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Abstract

It is shown that the Clar number can be arbitrarily larger than the cardinality of
a maximal alternating set. In particular, a maximal alternating set of a hexagonal
system need not contain a maximum cardinality resonant set, thus disproving a
previously stated conjecture. It is known that maximum cardinality resonant sets
and maximal alternating sets are canonical, but the proofs of these two theorems
are analogous and lengthy. A new conjecture is proposed and it is shown that the
validity of the conjecture allows short proofs of the aforementioned two results. The
conjecture holds for catacondensed hexagonal systems and for all normal hexago-
nal systems up to ten hexagons. Also, it is shown that the Fries number can be
arbitrarily larger than the Clar number.
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1 Introduction

Perfect matchings play a meaningful role in mathematical chemistry and have
been studied for many decades. Also, the topic received a lot of recent atten-
tion, in particular with respect to the fullerenes, see for instance [1–4]. The
ongoing and recent interest in perfect matchings is specially true for hexagonal
systems [5–10] since perfect matchings naturally model the so-called Kekulé
structures of the corresponding benzenoid molecules.

In this paper, we are interested in both maximum cardinality resonant sets
and maximal alternating sets of hexagonal systems (see Section 2 for all the
definitions). In 1985, Zheng and Chen [11] proved that every maximum cardi-
nality resonant set of a hexagonal system is canonical. (Gutman first proved
the result for catacondensed hexagonal systems [12].) On the other hand, in
2006, more than two decades later, Salem and Abeledo [13] proved that every
maximal alternating set of a hexagonal system is canonical. (Again, this was
earlier proved in [14] for the case of catacondensed hexagonal systems.) The
proof of this latter result replicates a lot of the ideas used in the proof of the
earlier result.

So both—maximum cardinality resonant sets and maximal alternating sets—
are canonical and the proofs of these results are analogous and in fact lengthy.
This naturally leads to the question whether there is a connection between
these two results. In an attempt to answer this question, a conjecture was put
forward by one of the present authors [15] in the hope that if it is true, it can
be combined with one of the two results to give a short and elegant proof of
the other result. In Section 3, this conjecture is stated and an infinite sequence
of hexagonal systems is given showing that it is false. The Clar numbers of
these hexagonal systems are also computed which enables us to show that
the Clar number can be arbitrarily larger than the cardinality of a maximal
alternating set.

In Section 4, a weaker conjecture is proposed and its validity for catacondensed
hexagonal systems is noted. It is shown that the validity of this weaker conjec-
ture allows short proofs of the aforementioned two results. Section 5 explains
the role of computer experiments in our work. In particular, algorithms for
checking both conjectures are listed, the verification of the weaker conjecture
for normal hexagonal systems up to ten hexagons is reported, and the smallest
counterexample of the other conjecture is identified. Then, in Section 6, we
relate the Clar number to the Fries number [16]. The latter number, as well as
the Clar number, is associated with an optimization model for hexagonal sys-
tems and hence of relevance in chemical graph theory [17,18]. We present an
infinite sequence of hexagonal systems to demonstrate that the Fries number
of a hexagonal system can be arbitrary larger than its Clar number.
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2 Preliminaries

A hexagonal system H is a 2-connected plane graph in which every inner face
is a regular hexagon of side length one. A vertex of H lying on the boundary
of the outer face of H is called an external vertex, otherwise, it is called
an internal vertex. A hexagonal system having no internal vertices is called
catacondensed, otherwise, it is called pericondensed. A hexagonal system that
has a perfect matching is called a Kekuléan hexagonal system.

An edge of a graph that has a perfect matching is fixed if it belongs to all or
none of the perfect matchings of the graph. A normal hexagonal system has a
perfect matching but no fixed edges. A hexagonal system H is normal if and
only if there exists a perfect matching M of H such that the boundary of the
outer face of H , a cycle, is M-alternating [19]. It is clear that every catacon-
densed hexagonal system is normal. Fig. 1 presents a normal pericondensed
hexagonal system.

Fig. 1. Coronene.

Let P be a set of hexagons of a hexagonal system H . The subgraph of H

obtained by deleting from H the vertices of the hexagons in P is denoted by
H − P . It is clear that H − P can be the empty graph.

Let P be a set of hexagons of a hexagonal system H . The set P is called
an alternating set of H if there exists a perfect matching of H that contains
a perfect matching of each hexagon in P . It is easy to see that if P is an
alternating set of a hexagonal system H , then H−P is empty or has a perfect
matching [13,14]. The Fries number of a Kekuléan hexagonal system H [20]
is the maximum of the cardinalities of all the alternating sets of H and is
denoted by Fr(H). An alternating set whose cardinality is the Fries number
is called a maximum cardinality alternating set. An alternating set is maximal
if it is not contained in another alternating set.

Let P be a set of hexagons of a hexagonal system H . The set P is called a reso-
nant set of H [12,21] if the hexagons in P are pair-wise disjoint and H−P has
a perfect matching or is empty. (In the figures, resonant sets will be indicated
with circles and alternating sets with filled circles.) Alternatively [17,18], P is
a resonant set of H if the hexagons in P are pair-wise disjoint and there exists
a perfect matching of H that contains a perfect matching of each hexagon in
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P . The Clar number of a Kekuléan hexagonal system H [22] is the maximum
of the cardinalities of all the resonant sets of H and is denoted by Cl(H). A
resonant set whose cardinality is the Clar number is called a maximum cardi-
nality resonant set. A resonant set is maximal if it is not contained in another
resonant set.

Let P be a set of hexagons of a hexagonal system H . Let M be a perfect
matching of H . The set P is called an M-resonant set of H [23] if the hexagons
in P are pair-wise disjoint and the perfect matching M contains a perfect
matching of each hexagon in P . An M-resonant set whose cardinality is the
maximum of the cardinalities of all the M-resonant sets is called a maximum
cardinality M-resonant set. For every perfect matching M of a hexagonal
system H , there exists an M-alternating hexagon [24].

It is clear that a set of hexagons P is resonant if and only if it is M-resonant
for some perfect matching M . However, the concept of a maximum cardinality
resonant set and that of a maximum cardinality M-resonant set are not the
same [23].

An alternating set P of a hexagonal system H satisfying H − P is empty
or has a unique perfect matching is called a canonical alternating set. This
terminology is used in literature for resonant sets only [25,26]. Here, its use is
extended.

The inner dual of a hexagonal system H , denoted D(H), is the plane dual of
the hexagonal system with the vertex corresponding to the outer face deleted.
A hexagonal system is circumscribed [27] if hexagons are added to edges of the
boundary of the outer face and the subgraph of the inner dual induced by the
vertices corresponding to the added hexagons is a cycle. For an illustration,
Fig. 2 shows pyrene and circumscribed pyrene.

pyrene

circumscribed pyrene

Fig. 2. Circumscribing.
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3 Infinite sequence of hexagonal systems

In this section we consider:

Conjecture 3.1 ([15]) Let H be a hexagonal system and P a maximal al-
ternating set of H. There exists a maximum cardinality resonant set of H

contained in P .

An alternative formulation of this conjecture follows.

Conjecture 3.2 Let H be a hexagonal system and P a maximal alternating
set of H. Let M be a perfect matching of H that contains a perfect matching
of each hexagon in P . For each maximum cardinality M-resonant set of H, S

say, S is a maximum cardinality resonant set of H.

Here, it is shown that this conjecture is false by providing an infinite sequence
of normal hexagonal systems, each of which is a counterexample. In order to
define this sequence, we recall the concept of an edge-join of two hexagonal
systems [28].

u''

v' v''

u'
H' H''

H

Fig. 3. An edge-join of two hexagonal systems.

Let H ′ and H ′′ be hexagonal systems. Let u′v′ (u′′v′′) be an edge of the bound-
ary of the outer face of H ′ (H ′′) whose end-vertices are of degree two. Let H

be the hexagonal system obtained by identifying u′ with u′′ and v′ with v′′.
Then H is called an edge-join of H ′ and H ′′. Fig. 3 illustrates this concept.

Let Hn, n ≥ 1, be the hexagonal system obtained from the amalgamation of
n copies of circumscribed pyrene in a path-like fashion. Fig. 4 shows H1 and
H2 and the construction of Hn should be clear for any n ≥ 3. In fact, H1

is circumscribed pyrene and for n ≥ 2, Hn is an edge-join of Hn−1 and H1.
The following results are needed to show that Hn, n ≥ 1 is indeed an infinite
sequence of normal hexagonal systems, each of which is a counterexample of
Conjecture 3.1.

Lemma 3.3 Let H be an edge-join of H ′ and H ′′, where H ′ and H ′′ are
normal hexagonal systems. Let P be an alternating set of H. The hexagons of
P that belong to H ′ constitute an alternating set of H ′ and the hexagons of P

that belong to H ′′ constitute an alternating set of H ′′.
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PROOF. First note that each normal hexagonal system is Kekuléan, thus, it
has an even number of vertices. Hence, each of H ′ and H ′′ has an even number
of vertices. Let M be a perfect matching of H that contains a perfect matching
of each hexagon in P . Let e be the edge in common between H ′ and H ′′. There
are two possible cases. In one case, the end vertices of e are incident with
distinct edges in M . Since both H ′ and H ′′ have an even number of vertices,
both the distinct matched edges belong to H ′ or both of them belong to H ′′.
In the other case, the end vertices of e are incident with the same edge in M ,
the edge e. In each case, it is not difficult to see that the result is true. 2

Fig. 4. Hexagonal systems H1 and H2 and their resonant sets Q1 and Q2.

Lemma 3.4 Let H be an edge-join of H ′ and H ′′, where H ′ and H ′′ are nor-
mal hexagonal systems. Then H is a normal hexagonal system and Cl(H) ≤
Cl(H ′) + Cl(H ′′).

PROOF. Let C ′ be the boundary of the outer face of H ′ and C ′′ be the
boundary of the outer face of H ′′. Let M ′ be a perfect matching of H ′ such
that C ′ is M ′-alternating and let M ′′ be a perfect matching of H ′′ such that
C ′′ is M ′′-alternating. The existence of M ′ and M ′′ follows from that both H ′

and H ′′ are normal hexagonal systems. Let C be the boundary of the outer
face of H and let MC be a perfect matching of C. It is not difficult to see that
M = (M ′ \ C ′) ∪ (M ′′ \ C ′′) ∪ MC is a perfect matching of H such that C is
M-alternating. Hence, H is a normal hexagonal system.

To prove the inequality, let P be a resonant set of H . Then P is an alternating
set of H . By Lemma 3.3 the hexagons in P that belong to H ′ constitute an
alternating set of H ′, P ′ say, whereas the hexagons in P that belong to H ′′

constitute an alternating set of H ′′, P ′′ say. Since P consists of pair-wise
disjoint hexagons, so are P ′ and P ′′, thus, P ′ and P ′′ are resonant sets of H ′

and H ′′, respectively. It is obvious that |P | = |P ′|+ |P ′′| ≤ Cl(H ′) + Cl(H ′′).
Since P is an arbitrary resonant set of H , Cl(H) ≤ Cl(H ′) + Cl(H ′′). 2
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It is worth noting that a result analogous to Lemma 3.4 can be proven for
Fries numbers.

Proposition 3.5 For every n ≥ 1, Hn is a normal hexagonal system.

PROOF. The proof is by induction on n. Initial step: H1 is a normal hexag-
onal system because there exists a perfect matching M of H1, the one shown
in Fig. 5, such that the boundary of the outer face of H1 is M-alternating.
Inductive step: Assume that Hn is a normal hexagonal system and we show
that Hn+1 is a normal hexagonal system, where n ≥ 1. Recall that Hn+1 is an
edge-join of Hn and H1. Hence by Lemma 3.4, Hn+1 is a normal hexagonal
system. 2

Fig. 5. H1, circumscribed pyrene, is a normal hexagonal system.

Proposition 3.6 For every n ≥ 1, Cl(Hn) = 5n.

PROOF. It is clear that for every n ≥ 1, Qn is a resonant set of Hn, where Q1

and Q2 are shown in Fig. 4. Hence, for every n ≥ 1, Cl(Hn) ≥ 5n. It remains
to show that for every n ≥ 1, Cl(Hn) ≤ 5n. The proof is by induction on n.
Initial step: Consider the inner dual D(H1) of H1 shown in Fig. 6. To simplify
the notation let G = D(H1). Let α(G) denote the independence number of G.
Clearly, Cl(H1) ≤ α(G). It is shown that α(G) ≤ 5. Let X be an independent
set of vertices of G and let C be the boundary of the outer face of G, a 10-
cycle. Since X is an independent set, it contains at most two vertices not lying
on C. Let i(X) be the number of vertices of X not lying on C. Case i(X) = 0:
Since C is a 10-cycle, X has at most 5 vertices lying on C and |X| ≤ 5. Case
i(X) = 1: X has at most 4 vertices lying on C and |X| ≤ 5. Case i(X) = 2:
X has at most two vertices lying on C and |X| ≤ 4. Hence α(G) ≤ 5 and
Cl(H1) ≤ 5. Inductive step: Assume that Cl(Hn) ≤ 5n and we show that
Cl(Hn+1) ≤ 5(n+1), where n ≥ 1. Recall that Hn+1 is an edge-join of Hn and
H1 and note that by Proposition 3.5, both Hn and H1 are normal hexagonal
systems. Hence, by Lemma 3.4, Cl(Hn+1) ≤ Cl(Hn) + Cl(H1). The inductive
assumption and the initial step imply that Cl(Hn) + Cl(H1) ≤ 5n + 5 =
5(n + 1). 2
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Fig. 6. The inner dual of H1.

Proposition 3.7 For every n ≥ 1, there exists a maximal alternating set of
Hn, Pn say, such that |Pn| = 4n.

PROOF. It suffices to show that for every n ≥ 1, Pn is a maximal alternating
set of Hn, where P1 and P2 are shown in Fig. 7. The proof is by induction
on n. Initial step: Fig. 7 shows that P1 is an alternating set of H1. There
exists a unique perfect matching of H1 that contains a perfect matching of
each hexagon in P1. Since only the (four) hexagons in P1 are alternating in
this (unique) perfect matching, P1 is a maximal alternating set of H1. Thus,
the result is true for n = 1.

Inductive step: Assume that the result is true for n and we show that it is
true for n+1, where n ≥ 1. It is clear that Pn+1 is an alternating set of Hn+1.
For the sake of obtaining a contradiction, assume that Pn+1 is not a maximal
alternating set of Hn+1. Thus, Pn+1 is contained in another alternating set of
Hn+1, P say. Let h be a hexagon that belongs to P but does not belong to
Pn+1. It is clear that Pn+1∪{h} is an alternating set of Hn+1. Recall that Hn+1

is an edge-join of Hn and H1 and note that by Lemma 3.5, Hn and H1 are
normal hexagonal systems. By Lemma 3.3, the hexagons of Pn+1 ∪ {h} that
belong to Hn constitute an alternating set of Hn, P ′ say, and the hexagons
of Pn+1 ∪ {h} that belong to H1 constitute an alternating set of H1, P ′′ say.
The hexagon h belongs to either Hn or H1. Case h belongs to Hn: Then
P ′ = Pn ∪ {h} which contradicts the inductive assumption. Case h belongs to
H1: Then P ′′ = P1 ∪ {h} which contradicts that P1 is a maximal alternating
set of H1. 2

For every n ≥ 1, the validity of Hn as a counterexample of Conjecture 3.1
follows from Propositions 3.6 and 3.7. This section is concluded with a related
result, but before stating it, recall that we write

lim
n→∞

an = ∞,
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where {an}
∞
n=1 is an infinite sequence of real numbers such that for every

M > 0, there exists an integer n0 ≥ 1 such that for every n > n0, an > M .

Corollary 3.8 There exists an infinite sequence (Hn, Pn), n ≥ 1, where Hn

is a normal hexagonal system and Pn is a maximal alternating set of Hn, such
that

lim
n→∞

Cl(Hn) − |Pn| = ∞ .

PROOF. The result follows from Propositions 3.5, 3.6, and 3.7. 2

Fig. 7. Hexagonal systems H1 and H2 and their alternating sets P1 and P2.

4 New conjecture and its corollaries

We now propose:

Conjecture 4.1 Let H be a hexagonal system and P a maximal alternating
set of H. Let M be a perfect matching of H that contains a perfect matching
of each hexagon in P . For each maximum cardinality M-resonant set of H, S

say, S is a canonical resonant set of H.

We first observe that Conjecture 4.1 holds for catacondensed hexagonal sys-
tems. The proof of this fact follows from Corollary 6 in [14]. We next demon-
strate that, assuming the validity of Conjecture 4.1, the following two theorems
(mentioned earlier) have short proofs.

Theorem 4.2 ([11,12]) Let H be a hexagonal system and P a maximum
cardinality resonant set of H. Then P is a canonical resonant set.

PROOF. It can be easily seen that P is contained in a maximal alternating
set of H , A say. Let M be a perfect matching of H that contains a perfect
matching of each hexagon in A. It is clear that P is a maximum cardinality
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M-resonant set of H . Hence, by Conjecture 4.1, P is a canonical resonant set
of H . 2

Theorem 4.3 ([13,14]) Let H be a hexagonal system and P a maximal al-
ternating set of H. Then P is a canonical alternating set.

PROOF. Assume that P is not a canonical alternating set. Then H −P has
more than one perfect matching. Let M1 and M2 be two perfect matchings of
H −P . Let M be a perfect matching of H that contains a perfect matching of
each hexagon in P . By Conjecture 4.1, the set P contains a canonical resonant
set, S say. Let MP\S be the edges of M that belong to some hexagon of P

but not to any hexagon of S. It is not difficult to see that M1 ∪ MP\S and
M2 ∪ MP\S are two perfect matchings of H − S, a contradiction. 2

A canonical resonant setClar number=3

Fig. 8. Benzo[ghi]perylene. Conjecture 4.1 is weaker than Conjecture 3.2.

Remark 4.4 Fig. 8 shows that there exists a canonical resonant set that is
not a maximum cardinality resonant set. This fact, coupled with Theorem 4.2,
shows that Conjecture 4.1 is weaker than the (false) Conjecture 3.2.

5 Computer experiments

Two algorithms were designed and implemented in order to check Conjec-
ture 3.1 and Conjecture 4.1 for each normal hexagonal system. The algorithm
for checking Conjecture 3.1 is presented in Fig. 9. The (unique) smallest coun-
terexample of Conjecture 3.1 found using the algorithm is presented in Fig. 10.
It has six hexagons. Conjecture 4.1 was checked using the algorithm presented
in Fig. 11. However, no counterexample was found among all normal hexag-
onal systems with up to ten hexagons. This gives some support for Conjec-
ture 4.1. Hexagonal systems could be produced using the generating algorithm
presented in [29,30]. The enumeration of perfect matchings was commenced
using the algorithms presented in [31,32].
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Input: a normal hexagonal system H

Output: true or false

1. Enumerate all perfect matchings of H.

2. Find all maximal alternating sets.

3. Find all maximum cardinality resonant sets.

4. Check whether for every maximal alternating set P, there

exists a maximum cardinality resonant set contained in P.

Fig. 9. Algorithm for checking Conjecture 3.1.

The unique maximum cardinality
               resonant set

A maximal alternating set

Fig. 10. The smallest counterexample of Conjecture 3.1.

Input: a normal hexagonal system H

Output: true or false

1. Enumerate all perfect matchings of H.

2. Find all maximal alternating sets.

3. For each maximal alternating set P

3.1. Find a perfect matching M of H that contains

a perfect matching of each hexagon in P.

3.2. Find all maximum cardinality M-resonant sets.

3.3. Check that each of these later sets is canonical.

Fig. 11. Algorithm for checking Conjecture 4.1.

6 The Fries number versus the Clar number

It is clear that Fr(H) ≥ Cl(H) for an arbitrary Kekuléan hexagonal system
H . In this section we show that the difference Fr(H)−Cl(H) can be arbitrarily
large. More precisely, we prove the following:

Theorem 6.1 There exists an infinite sequence of normal hexagonal systems
Bn, n ≥ 0, such that

lim
n→∞

(Fr(Bn) − Cl(Bn)) = ∞ .
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Let Bn, n ≥ 0, be the sequence where B0 is benzo[a]coronene and for n ≥ 1,
Bn is an edge-join of Bn−1 and naphthalene as shown in Fig. 13. In another
terminology, for n ≥ 1, Bn is an edge join of B0 and the zigzag fibonacene
Z2n [33]. Fig. 12 proves that B0 is normal (since the outer cycle is alternating).
Z2n is normal as well being a catacondensed hexagonal system. Hence, by
Lemma 3.4, for every n ≥ 0, Bn is a normal hexagonal system.

The two results below give the Clar numbers and the Fries numbers of Bn,
n ≥ 0, and they prove Theorem 6.1 immediately.

Fig. 12. Benzo[a]coronene is a normal hexagonal system.

Proposition 6.2 For every n ≥ 0, Cl(Bn) = 4 + n.

PROOF. It is clear that for every n ≥ 0, the set of circled hexagons shown in
Fig. 13 is a resonant set of cardinality 4+n. Hence, for every n ≥ 0, Cl(Bn) ≥
4 + n. It remains to show that for every n ≥ 0, Cl(Bn) ≤ 4 + n. The proof is
by induction on n. Initial step: In B0, benzo[a]coronene, the central hexagon
of the coronene subgraph cannot belong to a maximum cardinality resonant
set and such a set cannot contain more than three of the remaining hexagons
in the coronene subgraph. Hence, Cl(B0) ≤ 4. Induction step: Assume that
Cl(Bn) ≤ 4 + n, then we show that Cl(Bn+1) ≤ 4 + (n + 1), where n ≥ 0.
Recall that Bn+1 is an edge join of Bn and naphthalene. It is easily verified that
the Clar number of naphthalene is one. Hence, by Lemma 3.4, Cl(Bn+1) ≤
Cl(Bn) + 1, which completes the induction step. 2

Proposition 6.3 For every n ≥ 0, Fr(Bn) = 7 + 2n.

PROOF. For each n ≥ 0, there exists a perfect matching, Mn say, of Bn

that contains a perfect matching of each hexagon in Bn other than the central
hexagon of the coronene subgraph. Fig. 13 depicts the perfect matchings Mn

for n = 0, 1, 2, 3. Hence, for each n ≥ 0, the set of all the hexagons other than
the central hexagon of the coronene subgraph is an alternating set of Bn. Thus,
for each n ≥ 0, Fr(Bn) ≥ 7 + 2n. For the sake of obtaining a contradiction,
assume that Fr(Bn) > 7+2n. Then the set of all the hexagons in Bn, Fn say, is
an alternating set of Bn. The subgraph of the inner dual of Bn induced by the
vertices corresponding to the alternating set Fn is bipartite [23]. Obviously,
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B1

B2

B3

B0

Fig. 13. Hexagonal systems Bn, n = 0, 1, 2, 3, and their resonant sets.

this subgraph is the inner dual of Bn, a pericondensed hexagonal system,
hence, it contains a triangle, a contradiction. 2

7 Concluding remarks

The paper is concluded with the following related result:

Proposition 7.1 Let H be a hexagonal system and let P be a canonical res-
onant set of H. Then P is a maximal resonant set of H.

PROOF. Assume that P is contained in another resonant set, P ′ say. There
exists a hexagon, R′ say, that belongs to P ′ but does not belong to P . Let M

be a perfect matching of H that contains a perfect matching of each hexagon
in P ′. Let EM,P be the set of edges of M that belong to some hexagon of P .
It is clear that R′ is contained in H − P and M \ EM,P is a perfect matching
of H −P that contains a perfect matching of R′. Hence, H −P has more than
one perfect matching, a contradiction. 2
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[6] H. Hosoya, I. Gutman, Kekulé structures of hexagonal chains some unusual
connections, J. Math. Chem. 44 (2008) 559–568.

[7] Y. Liu, R. S. Chen, The maximum matching’s size and the fixed bonds in
a polyhex G = (W ;B) with |W | = |B|, MATCH Commun. Math. Comput.
Chem. 60 (2008) 143–156.

[8] W. C. Shiu, P. C. B. Lam, L.-Z. Zhang, Extremal k∗-cycle resonant hexagonal
chains, J. Math. Chem. 33 (2003) 17–28.

[9] A. Taranenko, A. Vesel, On elementary benzenoid graphs: new characterization
and structure of their resonance graphs, MATCH Commun. Math. Comput.
Chem. 60 (2008) 193–216.

[10] L. Wang, F. Zhang, H. Zhao, On the ordering of benzenoid chains and cyclo-
polyphenacenes with respect to their numbers of Clar aromatic sextets, J. Math.
Chem. 38 (2005) 293–309.

[11] M. Zheng, R. S. Chen, A maximal cover of hexagonal systems, Graphs Combin.
1 (1985) 295–298.

14



[12] I. Gutman, Topological properties of benzenoid systems. XIX. Contributions
to the aromatic sextet theory, Wiss. Z. Thechn. Hochsch. Ilmenau 29 (1983)
57–65.

[13] K. Salem, H. Abeledo, A maximal alternating set of a hexagonal system,
MATCH Commun. Math. Comput. Chem. 55 (2006) 159–176.

[14] K. Salem, I. Gutman, The unfixed subgraph of a catacondensed hexagonal
system obtained by fixing an alternating set, J. Math. Chem. 38 (2005) 503–
510.

[15] K. Salem, Alternating sets and resonant sets of a hexagonal system, DSc
dissertation, The George Washington University, 2005.

[16] K. Fries, Uber Byclische Verbindungen und ihren Vergleich mit dem Naphtalin,
Ann. Chem. 454 (1927) 121–324.

[17] H. Abeledo, G. Atkinson, The Clar and Fries problems for benzenoid
hydrocarbons are linear programs, in: Discrete Mathematical Chemistry, eds.
P. Hansen, P. Fowler, M. Zheng (Am. Math. Soc., Providence, RI, 2000), pp
1–8.

[18] H. Abeledo, G. Atkinson, Unimodularity of the Clar number problem, Linear
Algebra Appl. 420 (2007) 441–448.

[19] F. Zhang, R. Chen, When each hexagon of a hexagonal system covers it, Discrete
Appl. Math. 30 (1991) 63–75.

[20] P. Hansen, M. Zheng, Numerical bounds for the perfect matching vectors of a
polyhex, J. Chem. Inf. Comput. Sci. 34 (1994) 305–308.

[21] H. Hosoya, T. Yamaguchi, Sextet polynomial. A new enumeration and proof
technique for the resonance energy applied to the aromatic hydrocarbons,
Tetrahedron Lett. 52 (1975) 4659–4662.

[22] P. Hansen, M. L. Zheng, Upper bounds for the Clar number of a benzenoid
hydrocarbon, J. Chem. Soc. Faraday Trans. 88 (1992) 1621–1625.

[23] K. Salem, Towards a combinatorial efficient algorithm to solve the Clar problem
of benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 53
(2005) 419–426.

[24] I. Gutman, Covering hexagonal systems with hexagons, in: Proceedings of
the Fourth Yugoslav Seminar on Graph Theory (Institute of Mathematics,
University of Novi Sad, Novi Sad, 1983), pp 151–160.
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