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Abstract

Let γg(G) be the game domination number of a graph G. It is proved that

if diam(G) = 2, then γg(G) ≤
⌈
n(G)
2

⌉
−
⌊
n(G)
11

⌋
. The bound is attained: if

diam(G) = 2 and n(G) ≤ 10, then γg(G) =
⌈
n(G)
2

⌉
if and only if G is one

of seven sporadic graphs with n(G) ≤ 6 or the Petersen graph, and there are
exactly ten graphs of diameter 2 and order 11 that attain the bound.
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1 Introduction

The domination game has been investigated in depth by now, hence let us very
quickly recall its definition [3]. The game is played on a graph G by Dominator
and Staller who alternately select their vertices. Each selected vertex is required
to dominate at least one new vertex. The game ends when the vertices selected
form a dominating set; Dominator’s goal is to finish the game as soon as possible,
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Staller’s goal is the opposite. If Dominator is the first to play, we speak of a D-
game, otherwise it is an S-game. The number of vertices selected in a D-game under
the assumption that both players follow optimal strategies is the game domination
number γg(G) of G. The corresponding invariant for the S-game is denoted by γ′g(G).

A central theme in the investigation of the game domination number is its upper
bounds in terms of the order n(G) of a graph G. It all started with the 3/5-Graph
Conjecture [19] asserting that if G is an isolate-free graph, then γg(G) ≤ 3

5
n(G).

A strong support for the conjecture is [15, Theorem 2.7] which asserts that it is
true for all graphs with minimum degree at least 2. The conjecture is still open
in general, the best upper bound that holds for all graphs is γg(G) ≤ 5

8
n(G) [7,

Theorem 2.25]. Another appealing conjecture, first stated in [18], is Rall’s 1/2-
Conjecture which asserts that if G is a traceable graph, then γg(G) ≤ d1

2
n(G)e,

cf. [8]. For additional topics of interest related to the domination game and its
variants see [2, 4, 6, 11, 16, 17, 22, 23, 25, 26].

In this paper we focus on the domination game played on graphs with diameter 2
and proceed as follows. In the next section we present some preliminary results and
introduce a new proof technique (Lemma 2.5) to be used in the rest of the paper.

In Section 3 we prove that if G is a graph with diam(G) = 2, then γg(G) ≤
⌈
n(G)
2

⌉
.

Moreover, we show that the equality holds for precisely eight graphs, including the
Petersen graph. Based on Section 3, in the subsequent section we prove that if G

is a graph with diam(G) = 2, then γg(G) ≤
⌈
n(G)
2

⌉
−
⌊
n(G)
11

⌋
. All equality graphs

of order 11 are also discovered. In the concluding section we relate our results to
Rall’s 1/2-Conjecture.

2 Preliminaries

We follow the standard graph terminology and notation from [24]. In particular, if
G is a graph, then its minimum degree, maximum degree, and domination number
are denoted by δ(G), ∆(G), and γ(G), respectively. Also, if v ∈ V (G), then NG(v)
and NG[v] denote the open and the closed neighborhood of v, respectively.

First observe that a nontrivial graph G satisfies diam(G) ≤ 2 if and only if the
open neighborhood N(v) is a dominating set for every vertex v ∈ V (G). Therefore,
diam(G) = 2 implies γ(G) ≤ δ(G). By [3, Theorem 1], we have γg(G) ≤ 2γ(G)− 1,
and thus γg(G) ≤ 2δ(G)− 1. We formulate this observation as a lemma.

Lemma 2.1 If G is a graph of diameter 2, then γg(G) ≤ 2δ(G)− 1.

Recall that if S ⊆ V (G), then G|S denotes a partially dominated graph, so
a graph G, where vertices from S are already dominated. The number of moves
remaining in the game on G|S under optimal play when Dominator, resp. Staller,
has the next move is denoted by γg(G|S), resp. γ′g(G|S).
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Lemma 2.2 If G = (V,E) is a graph of diameter 2, and X ⊆ V is a non-empty set
of (undominated) vertices with |X| = x, then the partially dominated graph G|(V \X)
satisfies γg(G|(V \X)) ≤ b2

3
x+ 1

3
c and γ′g(G|(V \X)) ≤ b2

3
x+ 2

3
c.

Proof. First, we claim that Dominator can play a vertex which dominates at least
two new vertices in each of his moves, except maybe in the last one. Assume that it
is Dominator’s turn and that he cannot finish the game with a single move. Hence
at least two vertices of G are not yet dominated, say u and v. Since diam(G) = 2,
either d(u, v) = 1 or d(u, v) = 2. In the first case, Dominator can play u (or v)
to dominate at least two vertices. And if d(u, v) = 2, then Dominator can play a
common neighbor of u and v, thus again dominating at least two vertices.

Let us now consider the D-game. Assume that the game is played on G|(V \X),
and that Dominator uses the above strategy of dominating at least two new vertices
at each of his moves (except maybe in his last one), and Staller plays optimally. We
distinguish the following two cases.

Case 1: The last move of the game is played by Staller.
In this case the number of moves played is even, say 2k, k ≥ 1. The strategy
of Dominator assures that during the game at least 2k + k different vertices are
dominated. Since in this counting the vertices are pairwise different, we infer that

2k + k ≤ x .

Since Staller plays optimally, but Dominator maybe not, we can estimate the game
domination number as follows:

γg(G|(V \X)) ≤ 2k ≤
⌊

2

3
x

⌋
≤
⌊

2

3
x+

1

3

⌋
.

Case 2: The last move of the game is played by Dominator.
Now the number of moves played is odd, say 2k+1. If k = 0, then Dominator’s first
move finishes the game. Thus γg(G|(V \X)) = 1 ≤ b2

3
x+ 1

3
c. So from now on, we can

assume that k ≥ 1, and hence Dominator cannot finish the game with a single move.
By the strategy of Dominator, at least 2k + k + 1 different vertices are dominated.
In this sum, the last 1 corresponds to the last move of Dominator in which it is
possible that he dominates only one new vertex. It follows that 3k + 1 ≤ x. Again,
as Staller plays optimally but Dominator maybe not, we can estimate that

γg(G|(V \X)) ≤ 2k + 1 ≤
⌊

2

3
(x− 1) + 1

⌋
=

⌊
2

3
x+

1

3

⌋
,

and we are done also in this case.
Similar reasoning shows the result for the S-game. �
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Corollary 2.3 If G is a graph with diam(G) = 2, then

γg(G) ≤
⌊

2

3

(
n(G)−∆(G)

)⌋
+ 1 .

Moreover, equality holds if ∆(G) ∈ {n(G)− 1, n(G)− 2}.

Proof. If ∆(G) = n(G) − 1, then γg(G) = 1, and if ∆(G) = n(G) − 2, then
γg(G) = 2. Hence in both cases the equality holds. In the rest we may thus assume
that ∆(G) ≤ n(G)− 3.

Suppose that Dominator starts the game by playing a vertex v of degree ∆(G).
After this move, we are observing an S-game on G|N [v], thus, by Lemma 2.2, we
have γ′g(G|N [v]) ≤ b2

3
x+ 2

3
c, where x = n(G)− (∆(G) + 1). This immediately gives

γg(G) ≤ 1 + γ′g(G|N [v]) ≤ 1 + b2
3
(n(G)−∆(G))c. �

In [3] it was observed that γg(P ) = 5, where P is the Petersen graph. Hence the
equality in Corollary 2.3 is also sharp for some graphs with ∆(G) < n(G)− 2. The
following result yields an infinite family of this kind of sharpness examples. Recall
that vertices u and v of a graph G are twins if N [u] = N [v].

Proposition 2.4 If G is a twin-free graph with diam(G) = 2 and ∆(G) ∈ {n(G)−
3, n(G)− 4}, then γg(G) = 3.

Proof. Under the given conditions, Corollary 2.3 directly implies γg(G) ≤ 3. To
prove that γg(G) ≥ 3, we need to describe an appropriate strategy of Staller. Assume
that Dominator plays a vertex w as his first move. Let Y = V (G)−N [w] and note
that |Y | ≥ 2. If there exist vertices u, v ∈ Y such that uv /∈ E(G), then Staller
can play u (or v) as her first move, forcing Dominator to play his second move. So
assume that Y induces a complete subgraph of G and consider arbitrary vertices
u, v ∈ Y . Since G is twin-free, N(u) ∩ N(w) 6= N(v) ∩ N(w). Let x ∈ N(w) be a
vertex with xu ∈ E(G) and xv /∈ E(G). If Staller plays x as her first move, then she
again forces Dominator to play one more move. We conclude that γg(G) ≥ 3. �

Let Gk, k ≥ 2, be the graph obtained from the disjoint union of K1,k with leaves
u1, . . . , uk, and from Kk with vertices v1, . . . , vk, by adding the edges viuj for all i, j ∈
[k], i 6= j. (We note in passing that Gk is the Mycielskian M(Kk) of Kk [13, 21].) It
is straightforward to check that Gk satisfies all the assumptions of Proposition 2.4,
hence constituting an infinite family of equality cases in Proposition 2.4.

To see that the twin-free condition in Proposition 2.4 is needed, consider the
following example. Let Hk, k ≥ 4, be constructed as follows. Start with Kk,k, and
select two adjacent vertices u and v from it. Add a vertex w and connect it to all
vertices of Kk,k. Finally, add two new vertices x and y, the edge xy, and connect
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both x and y to both u and v. Note that x and y are twins, diam(Hk) = 2, and
∆(Hk) = n(Hk)−3. If Dominator plays w as his first move, then Staller is forced to
finish the game with her first move. Hence, γg(Hk) = 2. To have such examples of
G with ∆(G) = n(G)− 4, proceed similarly as above, with the only difference that
instead of adding the edge xy, we add a triangle.

We conclude this section by proving another lemma, which seems rather techni-
cal, but is extremely useful. In a D-game, let Ui and U ′i denote the set of undomi-
nated vertices after the move di of Dominator and the move si of Staller, respectively.
Set further ui = |Ui|, u′i = |U ′i |, and S ′i = {d1, . . . , di, s1, . . . , si}. A greedy strategy
of Dominator means that, for every i ≥ 1, he plays a vertex di that makes ui as
small as possible, that is, Dominator will always select a vertex v that maximizes
|N [v] \N [S ′i] |.

Lemma 2.5 If G is a graph on n vertices with minimum degree δ and i ≥ 1, then

u1 ≤ n− δ − 1,

ui+1 ≤ u′i

(
1− δ + 1

n− 2i

)
= u′i ·

n− 2i− δ − 1

n− 2i
,

u′i ≤ ui − 1,

if Dominator follows a greedy strategy.

Proof. It is clear that at least δ+ 1 vertices become dominated with the first move
d1 of Dominator, and therefore, u1 ≤ n − (δ + 1). Since Staller must dominate at
least one new vertex on each move, we also have u′i ≤ ui − 1 for every i ≥ 1.

It remains to prove the upper bound for ui+1. If a vertex v is undominated after
the move si, then N [v] ⊆ V \ S ′i. As |N [v]| ≥ δ + 1, each vertex from U ′i can be
dominated by at least δ + 1 different vertices from V \ S ′i. Since |V \ S ′i| = n − 2i,
we may assume δ+ 1 ≤ n− 2i as otherwise the game would be over before the move
di+1. A double counting argument shows that

∑
v∈U ′

i
|N [v]| =

∑
u∈V \S′

i
|N [u] ∩ U ′i |.

As
∑

v∈U ′
i
|N [v]| ≥ u′i(δ + 1) and |V \ S ′i| = n− 2i, a vertex from V \ S ′i dominates

at least
u′i(δ + 1)

n− 2i

new vertices on average. Thus, according to his greedy strategy, Dominator plays
such a vertex that

ui+1 ≤ u′i −
u′i(δ + 1)

n− 2i
= u′i

(
1− δ + 1

n− 2i

)
,

which concludes the proof. �
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3 One-half of the order upper bound

In this section we first prove the following result and close the section by discussing
an alternative approach to its proof.

Theorem 3.1 If G is a graph with diam(G) = 2, then

γg(G) ≤
⌈
n(G)

2

⌉
.

Moreover, the equality holds if and only if G is one of the graphs from Fig. 1 or the
Petersen graph.

Figure 1: Sporadic graphs with γg(G) = dn(G)/2e.

Proof. Let G be a graph with diam(G) = 2. Set for this proof V = V (G), n = n(G),
δ = δ(G), and ∆ = ∆(G).

Assume first that δ ≥ n/4 + 1. By Corollary 2.3, keeping in mind that δ ≤ ∆,
we get:

γg(G) ≤ 2

3

(
n−∆

)
+ 1 ≤ 2

3

(
n− n/4− 1

)
+ 1

=
n

2
+

1

3
.

Since both n and γg(G) are integers, we may infer γg(G) ≤ dn
2
e.

Assume next that δ < n/4 + 1. By Lemma 2.1, γg(G) < n/2 + 1. Since both n
and γg(G) are integers, we get γg(G) ≤ dn

2
e. This proves the inequality.

For the equality, we have first performed a computer search over all graphs of
diameter 2 and order at most 10, and found the graphs listed in the statement of
the theorem. It thus remains to prove that if n ≥ 11, then γg(G) < dn/2e.
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First assume that δ ≤ bn+1
4
c. Using Lemma 2.1 again we obtain

γg(G) ≤ 2δ − 1 ≤ 2

⌊
n+ 1

4

⌋
− 1 < 2

n+ 2

4
− 1 =

n

2
≤
⌈n

2

⌉
.

For the remaining cases, we now assume δ ≥ bn+1
4
c + 1 = bn+5

4
c. Using this bound

on the results from Lemma 2.5, we have that

u1 ≤ n−
⌊
n+ 5

4

⌋
− 1 ,

and

ui+1 ≤ (ui − 1)

(
1−
bn+9

4
c

n− 2i

)
.

Applying these formulas for small cases, we obtain the following conclusions. If
n = 11, then u2 ≤ 2 and so Staller’s move s2 leaves at most one vertex undominated.
Therefore, under the greedy strategy of Dominator, the game finishes within 5 moves
that is smaller than d11

2
e. If n = 12 or 13, then u2 ≤ 3. This gives u′2 ≤ 2. Since

G is of diameter 2, any two vertices are adjacent or share a neighbor, they can be
dominated by one move. We conclude γg(G) ≤ 5 < d12

2
e < d13

2
e, thus establishing

the statement for n = 12 and 13. In a similar way we may show u2 ≤ 4, u′2 ≤ 3 and
u3 ≤ 1 for n = 14, thus proving γg(G) ≤ 6 < d14

2
e.

From now on, we assume that n ≥ 15 and, instead of δ ≥ bn+5
4
c, we use the

weaker estimation δ ≥ n+2
4

. Then, u1 ≤ n − (δ + 1) ≤ 3n−6
4

and u′1 ≤ 3n−10
4

. By
these inequalities and Lemma 2.5, we get

u2 ≤
3n− 10

4

(
1− n+ 6

4(n− 2)

)
=

(3n− 10)(3n− 14)

16(n− 2)
.

Lemma 2.2 implies that we need at most 1 + 2u2/3 further moves to dominate all
vertices from U2. Thus, Dominator can ensure that the game finishes in at most

4 +
2

3
· (3n− 10)(3n− 14)

16(n− 2)

moves. Now it is enough to consider the strict inequality

4 +
2

3
· (3n− 10)(3n− 14)

16(n− 2)
<
n

2
.

Since it is equivalent to
0 < 3n2 − 48n+ 52 ,

which is valid for all n ≥ 15, we may conclude that γg(G) < n/2 holds also for every
integer n ≥ 15. �

One can also think about an alternative approach for proving the upper bound
in Theorem 3.1 using the following two known results.
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Theorem 3.2 [14, Theorem 3.4] If G is a graph with diam(G) = 2, then γ(G) ≤
bn/4c+ 1.

Theorem 3.3 [20, Theorem 5] Let G be a graph of order n and diameter 2. If
n = 4p+ r with integers p ≥ 1 and 0 ≤ r ≤ 3, then γ(G) ≤ bn/4c = p, when r = 0,
p ≥ 4 or r = 1, p ≥ 5, or r ∈ {2, 3}, p ≥ 6.

Since γg(G) ≤ 2γ(G) − 1, see [3, Theorem 1], it follows from Theorem 3.2 that
for a graph G on n vertices, where n 6≡ 0 (mod 4), and with diameter 2, we have
γg(G) ≤ dn/2e. The same conclusion follows from Theorem 3.3 for n ≡ 0 (mod 4)
and n ≥ 16. The remaining cases of graphs on 4, 8, and 12 vertices could then be
handled by computer. As stated in the proof of Theorem 3.1, we have done this for
graphs of order at most 10. However, the computation for all diameter 2 graphs on
12 vertices would require a lot of computer time, hence we did not do it.

4 A stronger upper bound

In this section we improve Theorem 3.1 as follows.

Theorem 4.1 If G is a graph with diam(G) = 2, then

γg(G) ≤
⌈
n(G)

2

⌉
−
⌊
n(G)

11

⌋
. (1)

Proof. Let G be a graph of diameter 2 and order n = n(G). First recall that, by
Theorem 3.1, we have γg(G) ≤ dn/2e and consequently, (1) holds if n < 11. By the
same theorem, the strict inequality γg(G) < dn/2e is valid whenever n ≥ 11. The
latter implies that (1) is true for every graph G with 11 ≤ n ≤ 21. Therefore, in the
following, we assume n ≥ 22.

The general result [5, Theorem 4] directly implies that, in the case of δ(G) ≥ 11,
we have γg(G) < 0.404n. Since

0.404n <
9

22
n =

n

2
− n

11
≤
⌈n

2

⌉
−
⌊ n

11

⌋
,

we may infer that the theorem holds if δ(G) ≥ 11.

Assume now that δ(G) ≤ 5. As G is a graph of diameter 2, we have γg(G) ≤
2δ(G)−1 ≤ 9 by Lemma 2.1. On the other hand, 9 ≤ 9n/22 ≤ dn/2e−bn/11c holds
under the condition n ≥ 22, thus proving the theorem for the case of δ(G) ≤ 5.

If δ(G) = 6 and n ≥ 27, we apply the inequalities γg(G) ≤ 2δ(G) − 1 and
9n/22 > 11, which results in

γg(G) ≤ 2δ(G)− 1 = 11 <
9

22
n ≤

⌈n
2

⌉
−
⌊ n

11

⌋
.

8



In addition, one can check that 11 = dn/2e − bn/11c holds, and therefore (1) is
valid for n = 25 and n = 26. The remaining cases are n = 22, 23 and 24. Now,
Lemma 2.5 moves in. Namely, following the greedy strategy, we observe that Dom-
inator dominates at least δ(G) + 1 = 7 vertices with his first move and therefore,
u1 ≤ n− 7 and u′1 ≤ n− 8. Before the second move of Dominator, there is a vertex
that dominates at least 7u′1/(n− 2) vertices. By playing such a vertex, he achieves

u2 ≤ u′1

(
1− 7

n− 2

)
≤ (n− 8)(n− 9)

n− 2
.

After the second move of Staller, we then have u′2 ≤ u2 − 1 and may calculate
that the number of remaining moves is at most b2

3
u′2 + 1

3
c by Lemma 2.2. Thus we

conclude

γg(G) ≤ 4 +

⌊
2

3

(
(n− 8)(n− 9)

n− 2
− 1

)
+

1

3

⌋
.

The right-hand side formula equals 9, 10, 10, respectively, for n = 22, 23, 24, which
are exactly the corresponding values of dn/2e − bn/11c. This finishes the proof for
δ(G) = 6.

Assuming that δ(G) = 7, we give a similar reasoning as for δ(G) = 6. If n ≥ 32,
then

γg(G) ≤ 2δ(G)− 1 = 13 <
9

22
n ≤

⌈n
2

⌉
−
⌊ n

11

⌋
.

If 29 ≤ n ≤ 31, the inequality 13 ≤ dn/2e − bn/11c is still valid and so (1) is true.
Assume finally that 22 ≤ n ≤ 28. It is clear that u1 ≤ n − 8 and u′1 ≤ n − 9.
Applying Lemma 2.5, we get

u2 ≤ u′1

(
1− 8

n− 2

)
≤ (n− 9)(n− 10)

n− 2
.

Then, by Lemma 2.2,

γg(G) ≤ 4 +

⌊
2

3

(
(n− 9)(n− 10)

n− 2
− 1

)
+

1

3

⌋
≤
⌈n

2

⌉
−
⌊ n

11

⌋
,

where the last estimation can be verified by calculating the values for each integer
22 ≤ n ≤ 28. This completes the proof for δ(G) = 7.

For the next case, suppose δ(G) = 8. If n ≥ 37, then

γg(G) ≤ 2δ(G)− 1 = 15 <
9

22
n ≤

⌈n
2

⌉
−
⌊ n

11

⌋
which proves (1). If n = 35 or n = 36, then 15 = dn/2e − bn/11c holds and (1) is
true. Suppose now that 22 ≤ n ≤ 33. By Lemma 2.5, u1 ≤ n− 9 and u′1 ≤ n− 10
hold. Moreover, Dominator can ensure that

u2 ≤ u′1

(
1− 9

n− 2

)
≤ (n− 10)(n− 11)

n− 2
.
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Then, taking into account Lemma 2.2, we get

γg(G) ≤ 4 +

⌊
2

3

(
(n− 10)(n− 11)

n− 2
− 1

)
+

1

3

⌋
≤
⌈n

2

⌉
−
⌊ n

11

⌋
by checking the last inequality for each integer between 22 and 33. The only re-
maining case for δ(G) = 8 is thus n = 34. Here, we get u′2 ≤

⌊
24·23
32
− 1
⌋

= 16 and
continue the process with estimating u3 by using Lemma 2.5 again. This yields

u3 ≤
⌊
u′2

(
1− 9

30

)⌋
≤
⌊

16 · 21

30

⌋
= 11

and u′3 ≤ 10. From this point, by Lemma 2.2, Dominator can ensure that the game
finishes within seven moves. This establishes γg(G) ≤ 13 < d34/2e − b34/11c = 14
and completes the proof for δ(G) = 8.

If δ(G) = 9 and n ≥ 42, we have γg(G) ≤ 2δ(G)− 1 = 17 < 9
22
n, which implies

inequality (1). For n = 39, 40, 41, simple calculation shows 17 ≤ dn/2e − bn/11c
and we infer γg(G) ≤ dn/2e−bn/11c again. To prove the theorem for the remaining
cases, 22 ≤ n ≤ 38, we first observe that u1 ≤ n − 10 and u′1 ≤ n − 11. Then, by
playing greedily, Dominator can ensure (Lemma 2.5)

u2 ≤ u′1

(
1− 10

n− 2

)
≤ (n− 11)(n− 12)

n− 2

and, by Lemma 2.2, we get

γg(G) ≤ 4 +

⌊
2

3

(
(n− 11)(n− 12)

n− 2
− 1

)
+

1

3

⌋
.

For each integer 22 ≤ n ≤ 38, the value of the right-hand side formula is bounded
from above by

⌈
n
2

⌉
−
⌊

n
11

⌋
. This completes the proof of (1) for δ(G) = 9.

The last case we have to consider is δ(G) = 10. If n ≥ 47, then γg(G) ≤
2δ(G) − 1 = 19 < 9

22
n holds, thus proving (1). For n = 45 and n = 46, the

inequality γg(G) ≤ 19 = dn/2e − bn/11c holds, thus implying the statement. If
22 ≤ n ≤ 44, we consider the greedy startegy of Dominator which, by Lemma 2.5,
results in u1 ≤ n− 11, u′1 ≤ n− 12,

u2 ≤ u′1

(
1− 11

n− 2

)
≤ (n− 12)(n− 13)

n− 2
.

Then, for 22 ≤ n ≤ 43, we can estimate (Lemma 2.2) the length of the game as

γg(G) ≤ 4 +

⌊
2

3

(
(n− 12)(n− 13)

n− 2
− 1

)
+

1

3

⌋
≤
⌈n

2

⌉
−
⌊ n

11

⌋
,
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where the last inequality can be easily checked for each integer n in the interval
[22, 43]. If n = 44, the previous argumentation gives u2 ≤ 32 · 31/42. Since u2 is an
integer, we have u2 ≤ 23 and u′2 ≤ 22. It follows from Lemma 2.5 that

u3 ≤
⌊
u′2

(
1− 11

40

)⌋
≤
⌊

22 · 29

40

⌋
= 15 ,

and so, by Lemma 2.2, the game will be finished in at most 10 additional moves.
Thus, we conclude γg(G) ≤ 15, which implies γg(G) < d44/2e− b44/11c = 18. This
completes the proof of Theorem 4.1. �

The bound in Theorem 4.1 is attained. In fact, there are exactly 10 graphs on
11 vertices with the game domination number equal to 5, see Figure 2. They were
obtained using a computer. Let G be a graph with n(G) = 11. If δ(G) ≤ 2,
then Lemma 2.1 implies γg(G) ≤ 3. And if ∆(G) ≥ 6, then Corollary 2.3 yields
γg(G) ≤ 4. Hence, in our computer search we only had to check the connected
graphs G on 11 vertices with δ(G) ≥ 3 and ∆(G) ≤ 5.

Figure 2: Graphs on 11 vertices with diameter 2 and game domination number 5.
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5 Concluding remarks

Note also that the upper bound in Theorem 3.1 is asymptotically not tight, and
for big enough n it follows from know upper bounds on (total) domination number,
see for example [1, 10, 12]. In particular, the strongest known result asserts that

γt(G) <
√

n logn
2

+
√

n
2

for all graphs G of diameter 2 and n ≥ 3 vertices [12, Theorem

1]. Using the well-known bounds γg(G) ≤ 2γ(G)− 1 and γ(G) ≤ γt(G), this yields

γg(G) ≤ 2

⌊√
n log n

2
+

√
n

2

⌋
− 1.

The latter value is smaller than dn
2
e for all n ≥ 65, and smaller than dn

2
e − b n

11
c for

all n ≥ 111.
Recall that for any fixed positive real number p < 1 (which is the probability with

which the edges of a random graph are selected mutually independently), almost all
graphs are connected with diameter 2, cf. [9, Theorem 13.6]. Hence Theorem 4.1
(or Theorem 3.1 for that matter) imply that

γg(G) <
n(G)

2

holds for almost all graphs G.
Theorem 3.1 and/or Theorem 4.1 offer another support for Rall’s 1/2-conjecture.

That is, the conjecture holds for all graphs with diameter 2 and consequently for
almost all graphs. In this direction, we have tried a different approach than in [8],
and proved, using a computer, that the 1/2-conjecture holds for all Hamiltonian
graphs on n ≤ 10 vertices. Here, we have made use of [5, Corollary 5(ii)] to avoid
checking graphs with δ(G) ≥ 5.
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[26] K. Xu, X. Li, S. Klavžar, On graphs with largest possible game domination
number, Discrete Math. 341 (2018) 1768–1777.

14


	1 Introduction
	2 Preliminaries
	3 One-half of the order upper bound
	4 A stronger upper bound
	5 Concluding remarks

