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A Convexity Lemma and Expansion Procedures for Bipartite Graphs

WILFRIED IMRICH AND SANDI KLAVŽAR†

A hierarchy of classes of graphs is proposed which includes hypercubes, acyclic cubical com-
plexes, median graphs, almost-median graphs, semi-median graphs and partial cubes. Structural
properties of these classes are derived and used for the characterization of these classes by expan-
sion procedures, for a characterization of semi-median graphs by metrically defined relations on the
edge set of a graph and for a characterization of median graphs by forbidden subgraphs. Moreover,
a convexity lemma is proved and used to derive a simple algorithm of complexity O(mn) for
recognizing median graphs.

c© 1998 Academic Press

1. INTRODUCTION

Hamming graphs and related classes of graphs have been of continued interest for many
years as can be seen from the list of references. As the subject unfolded, many interesting
problems arose which have not been solved yet. In particular, it is still open whether
the known algorithms for recognizing partial cubes or median graphs, which comprise an
important subclass of partial cubes, are optimal. The best known algorithms for recognizing
whether a graph G is a member of the class PC of partial cubes have complexity O(mn),
where m and n denote, respectively, the numbers of edges and vertices of G, see [1, 13].
As the recognition process involves a coloring of the edges of G, which is a special case of
sorting, one might be tempted to look for an algorithm of complexity O(m log n). However,
even the best known algorithm for recognizing membership in the classM of median graphs
[12] has complexity O(mn1/2), whereas membership in the class H of binary Hamming
graphs, i.e., the class of hypercubes, can be tested in linear time O(m), see [6, 14]. For the
classes

H ⊂M ⊂ PC
we thus have recognition algorithms of complexities O(m), O(mn1/2) and O(mn).

Most of the algorithms make use of so-called expansion procedures for generating these
graphs, cf. for instance [15]. For more information on the existing algorithms we refer to
[14].

To shed more light on the situation we introduce almost-median graphs AM and semi-
median graphs PM in this paper. These classes are naturally defined by expansion proce-
dures. Together with the class ACC of so-called acyclic cubical complexes introduced by
Bandelt and Chepoi [4] we thus arrive at the following hierarchy

H ⊂ ACC ⊂M ⊂ AM ⊂ PM ⊂ PC.
With the aim of better understanding the structure of partial cubes and median graphs
and with the intention of laying the foundation for better recognition algorithms we then
investigate this hierarchy.

We begin with a lemma, the so-called Convexity Lemma, which we then use for the
introduction of a simple, new algorithm of complexity O(mn) for median graphs.
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Then we define the new classes and prove some fundamental properties. In particular,
we show that semi-median graphs can be characterized in a way very similar to Winkler’s
characterization of partial cubes [20] and present a new characterization of median graphs
by forbidden subgraphs.

With the aid of the concepts developed here we plan a follow-up of this paper in which
we wish to present an algorithm of subquadratic complexity for recognizing semi-median
graphs, a new, simpler algorithm of complexity O(mn1/2) for recognizing median graphs
and efficient algorithm for recognizing acyclic cubical complexes.

All graphs considered in this paper are finite undirected graphs without loops or multiple
edges. If not stated otherwise, the graphs are also connected. For a graph G and a vertex
set X ⊆ V(G) let 〈X〉 denote the subgraph of G induced by X.

For u, v ∈ V(G) let dG(u, v), or simply d(u, v), denote the length of a shortest path in G
from u to v. A subgraph H of a graph G is an isometric subgraph, if dH (u, v) = dG(u, v)
for all u, v ∈ V(H). A subgraph H of G is convex, if for any u, v ∈ V(H), all shortest u–v
paths belong to H . Clearly, a convex subgraph is an isometric subgraph but the converse
need not be true.

Graphs that can be isometrically embedded into a hypercube are called partial cubes. In
other words, a graph G is a partial cube if its vertices can be labeled by binary labels of a
fixed length such that the distance between any two vertices of G is equal to the Hamming
distance between the corresponding labels. A median of a triple of vertices u, v and w is a
vertex that lies simultaneously on a shortest u–v path, a shortest u–w path, and a shortest
v–w path. A graph G is then called a median graph if every triple of its vertices has
a unique median. Finally, by Q−3 we denote the graph obtained from the 3-cube Q3 by
removing an arbitrary vertex (i.e., the graph G3 from Figure 1).

2. THE RELATION 2 AND THE CONVEXITY LEMMA

In this section we introduce a relation 2, give some basic properties of it and present
the Convexity Lemma. This lemma uses 2 for the characterization of convex subgraphs
of bipartite graphs. At the end of the section we then use the lemma to present a simple
O(mn) algorithm for recognizing median graphs.

The relation 2, which was first introduced by Djoković [9], is defined on the edge set of
a graph as follows: let e = xy and f = uv be edges of a graph G. Then e and f are in
relation 2 if

dG(x, u)+ dG(y, v) 6= dG(x, v)+ dG(y, u).

This relation is reflexive and symmetric. We shall denote its transitive closure by 2∗. For
further reference we list three assertions about 2. The proofs are straightforward and can
be found in [13].

LEMMA 2.1. Let P be a shortest path in a graph G. Then no two different edges of P
are in relation 2.

LEMMA 2.2. Suppose Q is a path connecting the endpoints of an edge e. Then Q contains
an edge f with e2 f .

For an edge uv of a graph G let

Wuv = {w|w ∈ V(G), dG(w, u) < dG(w, v)}.
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For later use we also introduce the sets Uab as follows:

Uab = {u ∈ Wab | u is adjacent to a vertex in Wba}.
LEMMA 2.3. Let e= uv be an edge of a connected bipartite graph G and let

Fuv = { f | f ∈ E(G), e2 f }.
Then G \ Fuv has exactly two connected components and they are induced by the vertex sets
Wuv and Wvu. Furthermore, every shortest path P from u to a vertex x in Wuv is contained
in Wuv .

The only assertion not explicitly proved in [13] is the last statement of Lemma 2.3. It
follows from the fact that vu ∪ P is a shortest path from v to x. Thus, by Lemma 2.1, P
cannot contain an edge in relation 2 to vu, i.e., an edge of Fuv .

We wish to remark that the relation 2 was recently rediscovered by Barthélemy and
Constantin [5]. They proved several properties of 2 in the case of median graphs, obviously
unaware of the previous work of Djoković [9], Graham and Winkler [11], and others. The
following theorem of Winkler [20] will be used several times later.

THEOREM 2.4 ([20]). Let G be a connected graph. Then G is a partial cube if and only
if G is bipartite and 2∗ = 2.

Before stating the Convexity Lemma, we need one more observation.

LEMMA 2.5. Let G be bipartite and e2 f for two edges e = uv and f = xy of G. Then the
notation can be chosen such that

d(u, x) = d(v, y) = d(u, y)− 1 = d(v, x)− 1.

PROOF. Clearly d(u, x) 6= d(u, y), for otherwise the bipartite graph G would contain
a circuit of odd length (containing u, x and y). As x and y are connected by an edge
these distances can differ by at most one. Let the notation be chosen such that d(u, y) =
d(u, x)+ 1. By the same argument as before we have d(v, x) 6= d(v, y). Then

d(v, y) ≤ d(v, u)+ d(u, x) = 1+ d(u, x) = 1+ d(u, y)− 1,

and we infer d(u, y) = d(v, y)+ 1. 2

We are now ready for the Convexity Lemma. First a definition: let H be a subgraph of
a graph G. Then the boundary ∂H of H in G is the set of all edges xy of G with x ∈ H
and y /∈ H .

LEMMA 2.6 (CONVEXITY LEMMA). An induced connected subgraph H of a bipartite
graph G is convex if and only if no edge of ∂H is in relation 2 to an edge in H.

PROOF. Suppose H is convex and there are edges uv = e ∈ H and xy = f ∈ ∂H with
e2 f , where x ∈ H and y /∈ H . By Lemma 2.5 f is on a shortest path from v to x, in
contradiction to the convexity of H .

For the converse, let a, b be two vertices in the induced connected subgraph H of G and
suppose no edge of the boundary ∂H is in relation 2 to an edge in H . Let P be a shortest
path in G from a to b and Q be a path in H from a to b. If P is not in H , it must contain
an edge in ∂H . Let this edge be e. By Lemma 2.1 it is not in relation 2 with any other
edge of P. However, by Lemma 2.2 it must be in relation 2 to an edge in P ∪ Q \ e and
thus in relation 2 to an edge in Q ⊆ H , in contradiction to our assumptions. 2
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To obtain a simple algorithm for recognizing median graphs we are going to combine the
Convexity Lemma with the following characterization of median graphs due to Bandelt [2].
We also refer to Bandelt, Mulder and Wilkeit [3] where a generalization to quasi-median
graphs is given.

THEOREM 2.7 ([2]). A graph G is a median graph if and only if G is bipartite and for
every edge ab of G, the sets Uab and Uba are convex.

We will use Theorem 2.7 also in Section 3.
The crucial step of recognizing median graphs by the above approach is thus checking if,

for every edge ab of a given graph, the subgraphs 〈Uab〉 and 〈Uba〉 are convex. Moreover,
since 2 = 2∗ for median graphs, we need not compute the two sets for each edge, because
these sets are equal for all edges of a given matching Fab.

In our algorithm we first verify whether a given graph G is bipartite and whether 2 = 2∗
holds. By Theorem 2.4 this is equivalent to testing whether G is a partial cube. In [13]
a simple O(n2 log n) algorithm is given which recognizes such graphs and, furthermore,
the algorithm also yields an embedding into a hypercube if it exists, cf. also [1]. In other
words, we obtain the subgraphs 〈Uab〉 and 〈Uba〉 and colors for any edge of G. Here two
edges are of the same color if they are in relation 2.

Having all this in mind we can reformulate the convexity lemma for median graphs as
follows. The subgraph 〈Uab〉 is convex if and only if no color from 〈Uab〉 appears on the
edges of ∂H .

Our algorithm for recognizing median graphs consists of only two steps:

(1) Check if G is a partial cube.
(2) For each color obtained in Step 1 check if no color from 〈Uab〉 and 〈Uba〉 appears on

the edges of ∂〈Uab〉 and ∂〈Uba〉, respectively.

THEOREM 2.8. The above algorithm recognizes median graphs and can be implemented
to run in O(mn) = O(n2 log n) steps.

PROOF. The correctness of the algorithm follows from the above discussion.
Concerning the time complexity we first recall [10, 13] that for partial cubes (and hence

also for median graphs) m= O(n log n).
For Step 1 of the algorithm we use a simple algorithm from [13] which runs in O(n2 log n)

time. For the second step we know from [13], cf. also [11], that there are at most n − 1
different colors obtained in the first step. Therefore we have to check at most 2n− 2 sets
for their convexity. By the convexity lemma it is trivial to do it by checking every edge,
i.e., in O(m) time. Thus the overall complexity of Step 2 is O(mn) = O(n2 log n). 2

3. EXPANSION PROCEDURES, SEMI-MEDIAN AND ALMOST-MEDIAN GRAPHS

In this section we investigate two new classes of graphs, semi-median graphs and almost-
median graphs. In particular we study their role in the so-called expansion procedures and
from this point of view we contribute to the ‘masterplan’ for studying expansion procedures
proposed by Mulder [19]. In his setting expansions studied here are connected (resp.
isometric, resp. convex) Cartesian expansions. A Winkler-like characterization of semi-
median graphs is also given and it is shown that a graph is a median graph if and only if
it is an almost-median graph with no convex Q−3 as a subgraph.

Let G be a graph and let V1 and V2 be vertex subsets of G such that V1 ∩ V2 6= ∅ and
V1 ∪ V2 = V(G). Assume in addition that 〈V1〉 and 〈V2〉 are isometric subgraphs of G and
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that there is no edge between a vertex of V1 \ V2 and a vertex of V2 \ V1. An expansion
of a graph G (with respect to V1 and V2) is a graph H , obtained from G in the following
way.

(i) Replace each vertex v ∈ V1 ∩ V2 by vertices v1 and v2 and join then by an edge.
(ii) Join v1 and v2 to all neighbors of v in V1 \ V2 and V2 \ V1, respectively.

(iii) If v, u ∈ V1 ∩ V2 are adjacent in G, then join v1 to u1 and v2 to u2.

A contraction is just the inverse operation of the expansion, i.e., G is a contraction of H .
An expansion procedure is just a sequence of expansions.

Observe that in the expansion as defined, there is no condition on the intersection S=
V1 ∩ V2 (except that it is not empty). We call an expansion a connected expansion if S is
connected, an isometric expansion if S is isometric, and a convex expansion if S is convex.

The point of departure for the above expansions is the convex expansion theorem due to
Mulder [17, 18]. He proved that a graph is a median graph if and only if it can be obtained
from the one vertex graph by a sequence of convex expansions. Later Chepoi [7], see also
[8], proved the analogous result for partial cubes. They can be obtained by a sequence of
expansions from the one vertex graph. For further reference we state these two results as a
theorem.

THEOREM 3.1.

(i) ([17]) A graph G is a median graph if and only if G can be obtained from the one
vertex graph by a sequence of convex expansions.

(ii) ([7]) A graph G is a partial cube if and only if G can be obtained from the one vertex
graph by a sequence of expansions.

Concerning the theorem of Chepoi we wish to add that he used the term isometric ex-
pansion for what we call expansion here. Note also that the acyclic cubical complexes are
precisely the graphs obtained by the convex expansion procedure from the one vertex graph
provided that the intersection V1 ∩ V2 in every expansion step is a hypercube.

In the sequel we shall consider the classes of graphs obtained from the one vertex graph
by connected resp. by isometric expansions. Recall that

Uab = {u ∈ Wab | u is adjacent to a vertex in Wba}.
We call a bipartite graph G a semi-median graph, if 2 = 2∗ and for any edge ab of G
the subgraph 〈Uab〉 is connected. Similarly, we say that a bipartite graph G is an almost-
median graph, if 2 = 2∗ and for any edge ab of G the subgraph 〈Uab〉 is isometric. The
characterizations of these new classes of graphs will be facilitated by the following lemma.

LEMMA 3.2. Let G be a triangle free graph with transitive 2 and let ab ∈ E(G). Then
Fab is a matching and induces an isomorphism between 〈Uab〉 and 〈Uba〉.

PROOF. As G is a triangle free graph with transitive 2, we see easily that G must be
bipartite.

Let e= uw and f = uv be distinct edges of Fab. As 2 is transitive we have e2 f . But
G is bipartite, so this is impossible. Hence Fab is a matching.

To show that Fab induces an isomorphism, let uu′, vv′ ∈ Fab and assume that uv ∈ E(G).
As 2 is transitive we have uu′2vv′ and therefore u′v′ ∈ E(G). 2



682 W. Imrich and S. Klavžar

THEOREM 3.3. A graph G is a semi-median graph if and only if G can be obtained from
the one vertex graph by the connected expansion procedure.

PROOF. Let G be a semi-median graph. Then G is a partial cube and by Chepoi’s
expansion theorem (Theorem 3.1 (i i )) it can be obtained from the one vertex graph by the
expansion procedure. We claim that each step of the expansion procedure is connected and
prove the claim by the induction on the number of expansion steps. Let G be a graph
obtained by an expansion from a semi-median graph G′ with the corresponding vertex
subsets V1 and V2. Let Fab be the new 2-class of G. By Lemma 3.2 we find that 〈V1∩V2〉
is isomorphic to 〈Uab〉 in G. Moreover, since G is a semi-median graph, 〈Uab〉 is connected,
hence G was obtained from G′ by a connected expansion.

Conversely, assume that G can be obtained from the one vertex graph by connected
expansions. We need to show that if a graph G is obtained from a semi-median graph G′
(with the corresponding vertex subsets V1 and V2) by a connected expansion, then G is
semi-median as well. By Theorem 3.1 (i i ) we know that G is a partial cube. We must thus
show that 〈Uuv〉 is connected for any edge uv of G. Let Fab be the new 2-class of G. If
uv ∈ Fab then Uuv is clearly connected hence we may assume that uv /∈ Fab. Let F ′uv be
the 2-class of G′ which naturally corresponds to the class Fuv of G. Then Fuv is obtained
from F ′uv in the following way. If an edge u′v′ of F ′uv belongs to V1 ∩ V2, then add to Fuv

the two corresponding expanded edges. All the other edges of F ′uv are also edges of Fuv .
It follows that 〈Uuv〉 is connected, because the corresponding subgraph of G′ is connected.

2

Mulder (personal communication) pointed out that an isometric expansion of an almost-
median graph need not be an almost-median graph. Consider, for instance, the graph G3
from Figure 1. It is almost-median and its outer 6-cycle is isometric. Thus we can expand
G3 such that V1 = V(G3) and V2 is the vertex set of the 6-cycle. The graph we obtain is
the graph G2 from the same figure, which is not an almost-median graph. However, one
may follow the lines of the first part of the proof of Theorem 3.3 (replacing ‘connected’ by
‘isometric’) to obtain the following result.

PROPOSITION 3.4. Let G be an almost-median graph. Then G can be obtained from the
one vertex graph by the isometric expansion procedure.

In Figure 1 the graph G1 is a partial cube which is not a semi-median graph. G2 is a
semi-median graph but not an almost-median graph, while G3 is almost-median but not
median. G4 is a median graph.

It follows from Theorem 3.1 that a graph is a median graph if and only if 2 = 2∗ and if
the sets Uab are convex. We have seen in Theorem 2.7 that the condition 2 = 2∗ can be
replaced in the characterization of median graphs by bipartiteness. On the other hand, the
condition 2 = 2∗ cannot be relaxed to bipartiteness in the characterization of semi-median
graphs and almost-median graphs. Consider, for instance, the graph K2,3 in which the sets
Uab are connected and isometric, yet K2,3 is not even a partial cube. Note that the last fact
immediately follows from Theorem 2.4.

We now introduce a relation δ defined on the edge set of a bipartite graph. We say an
edge e is in relation δ to an edge f if e and f are opposite edges of a square in G or if
e = f . Clearly δ is reflexive and symmetric. Moreover, it is contained in 2. Thus, the
transitive closure δ∗ is contained in 2∗.

THEOREM 3.5. A bipartite graph is a semi-median graph if and only if 2 = δ∗.
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FIGURE 1. The introduced hierarchy of classes of graphs is strict.

PROOF. Suppose G is a semi-median graph. It follows from Lemma 2.3 that only an
edge uv, with u ∈ Uab and v ∈ Uba, can be in relation 2 to ab. By the connectedness of
Uab every edge uv in relation 2 to ab clearly also is in relation δ∗ to ab. Thus, 2 ⊆ δ∗.
As δ∗ ⊆ 2∗ = 2 we deduce that 2 = δ∗.

On the other hand, if 2 = δ∗ we infer that 2 is transitive and thus we can embed G
isometrically into a hypercube. It remains to show that 〈Uab〉 and 〈Uba〉 are connected. Let
the edge uv, where u ∈ Uab and v ∈ Uba, be in relation 2 to ab. As 2 = δ∗ there are
paths u = u0u1 . . .uk = a and v = v0v1 . . . vk = b such that all ui vi , 0 ≤ i ≤ k are in
E(G). But then u = u0u1 . . .uk = a is in 〈Uab〉 and v = v0v1 . . . vk = b in 〈Uba〉. As uv
was arbitrarily chosen, this means that both 〈Uab〉 and 〈Uba〉 are connected. 2

Using Theorem 3.5 we can generalize several results from [5] from median to semi-median
graphs. For instance, Proposition 1.7 of [5] reads (for semi-median graphs) as follows.

COROLLARY 3.6. Let G be a semi-median graph. For every cycle C of G and any edge
e of C there is another edge e′ of C such that eδ∗e′.

PROOF. Apply Lemma 2.2 and Theorem 3.5. 2

Many characterizations of median graphs are known, see [16] for a recent survey. In our
next theorem we add another characterization via almost-median graphs.

THEOREM 3.7. A graph is a median graph if and only if it is almost-median and contains
no convex Q−3 as a subgraph.

PROOF. A median graph is clearly almost-median and contains no convex Q−3 .
For the converse suppose that G is an almost-median graph which contains no convex

Q−3 as a subgraph. By Theorem 2.7 it is enough to show that the sets Uab are convex.
Suppose on the contrary that some set Uab is not convex and let u and v be two vertices of
Uab such that there is a u–v shortest path, say P, which is not completely in Uab. We may
assume that P is as short as possible. As Uab is isometric, it follows by the minimality
that no internal vertex of P lies in Uab. Let Q be a shortest u–v path which lies in Uab.
Clearly, |Q| = |P|. Let u′ and v′ be the vertices of Uba with uu′, vv′ ∈ Fab. Let w be
the vertex of Q adjacent to v and let w′ be the corresponding vertex of Uba. Let x be the
vertex of P adjacent to u and recall that x /∈ Uab.
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CASE 1. |P| = 2.
Let H = 〈{x, u, w, v,u′, w′, v′}〉. We wish to show that H is a convex Q−3 . Note that w
and x are adjacent to both u and v in this case.

We first consider the pairs of vertices in H of distance 2. Observe that w and x are the
only common neighbors of v and u because G is a K2,3-free graph. For the same reason x
and w have no other common neighbor than u and v. As Fab is a matching, we also quickly
see that the only paths of length 2 between the pairs of vertices {x, u′}, {x, v′}, {u, w′},
{v,w′}, {w, u′} and {w, v′} are those induced by H . Assume that there is a path v′–w′′–u′,
where w′′ 6= w′. If w′′ /∈ Uba then by the transitivity of 2 we find that vx2v′w′′, which is
impossible, and if w′′ ∈ Uba then we find a K2,3 in Wab.

It remains to consider the pairs of vertices in H of distance 3 (in H ). By symmetry it
is enough to consider the pairs {x, w′} and {u, v′}. Because Fab is a matching, it follows
that dG(x, w′) = dG(u, v′) = 3. Suppose that there is a path x–x′–x′′–w′, where x′ ∈ Uab,
x′ 6= v, u and x′′ ∈ Uba, x′′ 6= v′, u′. Then x′x′′ ∈ Fab and as 2 is transitive x′ is adjacent
to w. But then the vertices x, w and u, v, x′ induce a K2,3. Analogously, a path u–x′–x′′–
v′, where x′ ∈ Uab, x′ 6= v,w and and x′′ ∈ Uba, x′′ 6= u′, w′ would give us another K2,3.
We have thus found a convex Q−3 in G, which settles the first case.

CASE 2. |P| = k ≥ 3.
Clearly d(x, v) = d(u, w) = k−1. Because of the minimality of d(u, v) we have d(x, w) ≥
k− 1 and as G is bipartite we conclude that d(x, w) = k. It follows that the edges ux and
wv are in relation 2. Set Q = u− q1 − q2 − · · · − qk−2 −w− v and consider the set Uux.
By the minimality, the u–w subpath of Q belongs to Uux. By Lemma 3.2 there is a path
x − r1 − r2 − · · · − rk−2 − v in Uxu, where ri is adjacent to qi , for i = 1, 2, . . . , k− 2. As
x ∈ Wab\Uab we have r1 ∈ Wab. Suppose r1 /∈ Uab. Then q1− r1− r2−· · ·− rk−2−v is a
shortest q1–v path (of length k−1) which is not in Uab, a contradiction with the minimality
of d(u, v). So we must have r1 ∈ Uab. But then d(u, r1) = 2, yet u–x–r1 is a path not in
Uab, the final contradiction. 2
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9. ——D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B, 14 (1973),

263–267.
10. ——R.L. Graham, On primitive graphs and optimal vertex assignments, Ann. NY Acad. Sci., 175

(1970), 170–186.
11. ——R.L. Graham and P.M. Winkler, On isometric embeddings of graphs, Trans. Am. Math. Soc., 288

(1985), 527–536.
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16. ——S. Klavžar and H.M. Mulder, Median graphs: characterizations, location theory and related

structures, J. Combin. Math. Combin. Comput., in press.
17. ——H.M. Mulder, The structure of median graphs, Discrete Math., 24 (1978), 197–204.
18. ——H.M. Mulder, The Interval Function of a Graph, Mathematical Centre Tracts, 132, Mathematisch

Centrum, Amsterdam, 1980.
19. ——H.M. Mulder, The expansion procedure for graphs, in: Contemporary Methods in Graph Theory,

R. Bodendiek (ed.), B.I.-Wissenschaftsverlag, Mannheim/Wien/Zürich, 1990, 459–477.
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