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Applications of Isometric Embeddings to Chemical Graphs

Sandi Klavžar

Abstract. Applications of isometric embeddings of benzenoid graphs are sur-
veyed. Their embeddings into hypercubes provide methods for computing the
Wiener index and the Szeged index, while embeddings into the Cartesian prod-
uct of trees lead to fast algorithms. A new method for computing the hyper-
Wiener index of partial cubes in general, and of benzenoid graphs and trees in
particular, is also presented.

1. Introduction

Graphs that can be isometrically embedded into a hypercube are called partial
cubes. The structure of these graphs is well understood via characterizations of
Djoković [8], Winkler [31] and Chepoi [3]. In addition, there are two algorithms of
complexity O(n2 log n) for recognizing these graphs, where n denotes the number of
vertices of the graph considered. The algorithms are due to Aurenhammer, Hagauer
[2] and Imrich, Klavžar [18], see also [19] for a survey on related algorithmic results.

Partial cubes have found several applications, in particular in the chemical
graph theory. It was observed in [22] that benzenoid graphs are partial cubes. In
this paper we wish to present the developments arising from this point of departure.
We proceed as follows. In the rest of this section we recall the concepts needed later.
In Sections 2 and 3 we survey results which were obtained using isometric embed-
dings of benzenoid graphs. Section 2 contains (theoretical) methods for computing
the Wiener and the Szeged index of benzenoid graphs which in particular enable
us to obtain expressions for the two indices of several families of benzenoid graphs.
Section 3 contains linear algorithms for computing the two indices on benzenoid
graphs. In Section 4 we propose a new method for computing the hyper-Wiener
index of benzenoid graphs. At the end of the paper we also briefly mention the
so-called scale embeddings, a generalization of isometric embeddings.

For a graph G = (V (G), E(G)) let dG(u, v) be the usual shortest path distance
between vertices u and v of G. Given two connected graphs H and G, we say that
H admits an isometric embedding into G if there exists a mapping

ι : V (H) → V (G)
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2 SANDI KLAVŽAR

such that for all vertices u, v ∈ V (H) we have

dG(ι(u), ι(v)) = dH(u, v) .

Clearly, ι is injective and maps edges to edges, thus H can be considered as an
induced subgraph of G. We can also say that H is an isometric subgraph of G. An
example of an isometric embedding is given in Fig. 1. We refer to [9, 10, 30] for
more information on isometric embeddings of graphs.
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Figure 1. C6 is an isometric subgraph of the 3-cube Q3

The Cartesian product G2H of graphs G and H is the graph with vertex set
V (G) × V (H) and (a, x)(b, y) ∈ E(G2H) whenever ab ∈ E(G) and x = y, or
a = b and xy ∈ E(H). The Cartesian product is commutative and associative.
Hence we may write G = G12G22 · · ·2Gk for the Cartesian product of graphs
G1, G2, . . . , Gk. In this case, the vertex set of G is V (G1) × V (G2) × · · · × V (Gk)
and two vertices (u1, u2, . . . , uk) and (v1, v2, . . . , vk) are adjacent if they differ in
exactly one position, say in ith, for which uivi is an edge of Gi. An example of the
Cartesian product is given in Fig. 2 where we can see the Cartesian product of the
path on four vertices P4 with two copies of K2.
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Figure 2. The Cartesian product P42K22K2

The n-cube Qn is the Cartesian product of n copies of the complete graph on
two vertices K2. In other words, if we set V (K2) = {0, 1}, then the vertex set of
Qn consists of all words of length n over {0, 1} and two such words are adjacent if
they differ in exactly one position. A graph is called a hypercube if it is isomorphic
to some n-cube.

The 3-cube, i.e. the graph Q3 = K22K22K2 can be seen on Fig. 1. Consider
now the graph from Fig. 2. Since K22K2 = Q2, the product graph can also be
interpreted as P42(K22K2) = P42Q2. Observe also that if we restrict P4 to any
of its three edges we find a copy of Q3 in the product P42Q2.



APPLICATIONS OF ISOMETRIC EMBEDDINGS TO CHEMICAL GRAPHS 3

A graph G is a partial cube, if there is an isometric embedding ι : V (G) →
V (Qn) for some n. In other words, partial cubes are isometric subgraphs of hy-
percubes. We have seen already on Fig. 1 that C6 is a partial cube. For another
example see Fig. 3.

Another way of describing partial cubes is the following. Let Σ = {0, 1} and let
w1 and w2 be words of equal length over Σ. Then the Hamming distance between
w1 and w2, H(w1, w2), is the number of positions in w1 and w2 in which the two
words differ. Then a graph G is a partial cube if and only if each vertex v ∈ V (G)
can be labeled by a word of fixed length, ℓ(v), such that for all u, v ∈ V (G) we have

H(ℓ(u), ℓ(v)) = dG(u, v) .

The partial cube from Fig. 3 is equipped with such a labeling.
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Figure 3. A partial cube with a corresponding labeling

Benzenoid graphs are graphs constructed as follows. Let H be the hexagonal
(graphite) lattice and let Z be a circuit on it. Then a benzenoid system is formed
by the vertices and edges of H, lying on Z and in the interior of Z. Note that
the edge set of a benzenoid system can be partitioned into three classes of parallel
edges. For more information on benzenoid graphs we refer to the book of Gutman
and Cyvin [11].

2. Wiener and Szeged index of benzenoid graphs

The Wiener index W (G) of a (connected) graph G is defined as

W (G) =
1

2

∑

u,v∈V (G)

dG(u, v) .

The Wiener index, introduced in 1947 in [29], is one of the most important topo-
logical indices of chemical graphs. As many papers have already been written on
this topic, we only refer to two recent surveys [17, 26] for more information on it.

For partial cubes we have the following result from [22]:

Theorem 2.1. Let G be a partial cube on n vertices embedded into the q-cube.

For i = 1, 2, . . . , q let ni be the number of vertices of G whose ith component of the

embedding is equal to 1. Then

W (G) =

q
∑

i=1

ni(n − ni) .
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In order to make Theorem 2.1 specific to benzenoid graphs, we need to recall
the following concept. Let G be a benzenoid graph. A straight line segment C

in the plane with end points P1 and P2 is called a cut segment if C is orthogonal
to one of the three edge directions, each P1 and P2 is the center of an edge and
the graph obtained from G by deleting all edges intersected by C has exactly two
connected components. An elementary cut is the set of all edges intersected by a
cut segment. Let C(G) be the set of all elementary cuts of G. For C ∈ C(G) let
n1(C) and n2(C) be the number of vertices in the connected components of G \C.
As shown in [14], Theorem 2.1 refines as follows.

Theorem 2.2. For a benzenoid graph G we have

W (G) =
∑

C∈C(G)

n1(C)n2(C) .

Theorem 2.2 provides a simple method for computing the Wiener index of
benzenoid graphs by hand. For a simple example consider the molecular graph of
naphthalene together with its 5 elementary cuts as shown in Fig. 4. Then the
contribution of each of the cuts C1, C2, C3 and C4 is 3 · 7 and the contribution of
C5 is 5 · 5. Thus, the Wiener index of naphthalene is 4 · (3 · 7) + 5 · 5 = 109.

C1 C2

C3 C4

C5
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Figure 4. A benzenoid graph G with its elementary cuts

Theorem 2.2 can also be used to obtain expressions for the Wiener index of
many classes of benzenoid graphs. For instance, it was shown in [14] that for the
so-called coronene/circumcoronene series Hr we have:

Corollary 2.3. For any r ≥ 1 we have

(2.1) W (Hr) =
1

5
(164r5 − 30r3 + r) .

The finding of a general expression for W (Hr) was, for a long time, considered
as a special challenge in the theory of the Wiener index, but using Theorem 2.2 it
becomes a routine matter. Corollary 2.3 was independently obtained by Shiu and
Lam [28] with a much more complicated method. (In fact, formula (2.1) is the
result of [28].)

Several formulas of type (2.1) are given in [23]. For instance, if T (n, k) denotes
the trapezium benzenoid graph with n columns and k rows of hexagons, then we
have:

W (T (n, k)) =
4n3(k2 + 2k + 1)

3
−

2n2(k + 1)(2k2 − 8k − 3)

3
+

2n(k4 − 4k3 + 6k2 + 9k + 1)

3
−

k(8k4 + 35k2 − 45k − 28)

30
.
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In particular, for k = 1 the above expression reduces to

W (P (n, 1)) =
1

3
(16n3 + 36n2 + 26n + 3) ,

which is the well-known formula for the Wiener index of polyacenes.
The Szeged index is a recently introduced topological index [20] and is defined

as follows. For an edge e = uv of a graph G let

Wuv = {w | w ∈ V (G), dG(w, u) < dG(w, v)}

and
Wvu = {w | w ∈ V (G), dG(w, v) < dG(w, u)} .

The Szeged index Sz(G) of a graph G is defined as

Sz(G) =
∑

uv∈E(G)

|Wuv| |Wvu| .

In [13] the following result similar to Theorem 2.2 was established:

Theorem 2.4. For a benzenoid graph G we have

Sz(G) =
∑

C∈C(G)

|C|n1(C)n2(C) .

As in the case of the Wiener index, Theorem 2.4 can be used to obtain formulas
for the Szeged index of classes of benzenoid graphs. For instance:

Corollary 2.5. For any k ≥ 1 we have

Sz(Hk) =
3

2
k2(36k4 − k2 + 1) .

3. Fast algorithms for W and Sz of benzenoid graphs

Let G be an arbitrary connected graph on n vertices and m edges. Then Mohar
and Pisanski [25] showed that W (G) can be computed in O(mn) time. For the
Szeged index the same result is due to Žerovnik [32]. In [25] it is also shown how
to compute W (G) in O(n) time provided that G is a tree. In this section we present
an O(n) algorithm from [6] for computing W (G) and Sz(G) of a benzenoid graph
G. Even faster algorithm of complexity O(s) for the Wiener index of benzenoid
graphs is proposed in [7], where s is the length of the outer cycle of a benzenoid
graph considered. However, the last algorithm is of more theoretical than practical
importance.

Let G be a benzenoid graph and let E1, E2, and E3 denote the edges of G of
a given direction. For i = 1, 2, 3 let Gi be the graph which is obtained from G be
deleting all the edges of Ei. Define a graph Ti whose vertices are the connected
components of Gi and two such components P ′ and P ′′ are adjacent in Ti if and
only if there are vertices u ∈ P ′ and v ∈ P ′′ which are end–vertices of an edge from
Ei. Note that every Ti is a tree (the existence of a cycle in Ti would imply that G

contains a non–hexagonal interior face). Then define the canonical emdedding

α : V (G) → V (T12T22T3)

as
α(v) = (P, Q, R) ,

where P, Q, and R are the connected components of the graphs G1, G2, and G3,

respectively, sharing the vertex v. Chepoi [4] proved the following result:
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Theorem 3.1. The canonical embedding map α provides an isometric embed-

ding of a benzenoid graph G with n vertices into the graph H = T12T22T3. The

trees T1, T2, T3 and the corresponding labels of the vertices of G can be computed in

O(n) time.

In order to make use of the isometric map α we introduce the Wiener index of
weighted graphs. A weighted graph (G, w) is a graph G together with a function
w : V (G) → IN

+. The Wiener index W (G, w) of a weighted graph (G, w) is defined
as

W (G, w) =
1

2

∑

u,v∈V (G)

w(u) w(v) dG(u, v) .

Note that if all the weights are 1 then W (G, w) = W (G).
The following result of [6] is the key to a fast algorithm for W (G). We also

include the proof since it reflects most of the tools needed.

Theorem 3.2. Let G be a benzenoid graph and let α be the canonical embedding

of G into T12T22T3. Then

W (G) = W (T1, w1) + W (T2, w2) + w(T3, w3) .

Proof. Let V = V (G) and set H = T12T22T3. For u ∈ V let α(u) =
(u1, u2, u3). Then we have:

W (G) =
1

2

∑

u∈V

∑

v∈V

dG(u, v)

=
1

2

∑

u∈V

∑

v∈V

dH(α(u), α(v))(3.1)

=
1

2

∑

u∈V

∑

v∈V

3
∑

i=1

dTi
(ui, vi)(3.2)

=

3
∑

i=1

(

1

2

∑

u∈V

∑

v∈V

dTi
(ui, vi)

)

=

3
∑

i=1

(

1

2

∑

ui∈Ti

∑

vi∈Ti

wi(u)wi(v)dTi
(ui, vi)

)

(3.3)

=

3
∑

i=1

W (Ti, wi).(3.4)

In the above computation (3.1) holds because α is isometric. For (3.2) recall the
following important and well-known property of the Cartesian product of graphs.
If u = (u1, . . . , uk) and v = (v1, . . . , vk) are vertices of G = G12 · · ·2Gk then

dG(u, v) =
∑k

i=1 dGi
(ui, vi) . The equality (3.3) holds by the definition of the

weighted trees (Ti, wi). Finally, (3.4) is just the definition of the weighted Wiener
index. �

By Theorem 3.2, a linear algorithm for computing W (G) will be provided by a
linear algorithm for computing the Wiener index of a weighted tree. This task was
done implicitly by Mohar and Pisanski [25] and explicitly in [6], thus we can state:



APPLICATIONS OF ISOMETRIC EMBEDDINGS TO CHEMICAL GRAPHS 7

Theorem 3.3. The Wiener index of a benzenoid graph on n vertices can be

computed in O(n) time.

Moreover, along the same lines we obtain:

Theorem 3.4. The Szeged index of a benzenoid graph on n vertices can be

computed in O(n) time.

4. Hyper-Wiener index

The hyper-Wiener index was in the case of trees introduced by Randić [27] and
extended to all graphs by Klein, Lukovits and Gutman [24]. The Hyper-Wiener

index WW (G) of a graph G is defined as

WW (G) =
1

2

∑

u,v∈V (G)

(

dG(u, v) + 1

2

)

which can be rewritten as

(4.1) WW (G) =
1

4

∑

u,v∈V (G)

dG(u, v)2 +
1

4

∑

u,v∈V (G)

dG(u, v) .

We are going to develop a method for computing the hyper-Wiener index of
partial cubes and thus in particular of benzenoid graphs and trees.

Let G be a partial cube on n vertices embedded into the q-cube and let ℓ be a
corresponding Hamming labeling. For any 1 ≤ i, j ≤ q set

n11
ij =

∑

u∈V (G)

ℓi(u)ℓj(u) , n00
ij =

∑

u∈V (G)

(1 − ℓi(u))(1 − ℓj(u)) ,

n10
ij =

∑

u∈V (G)

ℓi(u)(1 − ℓj(u)) , n01
ij =

∑

u∈V (G)

(1 − ℓi(u))ℓj(u) ,

For instance, n00
ij is the number of vertices of G whose ith and jth component of ℓ

is equal to 0.

Theorem 4.1. Let G be a partial cube on n vertices embedded into the q-cube.

Then

(4.2) WW (G) = W (G) +

q
∑

i=1

q
∑

j=i+1

(n11
ij n00

ij + n01
ij n10

ij ) .

Proof. As the second term of (4.1) is one half of the Wiener index, we need
to concentrate on the first term only. Set V = V (G) and for vertices u, v of G let
δi(u, v) be 0 if ith components of ℓ(u) and ℓ(v) agree, and 1 otherwise. We have:
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∑

u∈V

∑

v∈V

dG(u, v)2 =
∑

u∈V

∑

v∈V

(H(ℓ(u), ℓ(v)))2

=
∑

u∈V

∑

v∈V

(

q
∑

i=1

δi(u, v))2

=
∑

u∈V

∑

v∈V

q
∑

i=1

q
∑

j=1

δi(u, v)δj(u, v)

=

q
∑

i=1

q
∑

j=1

(
∑

u∈V

∑

v∈V

δi(u, v)δj(u, v))

=

q
∑

i=1

∑

u∈V

∑

v∈V

δi(u, v)δi(u, v) +

q
∑

i=1

q
∑

j=1
j 6=i

∑

u∈V

∑

v∈V

δi(u, v)δj(u, v)

=

q
∑

i=1

∑

u∈V

∑

v∈V

δi(u, v) +

q
∑

i=1

q
∑

j=1
j 6=i

∑

u∈V

∑

v∈V

δi(u, v)δj(u, v)

= 2W (G) + 2

q
∑

i=1

q
∑

j=1
j 6=i

(
1

2

∑

u∈V

∑

v∈V

δi(u, v)δj(u, v))

= 2W (G) + 2

q
∑

i=1

q
∑

j=1
j 6=i

(n11
ij n00

ij + n01
ij n10

ij )

= 2W (G) + 4

q
∑

i=1

q
∑

j=i+1

(n11
ij n00

ij + n01
ij n10

ij )

Inserting this expression into (4.1) yields the result. �

In the case of benzenoid graphs, Theorem 4.1 provides a particular simple
procedure for computing the hyper-Wiener index. We compute the Wiener index
and for the second term of (4.2) we proceed as follows. Let C1 and C2 be two
elementary cuts of a benzenoid graph G. There are two different cases, as shown in
Fig. 5. With a, b, c and d we denote the number of vertices in the corresponding
parts of G. Then the contribution of the pair C1, C2 to (4.2) is ab + cd in the first
case and ab in the second one.

'
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G G

a b

c

d

a b

C1 C2 C1 C2

Figure 5. Different positions between two elementary cuts
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For a concrete example consider the benzenoid graph (naphthalene) from Fig.
4 together with its elementary cuts C1, C2, C3, C4 and C5. The contributions of
pairs of cuts

C1, C2; C1, C3; C1, C4; C1, C5; C2, C3;
C2, C4; C2, C5; C3, C4; C3, C5; C4, C5

are, respectively:

3 · 3 + (1 · 1 + 2 · 6) + 3 · 3 + (2 · 4 + 1 · 3) + 3 · 3+
(1 ·1+2 ·6)+(1 ·3+2 ·4)+(1 ·1+2 ·6)+3 ·3+(1 ·3+2 ·4) = 106.

Therefore WW (G) = W (G) + 106 = 109 + 106 = 215.
As already mentioned, trees are partial cubes as well. For trees, the formula

(4.2) reduces to

WW (T ) = W (T ) +
∑

e∈E(T )

∑

f∈E(T )
f>e

n1(e, f) · n2(e, f)

where n1(e, f) and n2(e, f) are the number of vertices in the two “extremal” con-
nected components in the graph T \ {e, f}, see Fig. 6. More precisely, a pair of
cuts in a tree is just a pair of edges, and its contribution to (4.2) is always the
second case from Fig. 5. We don’t want to go into more details in this particular
case, because this was previously observed by Aringhieri, Hansen and Malcucelli
[1]. Moreover, in [1] implementation details are also provided to obtain a linear
algorithm for computing the hyper-Wiener index of a tree.

e f

'

&

$

%

'

&

$

%
n1(e, f) = 4 n2(e, f) = 5

s
s
s

s
s
s

s
s s

s s
sss

Figure 6. A tree and the two extremal components with respect
to e, f

5. Concluding remarks

Isometric embeddings were also applied by Gutman, Khadikar and Khaddar
[12] in the study of benzenoid graphs containing a linear polyacene fragment as
well as in [15, 16, 21] for the study of phenylenes.

A generalization of isometric embeddings is provided with the following concept.
Let λ ∈ IN and let G and H be two graphs. Then we say that H is scale λ embeddable

into G if there exists a mapping

ι : V (H) → V (G)

such that for all vertices u, v ∈ V (H) we have

dG(ι(u), ι(v)) = λdH(u, v) .
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Note that if λ = 1 then we are back to the isometric embeddings. A graph is
an L1-graph if it admits a scale embedding into a hypercube. Chepoi, Deza and
Grishukhin [5] extended Theorem 2.1 to the class of all L1-graphs. Their theorem
is important for non-bipartite graphs, since in the bipartite case the L1-graphs
coincide with the partial cubes. In the non-bipartite case the class of L1-graphs is
a rich class of graphs containing many chemical graphs and thus a lot of work is
waiting to be done.
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