .  ,  r i  2  1 j . If

 h :  y  S  a 1 a 2  ?  ?  ?  a i  ?  ?  ?  a t

 is a Hamming labelling of H , then

 π h :  y  S  a 1 a 2  ?  ?  ?  π a i  ?  ?  ?  a t

 is also a Hamming labelling .

 F ACT  3 . 2 .  Let  1  <  i  ,  j  <  t and h be gi y  en as in Fact  3 . 1 . Then

 h i j  :  y  S  a 1 a 2  ?  ?  ?  a i 2 1 a j a i 1 1  ?  ?  ?  a j 2 1 a i a j 1 1  ?  ?  ?  a t

 is also a Hamming labelling .

 F ACT  3 . 3  The  y  ertices of type  0  ?  ?  ?  0 a i 0  ?  ?  ?  0 , a i  ?  0 , form a complete graph G i  on
 r i  2  1   y  ertices and there are no edges between G i  and G j  for i  ?  j .

 F ACT  3 . 4  Let u  5  a 1 a 2  ?  ?  ?  a t  P  L k  , k  >  1 . Then e y  ery neighbor  y    of u in L k 2 1   has
 exactly one more  y  anishing component than u .

 Also , if k  >  2 , the  y  ertex u has at least two neighbors  y  ,  w in L k 2 1   and they dif fer in
 exactly two co - ordinates .

 Moreo y  er , if  y  5  b 1 b 2  ?  ?  ?  b t  and w  5  c 1 c 2  ?  ?  ?  c t  , then a i  5  max h b i  ,  c i j   for i  5  1 ,  .  .  .  ,  t .

 Suppose that we are given a Hamming graph  H  by its adjacency matrix  A .  Then we
 can assign labels to its vertices by the following algorithm .

 The Labelling Algorithm
 Input :  The adjacency matrix of a Hamming graph  H .
 Output :  A Hamming labelling of  H .

 1 .  Choose a vertex  y  0  .
 2 .  Arrange the vertices of  H  in levels  L 0  ,  L 1  ,  .  .  .  ,  L k   such that  L i   contains all

 vertices in  H  of distance  i  from  y  0  .
 3 .  Find the connected components of the subgraph of  H  spanned by the vertices in

 L 1 .  Let these components be  C 1  ,  C 2  ,  .  .  .  ,  C t   with  r 1  2  1 , r 2  2  2 ,  .  .  .  ,  r t  2  1 vertices ,
 respectively .

 4 .  Label  y  0  with a vector of length  t  containing only zeros .
 5 .  Label the vertices of  C i   with vectors of the form 0  ?  ?  ?  0 a i 0  ?  ?  ?  0 ,  i . e .  vectors of

 length  t  in which only the  i th co-ordinate  a i   is dif ferent from zero ,  but where  a i

 assumes all values between 1 and  r i  2  1 .
 6 .  Suppose that all vertices in  L j  ,  1  <  j  ,  k ,  have already been labelled .  Choose an

 unlabelled vertex  u  in  L j 1 1 .  It must have at least two neighbors  y  ,  w  in  L j .  Let the
 labels of  y    and  w  be  b 1 b 2  ?  ?  ?  b t   and  c 1 c 2  ?  ?  ?  c t ,  respectively .  Setting  a i  5
 max h b i  ,  c i j ,  we obtain a label  a 1 a 2  ?  ?  ?  a t   for  u .

 P ROPOSITION  3 . 5 .  The Labelling Algorithm , applied to a Hamming graph H , yields a
 Hamming labelling of H .

 P ROOF .  By Fact 3 . 1 ,  there is a Hamming labelling of  H  in which  y  0  has the label
 00  ?  ?  ?  0 .
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 By Fact 3 . 3 ,  the labels of the vertices in  L 1  have only one non-zero co-ordinate .
 Moreover ,  all vertices in a  C i   dif fer in one and the same co-ordinate from  y  0 .  By Fact
 3 . 2 ,  these co-ordinates can be easily arbitrarily assigned .

 Once all vertices of  L 1  are labelled ,  the labels of  L 2  and all higher levels are
 determined by Fact 3 . 4 .  h

 P ROPOSITION  3 . 6 .  The time complexity of the labelling algorithms is O ( m )  and the
 space complexity is O ( n 2 ) .

 P ROOF .  The space complexity is determined by the size of the adjacency matrix .
 This matrix is needed to be able to check in constant time whether edges between
 given endpoints exist .

 We now investigate the time complexity of the algorithm .
 Steps (1) and (4) require constant time .
 Steps (2) ,  (3) and (5) can each be completed in  O ( m ) time .
 Neighbors  y  ,  w  P  L j   of  u  P  L j 1 1  can be chosen in constant time and the new label for

 u  can be formed in time  O ( t ) .  Let  n  5  u V  ( H ) u .  Then the complexity of step (6) is  O ( nt ) .
 Since every vertex of  H  has at least  t  neighbors ,  we infer that  nt  <  2 m .  Hence ,

 O ( nt )  5  O ( m ) .  h

 Thus ,  for Hamming graphs  H ,  our Labelling Algorithm yields a Hamming labelling
 in  O ( m ) time .  Given any graph  G ,  for which we wish to find out whether or not it is a
 Hamming graph ,  we can try to apply the Labelling Algorithm .  If it cannot be
 completed ,   G  cannot be a Hamming graph .  However ,  if it succeeds ,   G  still need not be
 a Hamming graph .  Consider ,  for instance ,  a simple example from Figure 1 in which a
 (bipartite) non-Hamming graph  G  is presented together with a labelling obtained by
 the labelling algorithm .  Note that this is the Hamming labelling of the 3-cube  Q 3  and
 that  G  has the same number of vertices and edges as  Q 3  .

 How ,  and how fast ,  can we check if a labelled graph is indeed a Hamming graph?
 We may assume that all labels of the form  a 1 a 2  ?  ?  ?  a t   with 0  <  a i  <  r i  2  1 really occur ,
 for otherwise  G  is not a Hamming graph .  But then we can check in one run whether all
 edges which a Hamming graph with this labelling must have really occur .  Every such
 check can be done in constant time since we work with the adjacency matrix .  If no
 edges remain ,   G  is a Hamming graph .

 The Hamming Graph Algorithm
 Input :  The adjacency matrix  A  of a graph  G .
 Output :  A Hamming labelling of  G  if it exists ;  rejection otherwise .

111

101

010

000

011

001

110

100

 F IGURE  1 .  A non-Hamming graph  G  with a labelling .
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 1 .  Choose a vertex  y  0  .
 2 .  Arrange the vertices of  G  in levels  L 0  ,  L 1  ,  .  .  .  ,  L k   such that  L i   contains all

 vertices in  G  of distance  i  from  y  0  .
 3 .  Find the connected components of the subgraph of  G  spanned by the vertices of

 L 1 .  Let these components be  C 1  ,  C 2  ,  .  .  .  ,  C t   with  r 1  2  1 , r 2  2  2 ,  .  .  .  ,  r t  2  1 vertices ,
 respectively .

 4 .  (a)  If any of the subgraphs of  G  spanned by the  C i   is not complete ,  then reject .
 (b)  If  n  ?  p t

 i 5 1  r i ,  then reject .
 (c)  If  m  ?  1 – 2 o t

 i 5 1  ( r i ( r i  2  1) p t
 j 5 1 ,j ? i  r j ) ,  then reject .

 (d)  Form the vertices of the Hamming graph  H  with the labels  a 1 a 2  ?  ?  ?  a t ,  where
 a i  P  h 0 ,  1 ,  .  .  .  ,  r i  2  1 j .

 (e)  Label  y  0  with a vector of length  t  containing only zeros .
 5 .  Label the vertices of  C i   with vectors of the form 0  ?  ?  ?  0 a i 0  ?  ?  ?  0 ,  where

 a i  P  h 1 ,  2 ,  .  .  .  ,  r i  2  1 j ,  and mark the corresponding vertices of  H .
 6 .  (a)  Label all vertices of  G  according to the rule in Fact 3 . 4 and mark the

 corresponding vertex of  H .
 (b)  If a vertex is marked more than once ,  then reject .

 7 .  Scan all edges of  H  in some order and check whether they correspond to an edge
 in  G .

 The correctness of the algorithm follows from the previous discussion .  Concerning
 the time complexity ,  note first that Steps 1 – 5 of the algorithm can clearly be performed
 in  O ( m ) time .  In particular ,  in Step 4(a) we only need to count the number of edges in
 the  C i 9 s .  The labelling algorithm ,  which is by Proposition 3 . 6 of complexity  O ( m ) ,  is the
 essential part of Step 6 .  The rest can be done in  O ( m ) time because we just need to
 point from an already labelled vertex of  G  to a corresponding vertex of  H .  Thus ,  the
 following theorem holds .

 T HEOREM  3 . 7 .  For a gi y  en graph G on n  y  ertices and m edges one can decide in
 O ( m )  time and O ( n 2 )  space whether G is a Hamming graph . The time complexity is
 optimal .

 3 . 2 .  Quasi - median graphs .  Median graphs were introduced as graphs in which every
 triple of vertices has a unique median .  Mulder [28] introduced quasi-median graphs as
 a generalization of median graphs in the following way .

 Let ( u 1  ,  u 2  ,  u 3 ) be a triple of vertices of a graph  G .  A  quasi - median  of ( u 1  ,  u 2  ,  u 3 ) is
 a triple ( x 1  ,  x 2  ,  x 3 ) such that ,  for any distinct  i  and  j ,
 (i)  d ( u i  ,  u j )  5  d ( u i  ,  x i )  1  d ( x i  ,  x j )  1  d ( x j  ,  u j ) ,
 (ii)  d ( x i  ,  x j )  5  k ,
 where  k  is minimal with respect to (i) and (ii) .   G  is a  quasi - median  graph if it satisfies
 the following conditions :
 (i)  any triple of vertices in  G  has a unique quasi-median ;
 (ii)  G  does not contain  K 4  2  e  as an induced subgraph ;
 (iii)  the convex hull of any isometric  C 6  is  Q 3  .
 Note that if  k  5  0 the quasi-median reduces to a median of a considered triple of
 vertices .

 Median graphs were characterized in Theorem 2 . 5 as (weak) retracts of binary
 Hamming graphs .  That the definition of quasi-median graphs due to Mulder is really
 the most natural generalization of median graphs is supported by the following
 theorem .  It was proved independently by Chung ,  Graham and Saks [12] and Wilkeit
 [32] .
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 T HEOREM  3 . 8 [12 ,  32] .  A graph G is a quasi - median graph if f G is a weak retract of a
 Hamming graph .

 For several other characterizations of quasi-median graphs ,  we refer to [8] .
 Mulder [28] and Chung ,  Graham and Saks [12] ,  as well as Wilkeit [32] ,  observed that

 these characterizations lead to polynomial recognition algorithms for this class of
 graphs .  But for a more ef ficient algorithm an insight due to Hagauer [21] was helpful .

 For a graph  G  and a vertex  s  P  V  ( G ) let the  skeleton G s   of  G  (with respect to  s ) be
 the graph that we obtain from  G  by removing all edges  u y    for which  d ( s ,  u )  5  d ( s ,  y  ) .
 Note that if  G  is connected ,  so is  G s .  The following result is the principal observation
 for a fast algorithm for recognizing quasi-median graphs .

 T HEOREM  3 . 9 [21] .  A skeleton of a quasi - median graph is a median graph .

 The recognition algorithm for quasi-median graphs then proceeds as follows .  For a
 given graph  G  and an arbitrary vertex  s  of  G ,  we first check if  G s   is a median graph .
 For this we can use any algorithm for recognizing median graphs and ,  by Theorem 2 . 5 ,
 this can be done in  O ( n

 3 – 2  log  n ) time .  Furthermore ,  there exists a binary Hamming
 labelling  g   of  G .  We can find it in  O ( m  log  n )  5  O ( n  log 2  n ) time using the approach
 from [22] .

 When we know that  G s   is a median graph and that we have a binary labelling  g  ,  we
 must verify whether the remaining edges fit into the skeleton .  To explain this in more
 detail we need some definitions .

 A clique  Q  of  G  is  s - gated  if there exists a vertex  x  of  Q  such that  d ( s ,  x )  5
 d ( s ,  y )  2  1 ,  for any vertex  y  of  Q ,  y  ?  x .  We then define a relation  S  on  E ( G ) as
 follows .  Edges  e  and  f  are in relation  S  if they belong to the same  s -gated triangle .  Let
 S * be the transitive closure of  S .  We now introduce another relation  T  defined on
 E ( G s ) .  Edges  e  and  f  of  E ( G s ) are in relation  T ,  if there is an edge  g  of  E ( G s ) such
 that  eSg  and the  g   labels of end-vertices of  g  and  f  dif fer in the same co-ordinate .  With
 these two relations we can characterize quasi-median graphs as follows .

 T HEOREM  3 . 10 [21] .  Let G be a connected graph and let s  P  V  ( G ) . Then G is a
 quasi - median graph if f the following conditions hold :
 (i)  G s  is a median graph ;
 (ii)  each equi y  alence class of S *  induces an s - gated clique ;   and
 (iii)  T is an equi y  alence relation .

 By a result from [24] it can be shown that (ii) and (iii) can be checked in  O ( m  log  n )
 time .  So we have the following .

 T HEOREM  3 . 11 [21] .  Let MG ( n )  denote the complexity of recognizing median graphs
 on n  y  ertices . Then , for a gi y  en graph G on n  y  ertices and m edges , one can decide in
 O ( MG ( n )  1  m  log  n )  steps whether G is a quasi - median graph .

 3 . 3 .  The Graham and Winkler embedding .  Before we consider the last class of graphs ,
 partial Hamming graphs ,  we briefly describe the canonical embedding of a graph into a
 Cartesian product due to Graham and Winkler [20] .  For a more detailed treatment
 and proofs ,  we refer to the original paper of Graham and Winkler [20] and to
 [19 ,  23 ,  34] for related results .

 Let  E 1  ,  E 2  ,  .  .  .  ,  E k   be the equivalence classes of the relation  Θ * .  For  i  5  1 ,  2 ,  .  .  .  ,  k ,
 let  G i   denote the graph ( V  ( G ) ,  E ( G ) \ E i ) and let  C i , 1  ,  C i , 2  ,  .  .  .  ,  C i ,m i

   denote the
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 connected components of  G i .  Form the graphs  G i * , i  5  1 ,  2 ,  .  .  .  ,  k ,  by setting
 V  ( G i *)  5  h C i , 1  ,  C i , 2  ,  .  .  .  ,  C i ,m i

 j   and by taking  C i , j C i ,j 9  to be an edge of  G i * if some edge
 in  E i   joins a vertex in  C i , j   to a vertex in  C i ,j 9 .

 We now define a natural contraction  a i  :  V  ( G )  5  V  ( G i *) by setting  a i ( y  )  5  C i , j   if
 y  P  C i , j .  We thus obtain a mapping

 a  :  V  ( G )  5  P k
 i 5 1

 G i * ,

 where
 a  ( y  )  5  ( a  1 ( y  ) ,  a  2 ( y  ) ,  .  .  .  ,  a k ( y  )) .

 The mapping  a   is the  canonical embedding  of a graph into a Cartesian product of
 graphs .  Its most important property is as follows .

 T HEOREM  3 . 12 [20] .  The canonical embedding is an isometric embedding of G into
 the Cartesian product  p k

 i 5 1  G i * .

 The embedding  a   possesses several other properties ,  which are collected in Theorem
 3 . 13 .

 We call an isometric ebmedding  b  :  G  5  p m
 i 5 1  H i  irredundant  if  u H i u  >  2 holds for

 i  5  1 ,  2 ,  .  .  .  ,  m ,  and if the vertex  h  occurs as a co-ordinate value of the image of some
 g  P  V  ( G )   for all  h  P  V  ( H i ) .  This means that there are no unused factors or vertices in
 an irredundant embedding .

 Furthermore ,  let us call a graph  G irreducible  if ,  for any irredundant isometric
 embedding  b  :  G  5  p m

 i 5 1  H i  , m  5  1 and  G  5  H 1 .

 T HEOREM  3 . 13 .  Let  a   be the canonical embedding of a connected graph G . Then :
 (i)  a   is irredundant ;
 (ii)  a   has the largest possible number of factors among all irredundant isometric
 embeddings of G ;
 (iii)  each factor G i *  is irreducible ;   and
 (iv)  a   is unique among the embeddings from  ( ii ) .

 In the next section we show how  a   can be used to obtain a simple recognition
 algorithm for partial Hamming graphs .

 3 . 4 .  Partial Hamming graphs .  Graphs that can be isometrically embedded into a
 Hamming graph are called  partial Hamming graphs .  Alternatively ,   G  is a partial
 Hamming graph if each vertex of  G  can be labelled by a word of fixed length over
 some alphabet such that the distance between any two vertices of  G  is equal to the
 Hamming distance between the corresponding words .  Quasi-median graphs are partial
 Hamming graphs .  Furthermore ,  the graph which is obtained from the Cartesian
 product of  K 2  by  K 3  by removing a vertex is a partial Hamming graph ,  but not a
 quasi-median graph .  Thus ,  partial Hamming graphs form a proper extension of
 quasi-median graphs .

 In [33] ,  Winkler proved that any two isometric embeddings of a graph into a
 Hamming graph are equivalent (in a technical sense) .  This result also yields a simple
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 O ( n 5 ) recognition algorithm for recognizing partial Hamming graphs .  Later ,  Wilkeit
 [31] obtained several characterizations of partial Hamming graphs and an  O ( n 3 )
 recognition algorithm .  In addition ,  we recall that partial Hamming graphs were also
 characterized by Chepoi in [10] .

 Winkler’s algorithm was recently modified by Aurenhammer ,  Formann ,  Idury ,
 Scha ̈  f fer and Wagner [4] to run in  O ( D ( m ,  n )  1  n 2 ) time ,  where  D ( m ,  n ) denotes the
 time needed to compute the distance matrix of a graph .  Thus ,  in general ,  the
 complexity is  O ( mn ) .  Here we will describe another  O ( mn ) algorithm due to Imrich
 and Klavz ä ar [24] ,  which is very simple to formulate but we need some background to
 explain the idea .

 As indicated in Section 2 . 3 ,  we shall now explain how to compute  Θ * ef ficiently by a
 method of Feder [17] .  Let  T  be a spanning tree of a graph  G .  We say the edges
 e ,  e 9  P  E ( G )   are in relation  Θ ,  if they are in relation  Θ   and if at least one of the edges
 e ,  e 9   belongs to  T .  Most importantly ,  Feder showed that  Θ *  5  Θ 1 * .  Thus ,  instead of
 computing  Θ * it is enough to compute  Θ 1 * .  This can be done in  O ( mn ) time ,  since we
 can calculate the distances from a vertex to all other vertices in  O ( m ) time .

 Using the above-mentioned result of Winkler from [33] ,  the following crucial
 theorem for the algorithm was proved in [24] .

 T HEOREM  3 . 14 .  Let  b  :  G  5  p m
 i 5 1  H i  be an isometric irredundant embedding of a

 graph G into a product of complete graphs H i . Then this embedding is the canonical
 isometric embedding .

 Thus ,  for a given connected graph  G ,  we compute  Θ 1 * and the graphs  G i  ,
 i  5  1 ,  2 ,  .  .  .  ,  k .  Then  G  is a partial Hamming graphs if f all the  G i   are complete graphs .
 In addition ,  if  G  is a partial Hamming graph ,  then we can obtain a corresponding
 labelling from  a .  The next theorem follows .

 T HEOREM  3 . 15 .  [4 ,  24] .  For a gi y  en graph G on n  y  ertices and m edges one can
 decide in O ( nm )  steps whether G is a partial Hamming graph .

 The main algorithmic results of this section are summarized in Table 2 .  Recall that
 MG ( n )   denotes the complexity of recognizing median graphs on  n  vertices .

 4 .  C ONCLUDING  R EMARK

 In this paper we have considered recognition algorithms pertaining to graphs arising
 in the following hierarchy :

 Hamming  graphs  é  quasi-median  graphs  é  partial  Hamming  graphs .

 Where we stopped in the binary case ,  another hierarchy begins ,  the so-called
 , 1 -hierarchy ;  cf .  [5 ,  14] and references there .  It starts (for graphs) with partial binary

 T ABLE  2
 Complexities for the general case .

 Class of graphs  Time complexity

 Hamming graphs
 Quasi-median graphs
 Partial Hamming graphs

 m
 m  log  n  1  MG ( n )

 mn
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 Hamming graphs and stops with graphs with one positive eigenvalue of their distance
 matrix .  More precisely (cf .  [5]) it contains the following classes of graphs :

 graphs  embeddable  in  a  hypercube  é  graphs  embeddable  in  , 1

 é  hypermetric  graphs

 é  graphs  of  negative  type

 é  graphs  with  one  positive  eigenvalue

 Although the hierarchy is strict ,  it collapses for bipartite graphs to the one
 considered in Section 2 ,  as proved by Roth and Winkler [29] .  More precisely ,  they
 proved that a graph  G  is a partial binary Hamming graph if f  G  is bipartite and has one
 positive eigenvalue .  In contrast to the hierarchy considered in this paper ,  the
 , 1 -hierarchy is mostly unexplored with respect to ef ficient recognition algorithms .  It
 should be noted ,  however ,  that Shpectorov [30] proved that there is a polynomial
 algorithm for recognizing  l 1 -graphs ,  and that at the ‘Discrete Metric Spaces’ conference
 in Bielefeld (November 1994) he announced the complexity  O ( nm ) .  This result has
 been recently documented in [15] .
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