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Abstract

We note here that quadratic entropy, a measure of biological diversity introduced

by C. R. Rao, is a variant of the weighted Wiener index, a graph invariant intensively

studied in mathematical chemistry. This fact allows us to deduce some efficient algo-

rithms for computing the quadratic entropy in the case of given tip weights, which may

be useful for community biodiversity measures. Furthermore, on ultrametric phyloge-

netic trees, the maximum of quadratic entropy is a measure of pairwise evolutionary

distinctness in conservation biology, introduced by S. Pavoine. We present an algorithm

that maximizes this quantity in linear time, offering a significant improvement over the

currently used quadratic programming approaches.

Keywords: evolutionary tree, phylogenetic tree, quadratic entropy, originality, distinct-

ness, Wiener index

1 Introduction

Phylogenetic trees are simply graphs depicting the inferred relationships among predefined

sets of leaves (which often correspond to species). This means that they are amenable to

analyses with graph theory [34]. If they are given a direction by identifying a root, we can

speak about evolutionary trees. Their structure models evolution, which has a direction from

past to present, and which is generally (but not exclusively, see [2]) diversifying, and such

that the simultaneous production of more than two descendent lineages from an ancestral lin-

eage is rare. Biologists often consider internal vertices to represent extinct ancestral lineages

and the edge lengths to represent the amount of evolution that occurred between the species
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corresponding to the endvertices. Evolutionary trees are most often inferred by fitting an

evolutionary process model to discrete data measured on the leaves in a maximum likelihood

or Bayesian framework [10]. Because evolutionary trees are representations of the evolution-

ary history of a set of contemporaneous leaves, they are often forced to be ultrametric, i.e.

all leaves are equidistant from the root. Such an evolutionary tree has a height h, the sum

of edge lengths on the path from the root to (any) leaf: edge lengths are then inferred to

represent the relative elapsed time between internal vertices.

Past mathematical research has considered tree inference, tree shape distribution and

accompanying generating models, as well as parameter estimation from inferred trees. So,

Semple and Steel [34] summarize how graph theory can contribute to the NP-complete prob-

lem of evolutionary tree inference: e.g. what the mathematical properties allow for recovery

of the underlying tree under different assumptions concerning character evolution, and how

subtrees can be combined to best preserve their information. Explorations of evolutionary

tree structure distributions have a long pedigree, with most attention focussed on the Yule

[40] and uniform [31] distributions of topologies [22, 35]. There has also been related discus-

sion on appropriate prior distributions (of tree topology and edge lengths) for evolutionary

tree inference [8, 39, 33], and efficient algorithms listing all possible evolutionary trees for

a given set of species have been developed [32]. At the other end of the evolutionary tree

inference cycle, mathematically-inclined biologists have produced tools for estimating evolu-

tionary parameters (speciation and extinction rates) from inferred trees [14, 23, 26].

Graph theory can also bear on practical biological conservation. If we assume that one

aspect of the leaves (species) that humans would like to conserve is the unique information

they embody, and if we let the edge-weighted evolutionary trees represent the pattern of

shared and unique information, we can start to devise approaches that maximize this quantity

(called ‘evolutionary history’ or ‘phylogenetic diversity’) under constraints of final subset size,

budgets for conservation, costs of conservation, and the probabilities of species survival [9, 12].

This has been termed the “Noah’s Ark Problem” [37]. A related metric is the contribution of
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a leaf to future subsets on an evolutionary tree – these have been termed a leaf’s ‘originality’

or ‘distinctness’ [11, 13, 15, 19, 24, 28, 30].

In this contribution, we explore one such measure, quadratic entropy, introduced by

C. R. Rao [27] and recently applied to evolutionary trees by Pavoine [24, 25]. These au-

thors propose computing the probability distribution µ maximizing the quadratic entropy

for general finite metric spaces. In the evolutionary context, S. Pavoine [24] specifically

suggests using µ as an importance score for species on a tree as a weight representing its

expected pairwise contribution of evolutionary originality. The method can be interpreted

as finding an optimum of a quadratic mathematical program, yielding an algorithm of com-

plexity O(n4). It has been implemented as a function [3] in the ADE package for analysis

of environmental data [1] within the statistical environment R [36]. However, one can use

the specific structure of evolutionary trees to develop a linear time algorithm for maximizing

the quadratic entropy in two depth-first traversals of the tree. Presenting this algorithm

(implemented in R [18]) is the main goal of the present contribution. We also make a few

additional observations on computing the quadratic entropy and its connections with the

graph invariant Wiener index [5, 7, 16, 20], widely known in mathematical chemistry. This

last connection also allows for an alternative and rapid (linear time) algorithm of computing

the quadratic entropy on evolutionary trees with known leaf weights.

2 Evolutionary trees and quadratic entropy

An evolutionary tree T = (T, r, w) consists of a tree T rooted at a vertex r ∈ V (T ) whose

edges have their length determined by a function w : E(T ) → R+ ∪ {0}. Between any two

pairs of vertices u, v ∈ V (T ), there is a unique shortest path in T , and by the distance d(u, v)

between u and v we denote the length of this path, i.e. the sum of the w-values of its edges.

In a rooted tree, every vertex v ∈ V (T ) has a unique incident edge ev that lies on the shortest

path connecting v with r. The component of T − ev containing v is the subtree Tv rooted at
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v. Then, Tv = (Tv, v, w/E(Tv)) is the corresponding evolutionary subtree. The endvertex of

ev distinct from v, is the parent of v, and all neighbors for which v is a parent are children of

v.

Each vertex in an evolutionary tree represents a species in the history of Earth. A leaf

vertex represents either a living species or an extinct species, and an internal vertex represents

the common ancestral species of those corresponding to the vertices in V (Tv). The length of

an edge uv represents the time elapsed between the species v, whose immediate ancestor is u,

branched into two or (rarely) more new species. Therefore the living species are represented

by the leaves at the largest distance h from r, called the height of T . We assume that T

contains no extinct leaf species, i.e. all the leaves of T are at distance h from r, making T

strictly ultrametric. The height corresponds to the age of the species represented by r. Note

that, in the case that the root r has degree one, we do not consider it as a leaf of T .

Let µ be a probability distribution on the leaves of T and let D denote the random vari-

able, representing the distance among two µ-randomly selected leaves of T (with repetition).

Quadratic entropy E(D) is the expected value of this random variable [24, 25, 27]. We can

define it for any metric space X, in which case we are evaluating the expected distance be-

tween two randomly selected elements of X. Thus, if µ is the vector of relative frequencies

of elements from X (in our case, species) and A is the corresponding distance matrix (in our

case, the matrix of distances in the evolutionary tree), then

E(D) = µTAµ.

Matrix multiplication from this formula yields a quadratic algorithm for computing E(D) for

given µ and A. Further, finding the probability distribution µ that maximizes E(D) for given

A corresponds to finding a maximum of a quadratic program in variable µ and can be done

using standard methods of convex programming. In the special case of evolutionary trees,

we develop significantly more efficient algorithms for both tasks, which run in linear time.
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Figure 1: The iterative join of evolutionary trees T1, T2, and T3

3 Computing Quadratic Entropy

Suppose T1 = (T1, r1, w1) and T2 = (T2, r2, w2) are two evolutionary trees. The join of these

two trees is the tree T = T1 + T2, T = (T, r, w), where T is obtained from T1 and T2 by

identifying their roots r1 and r2 into a new root r, and the length function w of T is induced

by the functions w1 and w2. For a binary tree, At each node the operation is performed only

once, but several iterative applications (at each internal vertex one less than the number of

children) can be combined to construct an arbitrary tree, cf. Figure 1.

For a subtree T ′ of T , let E(D|T ′) denote the expected value of D conditional to both

leaves being selected from T ′, and let µ(T ′) denote the sum of µ(l) for all leaves l in T ′, i.e.

the probability that a random leaf of T is a leaf of T ′. Our key observation, made precise in

Proposition 1, is, that for an ultrametric tree T = T1 + T2, the expected value E(D) for T

can be iteratively computed from E(D|T1) and E(D|T2), where we use the fact that any leaf

from T1 is at the same distance to any leaf in T2. A similar argument applies to maximizing

quadratic entropy, thus both computation algorithms follow the manner in which a tree is

constructed by iteratively joining its subtrees, cf. Figure 1. The following proposition holds:

Proposition 1 Let T be a tree with probability distribution µ on its leaves, and let T be the
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join of two trees T1 and T2 of the same height h. Then,

E(D) = E(D|T1)µ(T1)2 + E(D|T2)µ(T2)2 + 4hµ(T1)µ(T2).

Proof.

E(D) =
∑
l,l′∈T

µ(l)µ(l′)d(l, l′)

=
∑
l,l′∈T1

µ(l)µ(l′)d(l, l′) +
∑
l,l′∈T2

µ(l)µ(l′)d(l, l′) +∑
l∈T1,l′∈T2

µ(l)µ(l′)d(l, l′) +
∑

l∈T2,l′∈T1

µ(l)µ(l′)d(l, l′)

= E(D|T1)µ(T1)2 + E(D|T2)µ(T2)2 +

4h
∑
l∈T1

µ(l)
∑
l′∈T2

µ(l′)

= E(D|T1)µ(T1)2 + E(D|T2)µ(T2)2 + 4hµ(T1)µ(T2).

We have essentially used the fact that all the leaves are at distance h from r, thus the distance

between any l ∈ T1 and l′ ∈ T2 is d(l, l′) = d(l, r) + d(l′, r) = 2h.

Recursive application of Proposition 1 yields a linear algorithm that computes E(D) for

a given probability distribution µ on the leaves of T . It is presented as Algorithm 1. It

computes the values of E(D|Tv) in one depth-first traversal of T .

For the proof of correctness in this and the following sections, we introduce some notation.

Let v ∈ V (T ) be some vertex of T , and let c1, . . . , ct be its children. In this context, let Ti

be the tree, rooted at v, obtained recursively as T1 := Tc1 ∪ vc1 and Ti = Ti−1 + (Tci ∪ vci)

for i ≥ 2, where Tci ∪ vci is the tree obtained from Tci by adding the edge vci. Note that

E(D|Tci ∪ vci) and µ(Tci ∪ vci) are the same as E(D|Tci) and µ(Tci), respectively.

Theorem 2 For v ∈ V (T ), the value ε(v) computed by Algorithm 1 equals E(D|Tv). In

particular, ε(r) is the quadratic entropy of T for a given probability distribution µ.
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Algorithm 1 Computing quadratic entropy for a given probability distribution.

Procedure compute ε(v,d)
Parameter v: vertex for which we are computing E(D|Tv).
Parameter d: distance from v to the leaves of Tv.

1: if v is a leaf then
2: set ε(v) = 0.
3: let µ(v) be the assigned probability P(l = v).
4: else
5: let c1, . . . , ct be the children of v.
6: compute ε(c1,d− d(vc1)).
7: set ε(v) = ε(c1).
8: set µ(v) = µ(c1)
9: for i = 2 to t do

10: compute ε(ci,d− d(vci)).
11: set µ(v) = µ(v) + µ(ci).
12: set p = µ(ci)/µ(v).
13: set ε(v) = ε(ci)p

2 + ε(v)(1− p)2 + 4dp(1− p).
14: end for
15: end if

Proof. In addition to the statement of the theorem, we claim that µ(v) = P(l ∈ Tv). We

prove these claims by induction on the number of vertices in Tv. If there are only two vertices

r = u and v, which is the leaf, then µ(v) = 1 (line 3), ε(v) = 0 (line 2), µr(u) = 1 (line 8),

and ε(u) = 0 (lines 6 and 7), which is correct.

Let there be at least three vertices in Tv. Correct results are computed for the children ci

of vi in lines 6 and 9 by induction. If there is only one child, then µ(ci) = µ(Tv) by induction,

and lines 8 and 7 establish correctness of µ(v) and ε(v).

If there are more children, then line 11 computes the probability µ(Ti) and line 12 com-

putes P(l ∈ Tci |l ∈ Ti) by conditional probabilities. Line 13 computes E(D|Ti) by Proposition

1. Then ε(v) = E(D|Tv) and µ(v) = µ(Tv) after the execution of the for loop, since Tt = Tv.

The theorem follows.
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4 Quadratic Entropy Versus Weighted Wiener Index

In this section, we show that there is a close connection between the quadratic entropy

and one of the central concepts studied in chemical graph theory. Extending the methods

from this field of research we give an alternative algorithm (Corollary 4) for computing the

quadratic entropy of T . This algorithm avoids computing the distances between the leaves.

In mathematical chemistry, numerous graph invariants are used to analyze and predict

physical and chemical properties of chemical compounds. When such invariants are computed

on chemical graphs, they are traditionally called topological indices. Among topological

indices, the Wiener index is the oldest [38] and one of the most thoroughly studied indices,

see, e.g. the surveys [5, 6]. Let G = (V (G), E(G)) be a connected graph. Then the Wiener

index W (G) of G is defined as the sum of the shortest path distances between all unordered

pairs of vertices:

W (G) =
∑

{u,v}⊆V (G)

d(u, v) =
1

2

∑
u,v∈V (G)

d(u, v) .

This classical definition was extended in [16] to weighted graphs (G, f), where f : V (G)→ R

is a vertex weighting function, in the following way:

W (G, f) =
1

2

∑
u,v∈V (G)

f(u)f(v)d(u, v) .

Note that in the definitions of the (weighted) Wiener index it is assumed that all the edges

have unit length, that is, the w-values on its edges are all 1.

In order to design a linear algorithm for computing the Wiener index of an important

class of chemical graphs—benzenoid systems—it was observed in [4] that the Wiener index of

a weighted tree can be computed in linear time. (This result in also implicit in [20].) We now

show that the approach can be extended to weighted trees with edges of arbitrary length.

The weighted Wiener index W (G, f) is defined as before, except that now d(u, v) is the sum

of the w-values on a shortest u, v-path.
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Let (T, f) be a weighted tree and let uv be an edge of T . Then T − uv consists of

connected components, say T u and T v, where u ∈ T u and v ∈ T v. Let f(T u) =
∑

x∈Tu f(x)

and f(T v) =
∑

x∈T v f(x).

Proposition 3 Let (T, f) be a weighted tree with w-values on its edges. Then

W (T, f) =
∑

uv∈E(T )

f(T u)f(T v)w(u, v) .

Proof. Let uv be an arbitrary edge of T and let x, y ∈ V (T ). Then e lies on the u, v-path if

and only if one of x, y belongs to T u and the other to T v. Suppose that this is the case and

let x = x1, . . . , xj = u, xj+1 = v, . . . , xk = y be the x, y-path in T . Then

f(u)f(v)d(u, v) = f(u)f(v)
k−1∑
i=1

w(xi, xi+1) .

Hence the contribution of the edge uv to W (G, f) with respect to the unordered pair x, y is

f(x)f(y)w(u, v). Since this holds for all pairs of vertices from T u and T v, the result follows.

Corollary 4 Let (T, r, w) be an evolutionary tree with probability distribution µ on its leaves.

Then

E(D) = 2 ·
∑

ev∈E(T )

w(ev)µ(Tv)(1− µ(Tv)) .

Proof. Define f : V (T )→ R with

f(u) =


µ(u); u is a leaf of T,

0; otherwise .

Then note that E(D) = 2W (T, f) and apply Proposition 3.

Special cases of vertex-weighted Wiener indices (and their Wiener polynomial) were re-

cently treated in [17, 7], where the assigned weights are vertex degrees. The general case, in
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which both vertices and edges are weighted, has been to the best of our knowledge treated

earlier only by Zmazek and Žerovnik [41]. They give a linear algorithm for cactus graphs,

the graphs whose blocks are cycles and edges. Hence their (rather involved) algorithm can

be considered as an extension of the algorithm that flows from Corollary 4.

5 Maximizing Quadratic Entropy

In this section, we present an algorithm that computes the maximum value of quadratic

entropy over all possible probability distributions on the leaves of T , together with the

probability distribution µ on the leaves of T that achieves the maximium value. In terms of

Wiener index, this problem finds the weighting function on the set of leaves of T , such that

the resulting weighted Wiener index is maximum. This weighting is Pavoine’s originality

score [24] from conservation biology. To our knowledge, this problem has not been studied

earlier in the Wiener index framework.

Proposition 5 Let T1 and T2 be two trees of height h with probability distributions µ1, µ2

and expected distances E(D1), E(D2). Further, let T = T1 + T2 be their join. Then the

distribution µ, defined with

µ(l) =


2h−E(D2)

4h−E(D1)−E(D2)
µ1(l) ; l ∈ T1

2h−E(D1)
4h−E(D1)−E(D2)

µ2(l) ; l ∈ T2
(5.1)

maximizes E(D) whenever µ1 and µ2 maximize E(D1) and E(D2).

Proof. First note that µ(T ) = 1 and that µ(Ti) is obtained by scaling µi, i = 1, 2, therefore

E(D|Ti) = E(Di). By µ(T1) + µ(T2) = 1 and Proposition 1, we have

E(D) = E(D|T1)µ(T1)2 + E(D|T2)(1− µ(T1))2 + 4hµ(T1)(1− µ(T1)).
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This expression involves the constant h and three variables, µ(T1), E(D|T1) and E(D|T2),

which are not independent. We optimize E(D) under the assumption of their independence,

which we justify later.

For fixed E(D|T1), E(D|T2), and variable µ(T1), E(D) is maximized in the apex of the

parabola, thus

µ(T1) =
2h− E(D|T2)

4h− E(D|T1)− E(D|T2)

implying

µ(T2) =
2h− E(D|T1)

4h− E(D|T1)− E(D|T2)
.

Using these values, we obtain the maximum

E(D) =
4h2 − E(D|T1)E(D|T2)

4h− E(D|T1)− E(D|T2)
.

The partial derivative in variables E(D|T1) and E(D|T2) is everywhere nonnegative, thus

E(D) will be maximized when both E(D|T1) and E(D|T2) will be largest. By assumption,

this is achieved if µ restricted to T1 equals µ1 and µ restricted to T2 equals µ2.

The distribution µ described by formula (5.1) satisfies all three conditions: µ(T1) and

µ(T2) have the desired value and µ restricted to Ti is after normalization equal to µi, i =

1, 2. Since the distribution µ satisfies the optimality conditions for the optimum without

dependence of the three variables, it achieves the optimum in the restricted case and therefore

maximizes E(D).

We use Propositions 1 and 5 recursively in Algorithm 4, which computes µ in two passes

of depth-first traversing of T . In the first pass, Algorithm 2, we compute ε(v) = E(D|Tv)

for every vertex v of T and µr(v) = P(l ∈ Tv|l ∈ Tu), i.e. the probability for a leaf selected

from Tu to lie in Tv, where u is the parent of v. In the second pass, Algorithm 3, we compute

absolute probabilities µ(v) = µ(Tv) for a leaf to be selected in Tv. A child of some vertex tree

is considered at most twice in Algorithm 2 and once in Algorithm 3, thus the algorithm is
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Algorithm 2 First pass for computing relative subtree probabilities.

Procedure maximize ε(v,d)
Parameter v: vertex for which computation is done.
Parameter d: distance from v to the leaves of Tv.

1: set µr(v) = 1.
2: if v is a leaf then
3: set ε(v) = 0.
4: else
5: let c1, . . . , ct be the children of v.
6: maximize ε(c1,d− d(vc1)).
7: set ε(v) = ε(c1).
8: for i = 2 to t do
9: maximize ε(ci,d− d(vci)).

10: set µr(ci) = 2d−ε(v)
4d−ε(ci)−ε(v) .

11: set ε(v) = ε(ci)µr(ci)
2 + ε(v)(1− µr(ci))

2 + 4dµr(ci)(1− µr(ci)).
12: end for
13: set x = 1− µr(ct).
14: for i = t− 1 downto 1 do
15: set y = 1− µr(ci).
16: set µr(ci) = µr(ci)x.
17: set x = xy.
18: end for
19: end if
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linear in the number of vertices of the tree. The following Theorem establishes its correctness.

Algorithm 3 Second pass for computing absolute subtree probabilities.

Procedure compute µ(v,τ)
Parameter v: the vertex for which the computation is done.
Parameter τ : the value µ(Tu) for u the parent of v.

1: set µ(v) = µr(v)τ .
2: for each child c of v do
3: compute µ(c, µ(v)).
4: end for

Algorithm 4 Recursive calls maximizing the quadratic entropy.

1: maximize ε µr(r, h).
2: compute µ(r,1).

Theorem 6 The probability distribution µ computed by Algorithm 4 maximizes the quadratic

entropy of the evolutionary tree T. The value ε(r) stores the maximum quadratic entropy.

Proof. First we prove by induction on the number of vertices in Tv that Algorithm 2

correctly computes ε(v) = E(D|Tv) and µr(v) = P(l ∈ Tv|l ∈ Tu), u being the parent of v. If

there are only two vertices r = u and v, which is the leaf, then µr(v) = 1 (line 1), ε(v) = 0

(line 3), µr(u) = 1 (line 1), and ε(u) = ε(v) = 0 (lines 6 and 7), which is correct.

Let there be at least three vertices in Tv. By induction, each call in lines 6 and 10

computes correct information for Tci , where ci is some child of v. It is easy to see that the

same values apply to the non-root vertices in the tree Tci ∪ vci rooted at v. If there is only

one child, then lines 1 and 7 assure correctness of µ(v) and ε(v).

If there are more children, then line 10 computes the correct value µr(ci) relative to the

tree Ti by Proposition 5, and line 11 correctly computes E(D|Ti) by Proposition 1. Thus

µr(ct) and ε(v) are computed correctly in the first loop. For other children of v, at each join

evaluated in lines 10 and 11, we would by Proposition 5 need to update µr(cj), 1 ≤ j < i, by

a factor of 1− µr(ci), where the latter is the value computed in line 10. This is done in line

17: as the value y accumulates the updating factor, only one visit to each child is necessary

for update. The correctness of Algorithm 2 follows.
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By conditional probabilities,

P(l ∈ Tv) = P(l ∈ Tv ∧ l ∈ Tu) = P(l ∈ Tu)P(l ∈ Tv|l ∈ Tu).

Thus, µ(v) = µ(u)µr(v), which via line 1 of Algorithm 3 establishes correctness of Algorithm

3. We correctly set µ(r) = 1 in line 2 of Algorithm 4. Since µ(v) = µ(Tv) for any leaf v of

T , we conclude the proof.

6 Concluding remarks

We present several new insights into quadratic entropy of ultrametric evolutionary (but not

necessarily binary) trees, drawn from computational chemistry and graph theory. First,

we propose a recursive decomposition of evolutionary trees and derive a formula to express

quadratic entropy of the whole tree as a function of quadratic entropies of the subtrees in the

decomposition (Proposition 1). Quadratic entropy for trees with such defined weights (e.g.

abundances) can be used as a community biodiversity index that incorporates evolutionary

history and community structure [27]. We use Proposition 1 to design an efficient linear

time algorithm (Algorithm 1) that computes the quadratic entropy of such trees and can

handle large communities (cf. [21]). Second, we observe that quadratic entropy of an evolu-

tionary tree is a variant of weighted Wiener index, a general graph invariant widely used in

mathematical chemistry. This link may establish an exchange of ideas between the areas, as

demonstrated by the statements of Section 4, where we expose some theoretical properties of

quadratic entropy — Wiener index. This relationship can be utilized to provide a linear time

algorithm for computing quadratic entropy on arbitrary edge- and vertex-weighted tree (not

necessarily ultrametric nor binary). Finally, maximizing the quadratic entropy offers a novel

pairwise originality metric [24, 28] whose properties still remain relatively unexplored (but

see [25]). We derive a linear time algorithm for its maximization on ultrametric evolutionary
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trees (not necessarily binary), Algorithm 4, that supersedes existing algorithms, and may

help in exploration of this quantity. In this algorithm, the fact that all leaves of a given

subtree have the same distance to this vertex plays an essential role; would these distances

have been different, an equivalent of Proposition 1 would have to consider the structure of

the two trees in the join, not just their respective entropies. Similarly, the coefficient for

updating the weights of the optimal solutions of the subtrees would be different for each

leaf. These observations imply that any algorithm for maximizing quadratic entropy on non-

ultrametric trees resulting from our approach would be significantly more complex than ours.

In particular, it would not be linear, and therefore we do not pursue this direction.
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