Technische Universität Graz — Institut für Mathematik Christian Doppler Labor "Diskrete Optimierung"

Every n-dimensional Grid is Cordial

Johann Hagauer Sandi Klavžar Gerhard J. Woeginger

Report 248

Dezember 1992

CDLDO - 16

Every n-dimensional Grid is Cordial

J. Hagauer S. Klavžar * G.J. Woeginger †

Abstract

Let $f:V(G)\to\{0,1\}$ be a (binary) labelling of G. Assign 0 to all edges joining two vertices having the same label and assign 1 to the other edges. Let $v_f(0)$, $v_f(1)$, $e_f(0)$ and $e_f(1)$ be the number of vertices labelled 0, vertices labelled 1, edges labelled 0 and edges labelled 1, respectively. A graph G is cordial if there is a labelling f of G such that $|v_f(0)-v_f(1)|\leq 1$ and $|e_f(0)-e_f(1)|\leq 1$. In this note, it is proved that the Cartesian product of a finite number of paths is cordial. As a byproduct it is shown that $G\square C_{4n}$ is cordial for any bipartite graph G. These generalize some known results of Cahit and Ho, Lee and Shee.

1 Introduction

Soon after Cahit [2] introduced the concept of cordial graphs they received considerable attention (see the references). A lot of results refer on cordiality of different classes of graphs. In [2] Cahit obtained several results on cordiality of trees, complete graphs, cycles, Eulerian graphs and others. Later [3] Cahit extended a result on cycles to cactus graphs with cycle blocks. Ho, Lee and Shee [4] characterized cordial unicyclic graphs and cordial generalised Petersen graphs. Benson and Lee [1] studied windmill graphs (several complete graphs identified at a point) and obtained an interesting connection with simultaneous Diophantine inequalities. Kirchherr [6] investigated

^{*}Supported in part by the Ministry of Science and Technology of Slovenia.

[†]Supported by the Christian Doppler Laboratorium für Diskrete Optimierung.

subdivision graphs of cordial graphs and cactus graphs. Among others he gave a characterization of cordial cactus graphs.

There are also several results on cordiality dealing with different operations on graphs: the join of graphs, the Cartesian product and the lexicographic product of graphs. Kirchherr [6] investigated the join of graphs. The join of graphs is also used in [7] for a particular construction. However, the main motivation for our paper is a paper of Ho, Lee and Shee [5] where the Cartesian product of graphs and the lexicographic product of graphs are studied.

In Section 2 we prepare some auxiliary lemmas for the last section. We also prove that $G \square C_{4n}$ is cordial for any bipartite graph G, thus extending Corollary 2 from [5]. In Section 3 we prove the main result of the paper: the Cartesian product of any number of paths is cordial. It follows in particular that hypercubes are cordial.

2 Definitions and Preliminary Lemmas

Graphs considered in this paper are undirected, finite, simple and connected.

Let $f:V(G) \to \{0,1\}$ be a (binary) labelling of G. The labelling f induces a (binary) edge labelling in the following way: an edge joining two vertices having the same label receives 0 and an edge joining two vertices having opposite labels receives 1. Let $v_f(0)$, $v_f(1)$, $e_f(0)$ and $e_f(1)$ be the number of vertices labelled 0, vertices labelled 1, edges labelled 0 and edges labelled 1, respectively. A graph G is cordial if there is a labelling f of G such that $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$.

The Cartesian product $G \square H$ of graphs G and H is the graph with vertex

set $V(G) \times V(H)$ and $(a, x)(b, y) \in E(G \square H)$ whenever $ab \in E(G)$ and x = y, or a = b and $xy \in E(H)$. The Cartesian product is associative, commutative and K_1 is a unit. For $x \in V(H)$ set $G_x = G \square \{x\}$ and for $a \in V(G)$ set $H_a = \{a\} \square H$. We call G_x and H_a a layer of G and of H, respectively.

We first state an obvious remark. Since we will use it several times, we state it as a lemma.

Lemma 2.1 For all graphs G and H,

$$|E(G \square H)| = |V(G)| \cdot |E(H)| + |V(H)| \cdot |E(G)|.$$

We also recall the following result, which can be found in [5].

Lemma 2.2 Let G and H be cordial graphs with |E(G)| and |E(H)| both even. Then $G \square H$ is cordial.

In the following, let $\{1, 2, ..., m\}$ be the vertex set of the path P_m , $m \geq 1$. For j = 0, 1, 2, 3 we introduce canonical labellings c^j of P_m in the following way. For each $i, 1 \leq i \leq m$, let

$$c^{j}(i) = \begin{cases} 1; & \text{if } i \equiv 2 + j \pmod{4} \text{ or } i \equiv 3 + j \pmod{4}, \\ 0; & \text{otherwise.} \end{cases}$$

It is easily checked, that c^0 and c^2 are cordial labellings of P_m for all $m \geq 1$ and that c^1 and c^3 are cordial for all odd m.

Lemma 2.3 Let G be a bipartite graph and $V = V_1 \cup V_2$ its bipartition. If $||V_1| - |V_2|| \le 1$ and if either $|V_1|$ or $|V_2|$ is even then $G \square P_{2n}$ is cordial for $n \ge 1$.

Proof. We may assume that $|V_2|$ is even. Partition V_2 arbitrarily into two equal sized sets A and B and consider the layers G_i , $i \in V(P_{2n})$. Recall that each G_i is an isomorphic copy of G. Denote by A^i , B^i and V_1^i the partition of G_i corresponding to the above partition of G. We now define a labelling f of $G \square P_{2n}$ in the following way:

$$f(v,i) = \begin{cases} c^1(i); & (v,i) \in A^i, \\ c^3(i); & (v,i) \in B^i, \\ c^2(i); & (v,i) \in V_1^i. \end{cases}$$

Hence, all vertices in a partition A^i , B^i and V_1^i are assigned the same label which will be denoted by $f(A^i)$, $f(B^i)$ and $f(V_1^i)$, respectively.

Let $w \in V_1$. Then $v_f(0) = v_f(1)$ holds on the layer $(P_{2n})_w$. Let now $a \in A$ and $b \in B$. Then f(a,i) = 1 if and only if f(b,i) = 0. Since |A| = |B| holds, it follows that $v_f(0) = v_f(1)$ on the vertex set $V(P_{2n}) \times V_2$. Consequently, the labelling is cordial with respect to the vertices.

To show that f is also cordial with respect to the edges, we consider first edges within layers G_i . Since G is bipartite there are only edges from V_1^i to A^i and B^i . By the definition of f, $f(A^{2i-1}) \neq f(V_1^{2i-1})$ and $f(A^{2i}) = f(V_1^{2i})$, i = 1, 2, ..., n. The reverse holds true for B^i and V_1^i . This implies that $e_f(0) = e_f(1)$ for the edges within any two consecutive layers G_{2i-1} and G_{2i} , i = 1, 2, ..., n. Since we are dealing with even paths we have $e_f(0) = e_f(1)$ for all edges within all layers G_i .

We now consider edges in the layers $(P_{2n})_v$, $v \in V(G)$. As c^1 , c^2 and c^3 are cordial labellings on odd paths, for every path $(v,1)(v,2)\cdots(v,2n-1)$, $e_f(0)=e_f(1)$ holds. The remaining edges are edges between layers G_{2n-1} and G_{2n} . Since $f(A^{2n-1})=f(A^{2n})$, $f(B^{2n-1})=f(B^{2n})$ and $f(V_1^{2n-1})\neq f(V_1^{2n})$ and the cardinality of V_1 and V_2 differ by at most one, $|e_f(0)-$

 $|e_f(1)| \le 1$ for those edges. Therefore, $|e_f(0) - e_f(1)| \le 1$ holds for all edges in the product and the proof is complete.

Lemma 2.4 Let G be a bipartite graph and $V = V_1 \cup V_2$ its bipartition. If $||V_1| - |V_2|| \le 1$ then $G \square P_{4n}$ is cordial for $n \ge 1$.

Proof. Analogously to the proof of Lemma 2.3 we denote by V_1^i and V_2^i the bipartition of layer G_i , i = 1, 2, ..., 4n. Define a labelling f by:

$$f(v,i) = \begin{cases} 0; & v \in G_i, i \equiv 1 \pmod{4}, \\ 0; & v \in V_1^i, i \equiv 2 \pmod{4}, \\ 1; & v \in V_2^i, i \equiv 2 \pmod{4}, \\ 1; & v \in G_i, i \equiv 3 \pmod{4}, \\ 1; & v \in V_1^i, i \equiv 0 \pmod{4}, \\ 0; & v \in V_2^i, i \equiv 0 \pmod{4}. \end{cases}$$

Clearly, f is a cordial labelling with respect to vertices. The edges in the layers G_{2i-1} , $i=1,2,\ldots,2n$, are all labelled 0. Since G is bipartite, the edges in the layers G_{2i} , $i=1,2,\ldots,2n$, are all labelled 1. Therefore, $e_f(0)=e_f(1)$ holds for all edges within the layers G_i , $i=1,2,\ldots,4n$. Next, we consider the edges between layers G_i and G_{i+1} , $i=1,2,\ldots,4n-1$. If i is odd, then there are $|V_1|$ edges labelled 0 and $|V_2|$ edges labelled 1. For even i, the situation is complementary. Therefore, $e_f(0)=e_f(1)$ for all edges between consecutive layers G_i , $1 \leq i \leq 4n-1$. Since $|V_1|$ and $|V_2|$ differ by at most 1, the number of edges from layer G_{4n-1} to layer G_{4n} labelled 0 and 1 differs by at most 1. Labelling f is therefore also cordial with respect to the edges.

A small modification of the proof of Lemma 2.4 gives us the following result.

Theorem 2.5 If G is a bipartite graph then $G \square C_{4n}$ is cordial for $n \ge 1$.

Proof. Define a labelling f as the labelling in the proof of Lemma 2.4. As in the proof of Lemma 2.4, f is cordial with respect to the vertices, and $e_f(0) = e_f(1)$ holds for the edges within layers G_i , $1 \le i \le 4n$. If we treat the layer G_1 as the layer G_{4m+1} then by the same arguments as above, $e_f(0) = e_f(1)$ holds for all edges between layers G_i , $1 \le i \le 4m + 1$.

Corollary 2.6 ([5]) $P_m \square C_{4n}$ is cordial for $n \ge 1$.

In fact, Corollary 2.6 was proved in [5] only for the special case of odd m.

3 Products of Paths

In [2] Cahit observed that all ladders (i.e. the graphs $P_2 \square P_n$, $n \geq 2$) are cordial. Ho, Lee and Shee [5] showed that the graphs $P_n \square P_n$, $n \geq 2$, are cordial. These results are special cases of the main result of our paper:

Theorem 3.1 The Cartesian product of a finite number of paths is cordial.

Note that Theorem 3.1 in particular implies that all hypercubes are cordial. In the rest of this section we prove the theorem.

Lemma 3.2 $P_{4n+2} \square P_{4m+2}$ is cordial for $n, m \geq 0$.

Proof. We define a labelling f for $P_{4n+2} \square P_{4m+2}$ in the following way. For $1 \le i \le 4n+1$ and $1 \le j \le 4m+1$,

$$f(i,j) = \left\{ egin{array}{ll} c^0(j); & i \equiv 0 \pmod 4 \ c^2(j); & i \equiv 2 \pmod 4 \ \end{array}
ight. ext{or} \ i \equiv 1 \pmod 4,$$

The remaining column and row are labelled as follows:

$$f(4n+2,j) = c^{3}(j); \quad 1 \le j \le 4m+2,$$

$$f(i,4m+2) = c^{1}(i); \quad 1 \le i \le 4n+1.$$

Observe that layers $(P_{4m+2})_i$ and $(P_{4m+2})_{i+2}$, $i=1, 2, \ldots, 4n-2$, are complementarily labelled. It follows that $v_f(0) = v_f(1)$ holds on the layers $(P_{4m+2})_i$, $1 \le i \le 4n$. Furthermore, it can be easily verified that $v_f(0) = v_f(1)$ is true also on the layers $(P_{4m+2})_{4n+1}$ and $(P_{4m+2})_{4n+2}$. It follows that f is cordial on vertices.

The edge set $E(P_{4n+2} \square P_{4m+2})$ will be briefly denoted by E. In order to prove $e_f(0) = e_f(1)$, we are going to partition E into six parts E_1, E_2, \ldots, E_6 , and show the desired equality for each part separately.

- 1. $E_1 = \{(i,j)(k,l) \in E \mid i, k \leq 4n+1, j, l \leq 4m+1\}.$ Since c^0 and c^2 are both cordial labellings on a path, on the path $(i,1)(i,2)\cdots(i,4m+1), i\in\{1,2,\ldots,4n+1\}, e_f(0)=e_f(1)$ holds. An analogous argument holds for the path $(1,j)(2,j)\cdots(4n+1,j), j\in\{1,2,\ldots,4m+1\}.$ Therefore, $e_f(0)=e_f(1)$ holds for the edges in E_1 .
- 2. $E_2 = \{ (4n+1,j)(4n+2,j) \mid 1 \leq j \leq 4m \}.$
- 3. $E_3 = \{(i, 4m+1)(i, 4m+2) \mid 1 \le i \le 4n \}$

these sets.

- 4. $E_4 = \{ (4n+2,j)(4n+2,j+1) \mid 1 \le j \le 4m \}$
- 5. $E_5 = \{(i, 4m+2)(i+1, 4m+2) \mid 1 \leq i \leq 4n\}$ All the edge sets E_2, \ldots, E_5 contain an even number of edges with an alternating labelling. Therefore, $e_f(0) = e_f(1)$ holds for edges in all

7

6. Let E_6 consist of the remaining four edges: (4n+1,4m+1)(4n+1,4m+2), (4n+2,4m+1)(4n+2,4m+2), (4n+1,4m+1)(4n+2,4m+1) and (4n+1,4m+2)(4n+2,4m+2). The first two edges are labelled 0 and the last two are labelled 1.

Since E_1, \ldots, E_6 is a partition of E, f is also cordial with respect to the edges.

Lemma 3.3 The Cartesian product of a finite number of odd paths is cordial.

Proof. The lemma is clearly true for n = 1. Assume now that the lemma holds for $n, n \geq 1$. Let G be a product of n + 1 odd paths. Then G can be written as $(\prod_{i=1}^n P^i) \square P^{n+1}$, where $P^i, i = 1, 2, ..., n+1$, are odd paths. By Lemma 2.1 both factors of G have an even number of edges. Furthermore, $\prod_{i=1}^n P^i$ is cordial by induction hypothesis. Then by Lemma 2.2, the result follows.

Lemma 3.4 The Cartesian product of a finite number of even paths is cordial.

Proof. The statement is clearly true for one path. Consider next the product $P_n \square P_m$ of two paths. Assume first that n = 4k for some $k \ge 1$. Since P_m satisfies the conditions of Lemma 2.4, the product is cordial in this case. Otherwise the product is cordial by Lemma 3.2.

To prove the statement for a product of ≥ 3 paths, we use Lemma 2.3 and induction.

Finally, we are ready to prove Theorem 3.1. Let G be a product of n odd and m even paths, m, n > 0. G can be represented as $G = H_1 \square H_2$, where $H_1 = \prod_{i=1}^n P^i$ and $H_2 = \prod_{j=1}^m R^j$. Here P^i , i = 1, 2, ..., n, are odd paths and R^i , i = 1, 2, ..., m, are even paths. By Lemma 3.3 and Lemma 3.4 both H_1 and H_2 are cordial. If m = 1, then by Lemma 2.3, G is cordial.

Otherwise, if m > 1 and even, then by Lemma 2.1 the number of edges in H_2 is even and both H_1 and H_2 satisfy the condition of Lemma 2.2, therefore G is cordial. Finally, if $m \geq 3$ and odd, we can write G in the following way:

$$G = (H_1 \square \prod_{i=1}^{m-1} R^i) \square R^m.$$

Then $H_1 \square \prod_{i=1}^{m-1} R^i$ is cordial by the argument above and satisfies the condition of Lemma 2.3. This completes the proof of Theorem 3.1.

References

- [1] H. Benson and S.H. Lee, On cordialness of regular windmill graphs, Congr. Numer. 68 (1989) 49–58.
- [2] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987) 201-207.
- [3] I. Cahit, On cordial and 3-equitable labellings of graphs, *Utilitas Math.* 37 (1990) 189-197.
- [4] Y.S. Ho, S.H. Lee and S.C. Shee, Cordial labellings of unicyclic graphs and generalized Petersen graphs, *Congr. Numer.* 68 (1989) 109-122.
- [5] Y.S. Ho, S.H. Lee and S.C. Shee, Cordial labellings of the Cartesian product and composition of graphs, Ars Combin. 29 (1990) 169–180.
- [6] W.W. Kirchherr, On the cordiality of some specific graphs, Ars Combin. 31 (1991) 127-138.
- [7] S.M. Lee and A. Liu, A construction of cordial graphs from smaller cordial graphs, Ars Combin. 32 (1991) 209-214.
- [8] E. Seah, On the construction of cordial graphs. Ars Combin. 31 (1991) 249-254.

Johann Hagauer and Gerhard J. Woeginger Technical University Graz IGI, Klosterwiesgasse 32/II 8010 Graz, Austria

Sandi Klavžar University of Maribor PF, Koroška cesta 160 62000 Maribor, Slovenia

Other Reports from the Optimization Group at the TU Graz

- No-210 U. Pferschy, H. Tuy, Linear Programs with an Additional Rank Two Reverse Convex Constraint (Apr 92)
- No-226 R.E. BURKARD, Q.F. YANG, Hamiltonian Cycles in Circulent Graphs with Two Stripes (Aug 92)
- No-227 R.E. Burkard, An Analysis of Complex Combinatorial Optimization Problems of Practice (Aug 92)
- No-228 J. FALKNER, F. RENDL, H. WOLKOWICZ, A Computational Study of Graph Partitioning (Aug 92)
- No-229 G.J. Woeginger, On-line Scheduling of Jobs with Fixed Start and End Times (Aug 92)
- No-230 R. Rudolf, Recognition of d-Dimensional Monge Arrays (Aug 92)
- No-232 G. Rote, The Traveling Salesman Problem for Moving Points on a Line (Sep 92)
- No-233 V. Deĭneko, R. van Dal, G. Rote, The Convex-Hull-and-Line Traveling Salesman Problem: A Solvable Case (Sep 92)
- No-234 B. KLINZ, R. RUDOLF, G.J. WOEGINGER, Permuting Matrices to Avoid Forbidden Submatrices (Sep 92)
- No-235 M. Bussieck, H. Hassler, G.J. Woeginger, U.T. Zimmermann, Fast Algorithms for the Maximum Convolution Problem (Oct 92)
- No-236 G.J. Woeginger, Computing Maximum Valued Regions (Oct 92)
- No-237 J. BLAZEWICZ, R.E. BURKARD, G. FINKE, G.J. WOEGINGER, Vehicle Scheduling in Two-Cycle Flexible Manufacturing Systems (Oct 92)
- No-238 R.E. Burkard, R. Rudolf, G.J. Woeginger, Three-Dimensional Axial Assignment Problems with Decomposable Cost Coefficients (Oct 92)
- No-240 K. Jansen, P. Scheffler, G.J. Woeginger, The Disjoint Cliques Problem (Nov 92)
- No-241 B. Klinz, R. Rudolf, G.J. Woeginger, On the Recognition of Bottleneck Monge Matrices (Dec 92)
- No-242 G. ROTE, R.F. TICHY, The Dispersion of Point Sequences and Polygonal Approximation of Curves (Nov 92)
- No-243 R.E. Burkard, A Note on Greedily Solvable Time Transportation Problems (Nov 92)
- No-244 S. POLJAK, F. RENDL, Nonpolyhedral Relaxations of Graph-Bisection Problems (Nov 92)
- No-245 G. Rote, Curves with Increasing Chords (Dec 92)
- No-246 K. Jansen, G.J. Woeginger, The Complexity of Detecting Crossingfree Configurations in the Plane (Dec 92)
- No-248 J. HAGAUER, S. KLAVŽAR, G.J. WOEGINGER, Every n-dimensional Grid is Cordial (Dec 92)