Maximum cardinality resonant sets and maximal alternating sets of hexagonal systems

Sandi Klavžar
Faculty of Mathematics and Physics, University of Ljubljana Jadranska 19, 1000 Ljubljana, Slovenia
and
Faculty of Natural Sciences and Mathematics, University of Maribor
Koroška 160, 2000 Maribor, Slovenia
sandi.klavzar@fmf.uni-lj.si
Khaled Salem
Department of Basic Sciences
The British University in Egypt
El Shorouk 11837, Egypt
ksalem@bue.edu.eg
Andrej Taranenko
Faculty of Natural Sciences and Mathematics, University of Maribor Koroška 160, 2000 Maribor, Slovenia
andrej.taranenko@uni-mb.si

Abstract

It is shown that the Clar number can be arbitrarily larger than the cardinality of a maximal alternating set. In particular, a maximal alternating set of a hexagonal system need not contain a maximum cardinality resonant set, thus disproving a previously stated conjecture. It is known that maximum cardinality resonant sets and maximal alternating sets are canonical, but the proofs of these two theorems are analogous and lengthy. A new conjecture is proposed and it is shown that the validity of the conjecture allows short proofs of the aforementioned two results. The conjecture holds for catacondensed hexagonal systems and for all normal hexagonal systems up to ten hexagons. Also, it is shown that the Fries number can be arbitrarily larger than the Clar number.

Key words: Hexagonal system, perfect matching, resonant set, alternating set, Clar number

1 Introduction

Perfect matchings play a meaningful role in mathematical chemistry and have been studied for many decades. Also, the topic received a lot of recent attention, in particular with respect to the fullerenes, see for instance [1-4]. The ongoing and recent interest in perfect matchings is specially true for hexagonal systems [5-10] since perfect matchings naturally model the so-called Kekulé structures of the corresponding benzenoid molecules.

In this paper, we are interested in both maximum cardinality resonant sets and maximal alternating sets of hexagonal systems (see Section 2 for all the definitions). In 1985, Zheng and Chen [11] proved that every maximum cardinality resonant set of a hexagonal system is canonical. (Gutman first proved the result for catacondensed hexagonal systems [12].) On the other hand, in 2006, more than two decades later, Salem and Abeledo [13] proved that every maximal alternating set of a hexagonal system is canonical. (Again, this was earlier proved in [14] for the case of catacondensed hexagonal systems.) The proof of this latter result replicates a lot of the ideas used in the proof of the earlier result.

So both - maximum cardinality resonant sets and maximal alternating setsare canonical and the proofs of these results are analogous and in fact lengthy. This naturally leads to the question whether there is a connection between these two results. In an attempt to answer this question, a conjecture was put forward by one of the present authors [15] in the hope that if it is true, it can be combined with one of the two results to give a short and elegant proof of the other result. In Section 3, this conjecture is stated and an infinite sequence of hexagonal systems is given showing that it is false. The Clar numbers of these hexagonal systems are also computed which enables us to show that the Clar number can be arbitrarily larger than the cardinality of a maximal alternating set.

In Section 4, a weaker conjecture is proposed and its validity for catacondensed hexagonal systems is noted. It is shown that the validity of this weaker conjecture allows short proofs of the aforementioned two results. Section 5 explains the role of computer experiments in our work. In particular, algorithms for checking both conjectures are listed, the verification of the weaker conjecture for normal hexagonal systems up to ten hexagons is reported, and the smallest counterexample of the other conjecture is identified. Then, in Section 6, we relate the Clar number to the Fries number [16]. The latter number, as well as the Clar number, is associated with an optimization model for hexagonal systems and hence of relevance in chemical graph theory [17,18]. We present an infinite sequence of hexagonal systems to demonstrate that the Fries number of a hexagonal system can be arbitrary larger than its Clar number.

2 Preliminaries

A hexagonal system H is a 2-connected plane graph in which every inner face is a regular hexagon of side length one. A vertex of H lying on the boundary of the outer face of H is called an external vertex, otherwise, it is called an internal vertex. A hexagonal system having no internal vertices is called catacondensed, otherwise, it is called pericondensed. A hexagonal system that has a perfect matching is called a Kekuléan hexagonal system.

An edge of a graph that has a perfect matching is fixed if it belongs to all or none of the perfect matchings of the graph. A normal hexagonal system has a perfect matching but no fixed edges. A hexagonal system H is normal if and only if there exists a perfect matching M of H such that the boundary of the outer face of H, a cycle, is M-alternating [19]. It is clear that every catacondensed hexagonal system is normal. Fig. 1 presents a normal pericondensed hexagonal system.

Fig. 1. Coronene.
Let P be a set of hexagons of a hexagonal system H. The subgraph of H obtained by deleting from H the vertices of the hexagons in P is denoted by $H-P$. It is clear that $H-P$ can be the empty graph.

Let P be a set of hexagons of a hexagonal system H. The set P is called an alternating set of H if there exists a perfect matching of H that contains a perfect matching of each hexagon in P. It is easy to see that if P is an alternating set of a hexagonal system H, then $H-P$ is empty or has a perfect matching [13,14]. The Fries number of a Kekuléan hexagonal system H [20] is the maximum of the cardinalities of all the alternating sets of H and is denoted by $\operatorname{Fr}(H)$. An alternating set whose cardinality is the Fries number is called a maximum cardinality alternating set. An alternating set is maximal if it is not contained in another alternating set.

Let P be a set of hexagons of a hexagonal system H. The set P is called a resonant set of $H[12,21]$ if the hexagons in P are pair-wise disjoint and $H-P$ has a perfect matching or is empty. (In the figures, resonant sets will be indicated with circles and alternating sets with filled circles.) Alternatively [17,18], P is a resonant set of H if the hexagons in P are pair-wise disjoint and there exists a perfect matching of H that contains a perfect matching of each hexagon in
P. The Clar number of a Kekuléan hexagonal system H [22] is the maximum of the cardinalities of all the resonant sets of H and is denoted by $C l(H)$. A resonant set whose cardinality is the Clar number is called a maximum cardinality resonant set. A resonant set is maximal if it is not contained in another resonant set.

Let P be a set of hexagons of a hexagonal system H. Let M be a perfect matching of H. The set P is called an M-resonant set of H [23] if the hexagons in P are pair-wise disjoint and the perfect matching M contains a perfect matching of each hexagon in P. An M-resonant set whose cardinality is the maximum of the cardinalities of all the M-resonant sets is called a maximum cardinality M-resonant set. For every perfect matching M of a hexagonal system H, there exists an M-alternating hexagon [24].

It is clear that a set of hexagons P is resonant if and only if it is M-resonant for some perfect matching M. However, the concept of a maximum cardinality resonant set and that of a maximum cardinality M-resonant set are not the same [23].

An alternating set P of a hexagonal system H satisfying $H-P$ is empty or has a unique perfect matching is called a canonical alternating set. This terminology is used in literature for resonant sets only [25,26]. Here, its use is extended.

The inner dual of a hexagonal system H, denoted $D(H)$, is the plane dual of the hexagonal system with the vertex corresponding to the outer face deleted. A hexagonal system is circumscribed [27] if hexagons are added to edges of the boundary of the outer face and the subgraph of the inner dual induced by the vertices corresponding to the added hexagons is a cycle. For an illustration, Fig. 2 shows pyrene and circumscribed pyrene.

pyrene

circumscribed pyrene

Fig. 2. Circumscribing.

3 Infinite sequence of hexagonal systems

In this section we consider:
Conjecture 3.1 ([15]) Let H be a hexagonal system and P a maximal alternating set of H. There exists a maximum cardinality resonant set of H contained in P.

An alternative formulation of this conjecture follows.
Conjecture 3.2 Let H be a hexagonal system and P a maximal alternating set of H. Let M be a perfect matching of H that contains a perfect matching of each hexagon in P. For each maximum cardinality M-resonant set of H, S say, S is a maximum cardinality resonant set of H.

Here, it is shown that this conjecture is false by providing an infinite sequence of normal hexagonal systems, each of which is a counterexample. In order to define this sequence, we recall the concept of an edge-join of two hexagonal systems [28].

Fig. 3. An edge-join of two hexagonal systems.
Let H^{\prime} and $H^{\prime \prime}$ be hexagonal systems. Let $u^{\prime} v^{\prime}\left(u^{\prime \prime} v^{\prime \prime}\right)$ be an edge of the boundary of the outer face of $H^{\prime}\left(H^{\prime \prime}\right)$ whose end-vertices are of degree two. Let H be the hexagonal system obtained by identifying u^{\prime} with $u^{\prime \prime}$ and v^{\prime} with $v^{\prime \prime}$. Then H is called an edge-join of H^{\prime} and $H^{\prime \prime}$. Fig. 3 illustrates this concept.

Let $H_{n}, n \geq 1$, be the hexagonal system obtained from the amalgamation of n copies of circumscribed pyrene in a path-like fashion. Fig. 4 shows H_{1} and H_{2} and the construction of H_{n} should be clear for any $n \geq 3$. In fact, H_{1} is circumscribed pyrene and for $n \geq 2, H_{n}$ is an edge-join of H_{n-1} and H_{1}. The following results are needed to show that $H_{n}, n \geq 1$ is indeed an infinite sequence of normal hexagonal systems, each of which is a counterexample of Conjecture 3.1.

Lemma 3.3 Let H be an edge-join of H^{\prime} and $H^{\prime \prime}$, where H^{\prime} and $H^{\prime \prime}$ are normal hexagonal systems. Let P be an alternating set of H. The hexagons of P that belong to H^{\prime} constitute an alternating set of H^{\prime} and the hexagons of P that belong to $H^{\prime \prime}$ constitute an alternating set of $H^{\prime \prime}$.

PROOF. First note that each normal hexagonal system is Kekuléan, thus, it has an even number of vertices. Hence, each of H^{\prime} and $H^{\prime \prime}$ has an even number of vertices. Let M be a perfect matching of H that contains a perfect matching of each hexagon in P. Let e be the edge in common between H^{\prime} and $H^{\prime \prime}$. There are two possible cases. In one case, the end vertices of e are incident with distinct edges in M. Since both H^{\prime} and $H^{\prime \prime}$ have an even number of vertices, both the distinct matched edges belong to H^{\prime} or both of them belong to $H^{\prime \prime}$. In the other case, the end vertices of e are incident with the same edge in M, the edge e. In each case, it is not difficult to see that the result is true.

Fig. 4. Hexagonal systems H_{1} and H_{2} and their resonant sets Q_{1} and Q_{2}.
Lemma 3.4 Let H be an edge-join of H^{\prime} and $H^{\prime \prime}$, where H^{\prime} and $H^{\prime \prime}$ are normal hexagonal systems. Then H is a normal hexagonal system and $C l(H) \leq$ $C l\left(H^{\prime}\right)+C l\left(H^{\prime \prime}\right)$.

PROOF. Let C^{\prime} be the boundary of the outer face of H^{\prime} and $C^{\prime \prime}$ be the boundary of the outer face of $H^{\prime \prime}$. Let M^{\prime} be a perfect matching of H^{\prime} such that C^{\prime} is M^{\prime}-alternating and let $M^{\prime \prime}$ be a perfect matching of $H^{\prime \prime}$ such that $C^{\prime \prime}$ is $M^{\prime \prime}$-alternating. The existence of M^{\prime} and $M^{\prime \prime}$ follows from that both H^{\prime} and $H^{\prime \prime}$ are normal hexagonal systems. Let C be the boundary of the outer face of H and let M_{C} be a perfect matching of C. It is not difficult to see that $M=\left(M^{\prime} \backslash C^{\prime}\right) \cup\left(M^{\prime \prime} \backslash C^{\prime \prime}\right) \cup M_{C}$ is a perfect matching of H such that C is M-alternating. Hence, H is a normal hexagonal system.

To prove the inequality, let P be a resonant set of H. Then P is an alternating set of H. By Lemma 3.3 the hexagons in P that belong to H^{\prime} constitute an alternating set of H^{\prime}, P^{\prime} say, whereas the hexagons in P that belong to $H^{\prime \prime}$ constitute an alternating set of $H^{\prime \prime}, P^{\prime \prime}$ say. Since P consists of pair-wise disjoint hexagons, so are P^{\prime} and $P^{\prime \prime}$, thus, P^{\prime} and $P^{\prime \prime}$ are resonant sets of H^{\prime} and $H^{\prime \prime}$, respectively. It is obvious that $|P|=\left|P^{\prime}\right|+\left|P^{\prime \prime}\right| \leq C l\left(H^{\prime}\right)+C l\left(H^{\prime \prime}\right)$. Since P is an arbitrary resonant set of $H, C l(H) \leq C l\left(H^{\prime}\right)+C l\left(H^{\prime \prime}\right)$.

It is worth noting that a result analogous to Lemma 3.4 can be proven for Fries numbers.

Proposition 3.5 For every $n \geq 1, H_{n}$ is a normal hexagonal system.

PROOF. The proof is by induction on n. Initial step: H_{1} is a normal hexagonal system because there exists a perfect matching M of H_{1}, the one shown in Fig. 5, such that the boundary of the outer face of H_{1} is M-alternating. Inductive step: Assume that H_{n} is a normal hexagonal system and we show that H_{n+1} is a normal hexagonal system, where $n \geq 1$. Recall that H_{n+1} is an edge-join of H_{n} and H_{1}. Hence by Lemma 3.4, H_{n+1} is a normal hexagonal system.

Fig. 5. H_{1}, circumscribed pyrene, is a normal hexagonal system.
Proposition 3.6 For every $n \geq 1, C l\left(H_{n}\right)=5 n$.

PROOF. It is clear that for every $n \geq 1, Q_{n}$ is a resonant set of H_{n}, where Q_{1} and Q_{2} are shown in Fig. 4. Hence, for every $n \geq 1, C l\left(H_{n}\right) \geq 5 n$. It remains to show that for every $n \geq 1, C l\left(H_{n}\right) \leq 5 n$. The proof is by induction on n. Initial step: Consider the inner dual $D\left(H_{1}\right)$ of H_{1} shown in Fig. 6. To simplify the notation let $G=D\left(H_{1}\right)$. Let $\alpha(G)$ denote the independence number of G. Clearly, $C l\left(H_{1}\right) \leq \alpha(G)$. It is shown that $\alpha(G) \leq 5$. Let X be an independent set of vertices of G and let C be the boundary of the outer face of G, a 10cycle. Since X is an independent set, it contains at most two vertices not lying on C. Let $i(X)$ be the number of vertices of X not lying on C. Case $i(X)=0$: Since C is a 10-cycle, X has at most 5 vertices lying on C and $|X| \leq 5$. Case $i(X)=1: X$ has at most 4 vertices lying on C and $|X| \leq 5$. Case $i(X)=2$: X has at most two vertices lying on C and $|X| \leq 4$. Hence $\alpha(G) \leq 5$ and $C l\left(H_{1}\right) \leq 5$. Inductive step: Assume that $C l\left(H_{n}\right) \leq 5 n$ and we show that $C l\left(H_{n+1}\right) \leq 5(n+1)$, where $n \geq 1$. Recall that H_{n+1} is an edge-join of H_{n} and H_{1} and note that by Proposition 3.5, both H_{n} and H_{1} are normal hexagonal systems. Hence, by Lemma 3.4, $C l\left(H_{n+1}\right) \leq C l\left(H_{n}\right)+C l\left(H_{1}\right)$. The inductive assumption and the initial step imply that $C l\left(H_{n}\right)+C l\left(H_{1}\right) \leq 5 n+5=$ $5(n+1)$.

Fig. 6. The inner dual of H_{1}.
Proposition 3.7 For every $n \geq 1$, there exists a maximal alternating set of H_{n}, P_{n} say, such that $\left|P_{n}\right|=4 n$.

PROOF. It suffices to show that for every $n \geq 1, P_{n}$ is a maximal alternating set of H_{n}, where P_{1} and P_{2} are shown in Fig. 7. The proof is by induction on n. Initial step: Fig. 7 shows that P_{1} is an alternating set of H_{1}. There exists a unique perfect matching of H_{1} that contains a perfect matching of each hexagon in P_{1}. Since only the (four) hexagons in P_{1} are alternating in this (unique) perfect matching, P_{1} is a maximal alternating set of H_{1}. Thus, the result is true for $n=1$.

Inductive step: Assume that the result is true for n and we show that it is true for $n+1$, where $n \geq 1$. It is clear that P_{n+1} is an alternating set of H_{n+1}. For the sake of obtaining a contradiction, assume that P_{n+1} is not a maximal alternating set of H_{n+1}. Thus, P_{n+1} is contained in another alternating set of H_{n+1}, P say. Let h be a hexagon that belongs to P but does not belong to P_{n+1}. It is clear that $P_{n+1} \cup\{h\}$ is an alternating set of H_{n+1}. Recall that H_{n+1} is an edge-join of H_{n} and H_{1} and note that by Lemma 3.5, H_{n} and H_{1} are normal hexagonal systems. By Lemma 3.3, the hexagons of $P_{n+1} \cup\{h\}$ that belong to H_{n} constitute an alternating set of H_{n}, P^{\prime} say, and the hexagons of $P_{n+1} \cup\{h\}$ that belong to H_{1} constitute an alternating set of $H_{1}, P^{\prime \prime}$ say. The hexagon h belongs to either H_{n} or H_{1}. Case h belongs to H_{n} : Then $P^{\prime}=P_{n} \cup\{h\}$ which contradicts the inductive assumption. Case h belongs to H_{1} : Then $P^{\prime \prime}=P_{1} \cup\{h\}$ which contradicts that P_{1} is a maximal alternating set of H_{1}.

For every $n \geq 1$, the validity of H_{n} as a counterexample of Conjecture 3.1 follows from Propositions 3.6 and 3.7. This section is concluded with a related result, but before stating it, recall that we write

$$
\lim _{n \rightarrow \infty} a_{n}=\infty
$$

where $\left\{a_{n}\right\}_{n=1}^{\infty}$ is an infinite sequence of real numbers such that for every $M>0$, there exists an integer $n_{0} \geq 1$ such that for every $n>n_{0}, a_{n}>M$.

Corollary 3.8 There exists an infinite sequence $\left(H_{n}, P_{n}\right), n \geq 1$, where H_{n} is a normal hexagonal system and P_{n} is a maximal alternating set of H_{n}, such that

$$
\lim _{n \rightarrow \infty} C l\left(H_{n}\right)-\left|P_{n}\right|=\infty .
$$

PROOF. The result follows from Propositions 3.5, 3.6, and 3.7.

Fig. 7. Hexagonal systems H_{1} and H_{2} and their alternating sets P_{1} and P_{2}.

4 New conjecture and its corollaries

We now propose:
Conjecture 4.1 Let H be a hexagonal system and P a maximal alternating set of H. Let M be a perfect matching of H that contains a perfect matching of each hexagon in P. For each maximum cardinality M-resonant set of H, S say, S is a canonical resonant set of H.

We first observe that Conjecture 4.1 holds for catacondensed hexagonal systems. The proof of this fact follows from Corollary 6 in [14]. We next demonstrate that, assuming the validity of Conjecture 4.1, the following two theorems (mentioned earlier) have short proofs.

Theorem $4.2([11,12])$ Let H be a hexagonal system and P a maximum cardinality resonant set of H. Then P is a canonical resonant set.

PROOF. It can be easily seen that P is contained in a maximal alternating set of H, A say. Let M be a perfect matching of H that contains a perfect matching of each hexagon in A. It is clear that P is a maximum cardinality
M-resonant set of H. Hence, by Conjecture 4.1, P is a canonical resonant set of H.

Theorem 4.3 ($[13,14])$ Let H be a hexagonal system and P a maximal alternating set of H. Then P is a canonical alternating set.

PROOF. Assume that P is not a canonical alternating set. Then $H-P$ has more than one perfect matching. Let M_{1} and M_{2} be two perfect matchings of $H-P$. Let M be a perfect matching of H that contains a perfect matching of each hexagon in P. By Conjecture 4.1, the set P contains a canonical resonant set, S say. Let $M_{P \backslash S}$ be the edges of M that belong to some hexagon of P but not to any hexagon of S. It is not difficult to see that $M_{1} \cup M_{P \backslash S}$ and $M_{2} \cup M_{P \backslash S}$ are two perfect matchings of $H-S$, a contradiction.

Clar number=3

A canonical resonant set

Fig. 8. Benzo[ghi]perylene. Conjecture 4.1 is weaker than Conjecture 3.2.
Remark 4.4 Fig. 8 shows that there exists a canonical resonant set that is not a maximum cardinality resonant set. This fact, coupled with Theorem 4.2, shows that Conjecture 4.1 is weaker than the (false) Conjecture 3.2.

5 Computer experiments

Two algorithms were designed and implemented in order to check Conjecture 3.1 and Conjecture 4.1 for each normal hexagonal system. The algorithm for checking Conjecture 3.1 is presented in Fig. 9. The (unique) smallest counterexample of Conjecture 3.1 found using the algorithm is presented in Fig. 10. It has six hexagons. Conjecture 4.1 was checked using the algorithm presented in Fig. 11. However, no counterexample was found among all normal hexagonal systems with up to ten hexagons. This gives some support for Conjecture 4.1. Hexagonal systems could be produced using the generating algorithm presented in $[29,30]$. The enumeration of perfect matchings was commenced using the algorithms presented in $[31,32]$.

Input: a normal hexagonal system H
Output: true or false

1. Enumerate all perfect matchings of H .
2. Find all maximal alternating sets.
3. Find all maximum cardinality resonant sets.
4. Check whether for every maximal alternating set P, there exists a maximum cardinality resonant set contained in P.

Fig. 9. Algorithm for checking Conjecture 3.1.

A maximal alternating set

The unique maximum cardinality resonant set

Fig. 10. The smallest counterexample of Conjecture 3.1.
Input: a normal hexagonal system H Output: true or false

1. Enumerate all perfect matchings of H.
2. Find all maximal alternating sets.
3. For each maximal alternating set P
3.1. Find a perfect matching M of H that contains a perfect matching of each hexagon in P.
3.2. Find all maximum cardinality M-resonant sets.
3.3. Check that each of these later sets is canonical.

Fig. 11. Algorithm for checking Conjecture 4.1.

6 The Fries number versus the Clar number

It is clear that $\operatorname{Fr}(H) \geq C l(H)$ for an arbitrary Kekuléan hexagonal system H. In this section we show that the difference $\operatorname{Fr}(H)-C l(H)$ can be arbitrarily large. More precisely, we prove the following:

Theorem 6.1 There exists an infinite sequence of normal hexagonal systems $B_{n}, n \geq 0$, such that

$$
\lim _{n \rightarrow \infty}\left(F r\left(B_{n}\right)-C l\left(B_{n}\right)\right)=\infty
$$

Let $B_{n}, n \geq 0$, be the sequence where B_{0} is benzo[a]coronene and for $n \geq 1$, B_{n} is an edge-join of B_{n-1} and naphthalene as shown in Fig. 13. In another terminology, for $n \geq 1, B_{n}$ is an edge join of B_{0} and the zigzag fibonacene $Z_{2 n}$ [33]. Fig. 12 proves that B_{0} is normal (since the outer cycle is alternating). $Z_{2 n}$ is normal as well being a catacondensed hexagonal system. Hence, by Lemma 3.4, for every $n \geq 0, B_{n}$ is a normal hexagonal system.

The two results below give the Clar numbers and the Fries numbers of B_{n}, $n \geq 0$, and they prove Theorem 6.1 immediately.

Fig. 12. Benzo $[a]$ coronene is a normal hexagonal system.
Proposition 6.2 For every $n \geq 0, C l\left(B_{n}\right)=4+n$.

PROOF. It is clear that for every $n \geq 0$, the set of circled hexagons shown in Fig. 13 is a resonant set of cardinality $4+n$. Hence, for every $n \geq 0, C l\left(B_{n}\right) \geq$ $4+n$. It remains to show that for every $n \geq 0, C l\left(B_{n}\right) \leq 4+n$. The proof is by induction on n. Initial step: In B_{0}, benzo $[a]$ coronene, the central hexagon of the coronene subgraph cannot belong to a maximum cardinality resonant set and such a set cannot contain more than three of the remaining hexagons in the coronene subgraph. Hence, $C l\left(B_{0}\right) \leq 4$. Induction step: Assume that $C l\left(B_{n}\right) \leq 4+n$, then we show that $C l\left(B_{n+1}\right) \leq 4+(n+1)$, where $n \geq 0$. Recall that B_{n+1} is an edge join of B_{n} and naphthalene. It is easily verified that the Clar number of naphthalene is one. Hence, by Lemma 3.4, $C l\left(B_{n+1}\right) \leq$ $C l\left(B_{n}\right)+1$, which completes the induction step.

Proposition 6.3 For every $n \geq 0, \operatorname{Fr}\left(B_{n}\right)=7+2 n$.

PROOF. For each $n \geq 0$, there exists a perfect matching, M_{n} say, of B_{n} that contains a perfect matching of each hexagon in B_{n} other than the central hexagon of the coronene subgraph. Fig. 13 depicts the perfect matchings M_{n} for $n=0,1,2,3$. Hence, for each $n \geq 0$, the set of all the hexagons other than the central hexagon of the coronene subgraph is an alternating set of B_{n}. Thus, for each $n \geq 0, \operatorname{Fr}\left(B_{n}\right) \geq 7+2 n$. For the sake of obtaining a contradiction, assume that $\operatorname{Fr}\left(B_{n}\right)>7+2 n$. Then the set of all the hexagons in B_{n}, \mathcal{F}_{n} say, is an alternating set of B_{n}. The subgraph of the inner dual of B_{n} induced by the vertices corresponding to the alternating set \mathcal{F}_{n} is bipartite [23]. Obviously,

Fig. 13. Hexagonal systems $B_{n}, n=0,1,2,3$, and their resonant sets.
this subgraph is the inner dual of B_{n}, a pericondensed hexagonal system, hence, it contains a triangle, a contradiction.

7 Concluding remarks

The paper is concluded with the following related result:
Proposition 7.1 Let H be a hexagonal system and let P be a canonical resonant set of H. Then P is a maximal resonant set of H.

PROOF. Assume that P is contained in another resonant set, P^{\prime} say. There exists a hexagon, R^{\prime} say, that belongs to P^{\prime} but does not belong to P. Let M be a perfect matching of H that contains a perfect matching of each hexagon in P^{\prime}. Let $E_{M, P}$ be the set of edges of M that belong to some hexagon of P. It is clear that R^{\prime} is contained in $H-P$ and $M \backslash E_{M, P}$ is a perfect matching of $H-P$ that contains a perfect matching of R^{\prime}. Hence, $H-P$ has more than one perfect matching, a contradiction.

Acknowledgments

We are grateful to Gunnar Brinkmann for providing us with his software for generating hexagonal systems.

The work was supported in part by the Ministry of Science of Slovenia under the grant P1-0297. Sandi Klavžar and Andrej Taranenko are also with the Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana.

References

[1] T. Došlić, Fullerene graphs with exponentially many perfect matchings, J. Math. Chem. 41 (2007) 183-192.
[2] J. E. Graver, Kekulé structures and the face independence number of a fullerene, European J. Combin. 28 (2007) 1115-1130.
[3] W. C. Shiu, H. Zhang, A complete characterization for k-resonant Klein-bottle polyhexes, J. Math. Chem. 43 (2008) 45-59.
[4] W.-H. Wang, A. Chang, D.-Q. Lu, Unicyclic graphs possessing Kekulé structures with minimal energy, J. Math. Chem. 42 (2007) 311-320.
[5] Y. Cao, F. Zhang, Extremal polygonal chains on k-matchings, MATCH Commun. Math. Comput. Chem. 60 (2008) 217-235.
[6] H. Hosoya, I. Gutman, Kekulé structures of hexagonal chains some unusual connections, J. Math. Chem. 44 (2008) 559-568.
[7] Y. Liu, R. S. Chen, The maximum matching's size and the fixed bonds in a polyhex $G=(W ; B)$ with $|W|=|B|$, MATCH Commun. Math. Comput. Chem. 60 (2008) 143-156.
[8] W. C. Shiu, P. C. B. Lam, L.-Z. Zhang, Extremal k^{*}-cycle resonant hexagonal chains, J. Math. Chem. 33 (2003) 17-28.
[9] A. Taranenko, A. Vesel, On elementary benzenoid graphs: new characterization and structure of their resonance graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 193-216.
[10] L. Wang, F. Zhang, H. Zhao, On the ordering of benzenoid chains and cyclopolyphenacenes with respect to their numbers of Clar aromatic sextets, J. Math. Chem. 38 (2005) 293-309.
[11] M. Zheng, R. S. Chen, A maximal cover of hexagonal systems, Graphs Combin. 1 (1985) 295-298.
[12] I. Gutman, Topological properties of benzenoid systems. XIX. Contributions to the aromatic sextet theory, Wiss. Z. Thechn. Hochsch. Ilmenau 29 (1983) 57-65.
[13] K. Salem, H. Abeledo, A maximal alternating set of a hexagonal system, MATCH Commun. Math. Comput. Chem. 55 (2006) 159-176.
[14] K. Salem, I. Gutman, The unfixed subgraph of a catacondensed hexagonal system obtained by fixing an alternating set, J. Math. Chem. 38 (2005) 503510.
[15] K. Salem, Alternating sets and resonant sets of a hexagonal system, DSc dissertation, The George Washington University, 2005.
[16] K. Fries, Uber Byclische Verbindungen und ihren Vergleich mit dem Naphtalin, Ann. Chem. 454 (1927) 121-324.
[17] H. Abeledo, G. Atkinson, The Clar and Fries problems for benzenoid hydrocarbons are linear programs, in: Discrete Mathematical Chemistry, eds. P. Hansen, P. Fowler, M. Zheng (Am. Math. Soc., Providence, RI, 2000), pp 1-8.
[18] H. Abeledo, G. Atkinson, Unimodularity of the Clar number problem, Linear Algebra Appl. 420 (2007) 441-448.
[19] F. Zhang, R. Chen, When each hexagon of a hexagonal system covers it, Discrete Appl. Math. 30 (1991) 63-75.
[20] P. Hansen, M. Zheng, Numerical bounds for the perfect matching vectors of a polyhex, J. Chem. Inf. Comput. Sci. 34 (1994) 305-308.
[21] H. Hosoya, T. Yamaguchi, Sextet polynomial. A new enumeration and proof technique for the resonance energy applied to the aromatic hydrocarbons, Tetrahedron Lett. 52 (1975) 4659-4662.
[22] P. Hansen, M. L. Zheng, Upper bounds for the Clar number of a benzenoid hydrocarbon, J. Chem. Soc. Faraday Trans. 88 (1992) 1621-1625.
[23] K. Salem, Towards a combinatorial efficient algorithm to solve the Clar problem of benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 53 (2005) 419-426.
[24] I. Gutman, Covering hexagonal systems with hexagons, in: Proceedings of the Fourth Yugoslav Seminar on Graph Theory (Institute of Mathematics, University of Novi Sad, Novi Sad, 1983), pp 151-160.
[25] M. Randić, Aromaticity of polycyclic conjugated hydrocarbons, Chem. Rev. 103 (2003) 3449-3605.
[26] W. C. Herndon, H. Hosoya, Parametrized valence bond calculations for benzenoid hydrocarbons using Clar structures, Tetrahedron 40 (1984) 39873995.
[27] J. Brunvoll, B. N. Cyvin, S. J. Cyvin, More about extremal animals, J. Math. Chem. 12 (1993) 109-119.
[28] I. Gutman, E. C. Kirby, Benzenoids with branching graphs that are trees, Croat. Chem. Acta 73 (2000) 943-955.
[29] G. Brinkmann, G. Caporossi, P. Hansen, A constructive enumeration of fusenes and benzenoids, J. Algorithms 45 (2002) 155-166.
[30] G. Brinkmann, C. Grothaus, I. Gutman, Fusenes and benzenoids with perfect matchings, J. Math. Chem. 42 (2007) 909-924.
[31] P. Hansen, M. Zheng, A linear algorithm for perfect matching in hexagonal systems, Discrete Math. 122 (1993) 179-196.
[32] H. Zhang, P. C. B. Lam, W. C. Shiu, Resonance graphs and a binary coding for the 1-factors of benzenoid systems, SIAM J. Discrete Math. 22 (2008) 971-984.
[33] I. Gutman, S. Klavžar, Chemical graph theory of fibonacenes, MATCH Commun. Math. Comput. Chem. 55 (2006) 39-54.

