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Abstract

Let G be a cube-free median graph. It is proved that k/2�√
n − 1�m/2

√
n�√

s �r − 1, where n, m, s, k, and r are the number
of vertices, edges, squares, �-classes, and the number of edges in a smallest �-class of G, respectively. Moreover, the equalities
characterize Cartesian products of two trees of the same order. The cube polynomial of cube-free median graphs is also considered
and it is shown that planar cube-free median graphs can be recognized in linear time.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Median graph; Cube-free graph; Cartesian product; Recognition algorithm

1. Introduction

Cube-free median graphs are, by definition, median graph without an induced 3-cube Q3. This class of graphs
naturally appears in different contexts. For instance, cube-free median graphs are precisely the bipartite absolute
retracts without induced K2,3 [3], and they play an important role in the location theory [2,11]. Cube-free median
graphs are also precisely those median graphs for which the equality is attained in an Euler-type formula for median
graphs [9].

Edges xy and uv of a graph G are in the Djoković–Winkler relation � [5,14] if

dG(x, u) + dG(y, v) �= dG(x, v) + dG(y, u).

Relation � is reflexive and symmetric in general and transitive on median graphs. Hence it partitions the edge set of a
median graph into equivalence classes, called �-classes.
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Let G be a cube-free median graph. Then the following invariants of G are important to us:

n the number of its vertices,
m the number of its edges,
s the number of its (induced) squares,
k the number of its �-classes, and
r the number of the edges in its smallest �-class.

The main result of this note asserts that

k

2
�

√
n − 1� m

2
√

n
�

√
s�r − 1.

Moreover, if G is not a tree, then in any of the above inequalities, the equality holds if and only if G is the Cartesian
product of two trees of the same order.

In the next section we recall concepts and results needed later. We follow this with a section in which the main
result is proved. In the concluding section we give some more properties of cube-free median graphs. We give a few
remarks on the cube polynomial of cube-free median graphs—we show that they always have two real zeros, and we
give a combinatorial interpretation to their extreme points. Finally, we show that planar cube-free median graphs can
be recognized in linear time.

2. Preliminaries

The Cartesian product G�H of two graphs G and H is the graph with vertex set V (G) × V (H) and (a, x)(b, y) ∈
E(G�H) whenever either ab ∈ E(G) and x = y, or a = b and xy ∈ E(H). The r-cube Qr is the Cartesian product
of r copies of the complete graph on two vertices K2.

The interval I (u, v) between two vertices u and v in G is the set of all vertices on shortest paths between u and
v. A subgraph H of G is convex if we have I (u, v) ⊆ V (H) for every u, v ∈ V (H). A graph G is a median graph
if |I (u, v) ∩ I (u, w) ∩ I (v, w)| = 1 holds for every triple of vertices u, v, and w. The vertex of this intersection is
called the median of the triple u, v, w. It is easy to see that median graphs are bipartite and that the Cartesian product
operation preserves median graphs. In addition, a median graph cannot have convex cycles of length greater than 4.

Let G = (V , E) be a graph, V1 and V2 subsets of V with nonempty intersection, and V = V1 ∪ V2. Suppose that V1
and V2 induce isometric subgraphs of G and that no vertex of V1\V2 is adjacent to a vertex of V2\V1. In addition, let
V1 ∩ V2 be a convex set in G. Then the convex expansion of a graph G with respect to V1 and V2 is the graph obtained
from G by the following procedure:

(i) replace each vertex v ∈ V1 ∩ V2 by vertices v1, v2 and insert the edge v1v2.
(ii) insert edges between v1 and the neighbors of v in V1\V2 as well as between v2 and the neighbors of v in V2\V1.

(iii) insert the edges v1u1 and v2u2 whenever v, u ∈ V1 ∩ V2 are adjacent in G.

We also refer to this as the convex expansion of G over G0, where G0 is a subgraph of G induced by V1 ∩ V2. Mulder
[12,13] proved that a graph is a median graph if and only if it can be obtained from K1 by a sequence of convex
expansions.

In the next proposition we recall two properties of cube-free median graphs that will be needed later. The first one
was given in [10, Corollary 3] and the second follows from the main result of [9]. However, to be self-contained as
much as possible we give here their short (unified) proofs.

Proposition 2.1. Let G be a cube-free median graph with n vertices, m edges, s squares, and k classes of the relation
�. Then

s = m − n + 1 and k = −m + 2n − 2.

Proof. We prove the claim by induction on the number of expansion steps. The statement is true for K1. So let G be
obtained by an expansion from a cube-free median graph G′ over G0. Then G0 is a tree. Let n′, m′, k′, and s′ be the
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corresponding invariants of G′ and let |V (G0)| = x. Then n = n′ + x, m = m′ + x + (x − 1), s = s′ + (x − 1), and
k = k′ + 1. Hence, using the induction hypothesis, we compute

s = s′ + (x − 1) = (m′ − n′ + 1) + x − 1 = m − n + 1,

and

k = k′ + 1 = (−m′ + 2n′ − 2) + 1 = −m + 2n − 2. �

Let uv be an edge of a median graph G. Let G1 be the subgraph of G induced by the vertices closer to u than to
v and G2 be the subgraph induced by the vertices closer to v than to u. As G is bipartite, G1 ∩ G2 = ∅, and the pair
G1, G2 is called a split of G. Note that for any split G1, G2 the edges with one endvertex in G1 and the other in G2
form an entire �-class. Two splits G1, G2 and H1, H2 are called crossing splits if Gi ∩ Hj �= ∅ for i, j = 1, 2. It is
easy to see that two splits are crossing if and only if the corresponding �-classes meet at a common square. We will
apply the following result:

Theorem 2.2 (McMorris et al. [11, Theorem 11]). A median graph G contains r pairwise crossing splits if and only
if G contains a Qr as an induced subgraph.

From the theorem we deduce that in a cube-free median graph for any triple of splits not all three are pairwise
crossing. In other words, for any triple of �-classes two of them do not meet at a common square. Note also, that in a
cube-free median graph every two �-classes can meet in at most one common square.

3. Inequalities for cube-free median graphs

In this section we present a sequence of inequalities for cube-free median graphs that involve the number of vertices,
edges, �-classes, squares, and the number of edges in a smallest �-class. All these inequalities are characteristic for
cube-free median graphs (in the class of median graphs) and turn into equalities precisely for the Cartesian product of
two trees of the same order.

Before the main result we state two lemmas.

Lemma 3.1. Let G be a cube-free median graph with k �-classes. Let r �2 be the number of edges in its smallest
�-class. Then k�2r − 2. Moreover, the equality holds if and only if G is the Cartesian product of two trees of the
same order.

Proof. The proof is by induction on r. Let r = 2. Then G contains at least one square, so that k�2. Moreover, k = 2 if
and only if G = P2�P2.

Let now r �3 and let uvwz be a square of G. Let G′ be the median graph obtained by first contracting the �-class
E1 containing the edge uv and then the �-class E2 containing uz. Then G′ has k′ = k − 2 �-classes. Let F be a
�-class different from E1 and E2. Since G is cube-free, from observations following Theorem 2.2 we infer that at most
two edges of F are identified while contracting E1 and E2. It follows that r ′ �r − 1. By the induction assumption,
k′ �2r ′ − 2, and hence k − 2 = k′ �2r ′ − 2�2(r − 1) − 2, so that k�2r − 2. Moreover, the equality will hold if
and only if r ′ = r − 1 and k′ = 2r ′ − 2. Thus by the induction assumption, G′ = T ′

1�T ′
2 where T ′

1, T
′

2 are trees on
r − 1 vertices. Since any �-class of G has at least r elements, every �-class of G is intersected by E1 or E2. This is
possible only if in both expansion steps the intersection consists of layers isomorphic to T ′

1, and T ′
2, respectively. Thus

G = T1�T2, where Ti can be obtained from T ′
i by one expansion step. �

Lemma 3.2. Let G be a cube-free median graph with k �-classes and s squares. Then, k2 �4s. Moreover, the equality
holds if and only if G is the Cartesian product of two trees of the same order.

Proof. Suppose that G is a smallest cube-free median graph with 4s > k2. Let r be the number of edges in its smallest
�-class. If r = 1 then let G′ be the cube-free median graph obtained by contracting an equivalence class with one
edge. Let s′ and k′ be the number of squares and �-classes of G′, respectively. Clearly, s′ = s and k′ = k − 1. By the
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minimality, 4s′ �k′2 and so k2 < 4s = 4s′ �k′2 = (k − 1)2, which implies k�0, a contradiction. So let r �2. We now
contract a �-class of G containing r edges to obtain the cube-free median graph G′ with s′ = s − (r − 1) squares and
k′ = k − 1 �-classes. By the minimality, 4(s − (r − 1))�(k − 1)2, so that

k2 < 4s�k2 − 2k + 1 + 4r − 4,

which implies 2k�4r − 3 and so k�2r − 2. Now Lemma 3.1 implies that G = T1�T2, where T1 and T2 are trees of
same order. But in this case it is straightforward to verify that k2 = 4s, a contradiction. �

Here is our main result.

Theorem 3.3. Let G be a cube-free median graph with n vertices, m edges, s squares, k �-classes, and r edges in its
smallest �-class. Then

k

2
�

√
n − 1� m

2
√

n
�

√
s�r − 1.

Moreover, if G is not a tree then in any of the above inequalities the equality holds if and only if G is the Cartesian
product of two trees of the same order. And if G is a tree on more than one vertex only the last of the inequalities fails
to be strict.

Proof. If G is a tree then k = m = n − 1, s = 0, r = 1. In this case, it is easy to verify the theorem. So, assume that
s > 0. We first prove the following claim:

Claim 1.
√

n − 1�√
s with equality if and only if G is the Cartesian product of two trees of the same order.

From Proposition 2.1 we infer that n = k + s + 1, hence by Lemma 3.2 we have

√
n − 1 = √

k + s + 1 − 1�
√

s + 2
√

s + 1 − 1 = √
s. (1)

Note that the equality is preserved if and only if k2 = 4s, and this happens precisely when G is the Cartesian product
of two trees on same number of vertices due to Lemma 3.2. So Claim 1 is established.

Using Claim 1, we obtain the first inequality as follows:

k

2
= n − 1 − s

2
� n − 1 − (

√
n − 1)2

2
= √

n − 1.

For the second inequality we argue as

m

2
√

n
= s + n − 1

2
√

n
� (

√
n − 1)2 + n − 1

2
√

n
= √

n − 1,

and for the third one, using (1), as

m

2
√

n
= s + n − 1

2
√

n
= (

√
n − √

s)2 + 2
√

sn − 1

2
√

n
� 1 + 2

√
sn − 1

2
√

n
= √

s.

Note that in each of the above three arguments, we preserve equality if and only if it is preserved in Claim 1.
It remains to prove that r − 1�√

s where equality holds in the claimed case. Note first that, since G is not a tree, the
inequality is trivially true for r = 1, 2. Moreover, for r = 1 we have strict inequality, while for r = 2 the equality holds
if and only if G = P2�P2.

So let r �3 and let S be a square of G. We proceed by induction on k. Let E1, E2 be the two �-classes that contain
the edges of S: we may assume that |E1| = r . Let G′ be the median graph constructed from G by contracting first the
�-class E1 and afterwards contracting the �-class E2.

Clearly, k′ = k − 2. Since |E1| = r and G is cube-free, in the first contraction r − 1 squares are contracted. In
addition, since |E2|�r and because after the first contraction at most two edges of E2 have been identified, in the
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second contraction at least r −2 squares are contracted. It follows that s′ �s − (r −1)− (r −2), that is, s�s′ +2r −3.
Note also that by the induction assumption (r ′ − 1)2 �s′.

Invoking observations following Theorem 2.2 again, we have r ′ �r − 1. We distinguish two cases. Suppose first that
r ′ = r − 1. Then we can compute as follows:

(r − 1)2 = (r ′)2 = (r ′ − 1)2 + 2(r ′ − 1) + 1�s′ + 2(r ′ − 1) + 1 = s′ + 2r − 3�s.

The second case is when r ′ = r . Then

(r − 1)2 = (r ′ − 1)2 �s′ < s′ + 2r − 3�s,

where the strict inequality holds since r > 3/2. Thus in both cases we have proved r − 1�√
s.

Finally, the equality will hold if and only if r ′ = r − 1, k′ = 2r ′ − 2, and s′ + 2r − 3 = s. So applying Lemma 3.1 we
can conclude that G is the Cartesian product of two trees of the same order. (Note that such a graph satisfies r ′ = r − 1
and s′ + 2r − 3 = s.) �

Consider now the hypercubes Qd , d �3. Clearly,

n = 2d , m = d 2d−1, k = d, s =
(

d

2

)
2d−2 and r = 2d−1.

For d �3 we have

k

2
<

√
n − 1 <

m

2
√

n
<

√
s < r − 1.

that is,

d

2
< 2d/2 − 1 < d 2d/2−2 <

√
d(d − 1) 2d/2−3/2 < 2d−1 − 1,

which can be easily checked for d = 3, so by asymptotic reasons the inequalities follows for all d �3. Hence the
inequalities of Theorem 3.3 are characteristic for cube-free median graphs in the following sense: a median graph is
cube-free if and only if for any convex subgraph of G the inequalities of Theorem 3.3 hold.

We conclude this section with an open problem, considering a generalization of Theorem 3.3 to arbitrary median
graphs.

Problem 3.4. Let G be a Qd+1-free median graph with k �-classes and n vertices. Let r be the number of edges
in a smallest �-class of G and denote by �i the number of Qi-cubes in G. Do some (or maybe all) of the following
inequalities hold:

k

d
� d

√
n − 1� d

√
�d � d−1

√
r − 1 ?

Regarding the above problem, let G be the Cartesian product of d trees of the same order, say p. Then, n = pd ,
k = (p − 1)d, �d = (p − 1)d , r = pd−1. Note that G is Qd+1-free median graph. So, we obtain that

k

d
= d

√
n − 1 = d

√
�d = d−1

√
r − 1 = p − 1.

Thus, if the inequalities of the above problem hold, possibly they become equalities if and only if the graph is a product
of d trees all of same order.

4. Additional properties

In this section some more properties of cube-free median graphs are obtained. In the first part, we consider the cube
polynomial of these graphs, in particular its zeros and extreme points. In the second part we show that cube-free median
graphs can be recognized in linear time.
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The cube polynomial c(G, x) of a graph G was introduced in [4] and is defined as follows. Let �i (G) denote the
number of induced i-cubes of G, so that in particular �0(G) = |V (G)| and �1(G) = |E(G)|. Then

c(G, x) =
∑
i �0

�i (G)xi .

Using the results of previous sections we can prove:

Proposition 4.1. The cube polynomial of a cube-free median graph G has real zeros. Moreover, it has a unique zero
if and only if G is a tree or the Cartesian product of two trees of the same order.

Proof. Let G be a cube-free median graph with n vertices, m edges, s squares, and k classes of the relation �. Then,
as G is cube-free, c(G, x) = sx2 + mx + n. By Proposition 2.1 we have

s = m − n + 1 and k = −m + 2n − 2,

and so

c(G, x) = sx2 + (2s + k)x + (k + s + 1). (2)

If s = 0 then G is a tree and the claim follows trivially. So assume that s > 0. By Lemma 3.2 we infer that

(2s + k)2 − 4s(k + s + 1) = k2 − 4s�0,

which establishes that c(G, x) has real zeros. Note that the cube polynomial has a unique zero if and only if k2 = 4s.
By Lemma 3.2, this holds if and only if G is the Cartesian product of two trees of the same order. �

Let F(G) denote some set of edges consisting of representatives of the �-classes of a (cube-free) median graph G.
Thus, |F(G)| = k. For an edge e = uv of a median graph G let Ue be the subgraph of G induced by the vertices x of G
such that there is an edge f = xy with e�f and d(u, x) < d(u, y).

Proposition 4.2. Let G be a cube-free median graph that is not a tree, and let xmin be the minimum point of c(G, x).
Then

xmin = −1 − k∑
e∈F(G) |E(Ue)| .

Moreover, if G is 2-edge-connected, then xmin � − 2, and xmin = −2 if and only if G = P2�P2.

Proof. Note first that since G is not a tree, c(G, x) has an extreme, more precisely a minimum. Let G have n vertices,
m edges, s squares, and k classes of the relation �. From (2) we deduce xmin = −1 − k/2s.

As G is cube-free, every graph Ue is a tree (possibly K1). Every edge f of an Ue corresponds to a square S of G, and
there exists a unique graph Ue′ , where e′ and e are in different �-classes, such that the edge f also corresponds to S.
Therefore, 2s = ∑

e∈F(G)(|V (Ue)| − 1) = ∑
e∈F(G)|E(Ue)| which proves the first assertion.

Let now G be 2-edge-connected. Then each �-class consists of at least two edges, and so each tree Ue has at least
one edge. Hence k/

∑
e∈F(G)|E(Ue)|�1, and thus by the above, xmin � − 2. Finally, the equality is achieved if and

only if every tree Ue has exactly one edge which is possible only if G is a square. �

In [8] a reduction is given asserting that recognizing median graphs is roughly equivalent to finding triangles in
graphs, for the latter problem cf. [1]. In fact, the corresponding median graphs in the reduction are cube-free, so a fast
recognition algorithm (say linear or “almost” linear) for cube-free median graphs would imply such an algorithm for
recognition of triangle-free graphs.

Hence there is not much hope for a linear recognition algorithm for general cube-free median graphs, where by
“linear” we mean linear in the number of edges. However, we are going to show that planar cube-free median graphs
can be recognized in linear time. For this purpose we need to recall that a subgraph H of a graph G is called gated in
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G if for every x ∈ V (G) there exists a vertex u in H such that u ∈ I (x, v) for all v ∈ V (H). Note that if for some x
such a vertex u in V (H) exists, it must be unique.

Proposition 4.3. Let G be a median graph. Then one can decide in linear time whether G is cube-free.

Proof. Let u be an arbitrary vertex of G and let T be a BFS-tree with respect to u. We claim that G is cube-free if and
only if every vertex of T has down-degree at most two. (By the down-degree of a vertex w we mean the number of
neighbors of w in G that are closer to u in the BFS tree than w is.)

If G is cube-free then by [7, Lemma 3.35] the down-degrees are bounded by two, otherwise we would have hypercubes
of higher dimensions.

Conversely, suppose that H = Qk , k�3, is a subgraph of G. It suffices to consider the case k = 3, for otherwise just
consider any induced 3-cube of H. If u ∈ H , then the vertex w of H with dH (u, w) = 3 lies in the third distance level
from u and is of down-degree at least three. So suppose u /∈ H . As H is convex in G it is also gated (cf. [7, Lemma
2.23]), so there is a unique vertex v of H closest to u. Let w ∈ H be the vertex of H with d(v, w)= 3. By the gatedness,
d(u, w) = d(u, v) + 3. But then w is of down-degree at least three.

To conclude the argument note that it can be easily checked in linear time whether all the down-degrees of G in T
are bounded by two. �

Since planar median graphs can be recognized in linear time by a result of [8], Proposition 4.3 implies:

Corollary 4.4. Planar cube-free median graphs can be recognized in linear time.

We conclude by noting that the recognition problem for planar graphs that contain no subgraph homeomorphic to
the 3-cube is efficiently solved in [6].
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