
The domination game on split graphs
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Abstract

In this paper the domination game and the game domination number γg are
investigated in the class of split graphs. It is proved that γg(G) ≤ n/2 for any
isolate free n-vertex split graph G, thus strengthening the conjectured 3n/5 general
bound and supporting Rall’s dn/2e-conjecture. Split graphs of even order with
γg(G) = n/2 are also characterized.
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1 Introduction

If u and v are vertices of a graph G = (V (G), E(G)), then u dominates v if u = v or u
is adjacent to v. The domination game is played on G by Dominator and Staller who
take turns choosing a vertex from G such that at least one previously undominated
vertex becomes dominated. The game is over when no such move is possible. The score
of the game is the number of vertices chosen by the two players. Dominator wants to
minimize the score and Staller wants to maximize it. A game is called a D-game (resp.
S-game) if Dominator (resp. Staller) has the first move. The game domination number
γg(G) of G is the score of a D-game played on G assuming that both players play
optimally, the Staller-start game domination number γ′g(G) is the score of an optimal
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S-game. This game was introduced in [3] and has been thoroughly investigated so far.
A vertex u totally dominates v if u is adjacent to v. The total domination game is
defined just as the domination game, except that everywhere “domination” is replaced
with ”total domination”. This version of the domination game was introduced in [14].

Kinnersley, West, and Zamani in [18] posed a celebrated 3/5-conjecture asserting
that if G is an isolate-free forest of order n or an isolate-free graph of order n, then
γg(G) ≤ 3n/5. A parallel 3/4-conjecture for the total domination game was later posed
in [15]. For a progress on these two conjectures see [5, 13, 16] and [6, 7], respectively.

To determine the game domination number can be a challenge even on simple
families of graphs such as paths and cycles. The problem for the latter two families
was first solved in the unpublished manuscript [17], where the result for the cycle on n
vertices Cn reads as follows:

γg(Cn) =


⌈
n
2

⌉
− 1; n ≡ 3 (mod 4) ,⌈

n
2

⌉
; otherwise .

The first published proof for the game domination number of paths and cycles appeared
only recently in [19]. Because of these results and having in mind that paths and cycles
are the simplest graphs with a hamiltonian path and a hamiltonian cycle, several years
ago D. Rall proposed (here and in the rest of the paper, n(G) denotes the order of G,
that is, n(G) = |V (G)|) the following conjecture that strengthens the 3/5-conjecture
for graphs containing hamiltonian paths:

Conjecture 1.1 If a graph G contains a hamiltonian path, then γg(G) ≤
⌈
n(G)
2

⌉
.

Although the conjecture has been around for a while, as far as we know it has never
been stated explicitly in a publication.

In this paper we consider the domination game on split graphs, a class of graphs of
lasting, wide interest in graph theory, cf. [4, 10]. The class of split graphs might appear
quite restrictive, however even with nested split graphs (a subclass of split graphs) one
can approximate real complex graphs [21]. The paper is organized as follows. In the
next section definitions and notation are given, and known results needed later are
recalled. In Section 3 we prove that if G is an isolate free n-vertex split graph G, then

γg(G) ≤ n(G)/2 and γ′g(G) ≤
⌊
n(G)+1

2

⌋
. Then, in Section 4, split graphs of even order

with γg(G) = n/2 are characterized.

2 Preliminaries

The open neighborhood NG(x) = {y : xy ∈ E(G)} and the closed neighborhood
NG[x] = NG(x) ∪ {x} will be abbreviated to N(x) and N [x] when G will be clear
from the context. If x ∈ V (G) and S ⊆ V (G), then let NS(x) = NG(x) ∩ S and
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degS(x) = |NG(x) ∩ S|. For m ∈ N we will use the notation [m] = {1, . . . ,m}. A
chordal graph is one in which every cycle of length 4 has a chord, that is, an edge that
connects two non-consecutive vertices of the cycle. The disjoint union of two copies of
a graph G is denoted with 2G, in particular, 2K2 is the disjoint union of two complete
graphs on two vertices.

A graph G = (V (G), E(G)) is a split graph, if V (G) can be partitioned into (possibly
empty) sets K and I, where K is a clique and I is an independent set [12]. The pair
(K, I) is called a split partition of G. Split graphs can be characterized in several
different ways, in particular as the graphs that contain no induced subgraphs isomorphic
to a graph in {2K2, C4, C5}, the result proved in [12]. If G is a split graph with a split
partition (K, I), then a maximal clique of G is either K or it is induced with the closed
neighborhood of a vertex from I. Hence a maximum clique of G is easy to detect.
Throughout the paper we may and will thus assume that if (K, I) is a split partition
of a (split) graph G, then |K| = ω(G), that is, K is a largest clique of G. We will also
set k = |K| and i = |I|. We will further set K = {x1, . . . , xk} and I = {y1, . . . , yi}.

The sequence of moves is a D-game will be denoted with d1, s1, d2, s2, . . ., and the
sequence of moves is an S-game with s′1, d

′
1, s

′
2, d

′
2, . . . A partially dominated graph is

a graph together with a declaration that some vertices are already dominated, that
is, they need not be dominated in the rest of the game. If S ⊆ V (G), then let G|S
denote the partially dominated graph in which vertices from S are already dominated.
If S = {x} we will abbreviate G|{x} to G|x. If G|S is a partially dominated graph,
then γg(G|S) and γ′g(G|S) denote the optimal number of moves in the D-Game and the
S-Game, respectively, played on G|S. A vertex u of a partially dominated graph G|S
is saturated if each vertex in N [u] is dominated. Clearly, as soon as a vertex becomes
saturated, it is not a legal move in the rest of the game.

Lemma 2.1 (Continuation Principle, [18]) Let G be a graph with A,B ⊆ V (G). If
B ⊆ A, then γg(G|A) ≤ γg(G|B) and γ′g(G|A) ≤ γ′g(G|B).

An utmost important consequence of the Continuation Principle is the following:

Theorem 2.2 ([3, 18]) If G is a partially dominated graph, then |γg(G)− γ′g(G)| ≤ 1.

A graph G is said to be a no-minus graph if for every A ⊆ V (G) we have γg(G|A) ≤
γ′g(G|A). We will need the following result due to Dorbec, Košmrlj, and Renault.

Theorem 2.3 [11, Theorem 2.7] Connected split graphs are no-minus graphs.

This theorem was actually proved in [11] for the so-called (connected) tri-split
graphs which form a generalization of split graphs.
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3 The 1/2 upper bound

In this section we first prove the 1/2 upper bound for the D-game and then the corre-
sponding bound for the S-game. At the end the sharpness of both bounds is demon-
strated. In the corresponding arguments we need to show that Dominator has a strategy
which ensures that at most a prescribed number of moves will be played, no matter
how Staller is playing. But this means that we may assume that Staller is playing
optimally, because otherwise the game could only be finished faster.

Theorem 3.1 If G is a connected split graph with n(G) ≥ 2, then γg(G) ≤
⌊
n(G)
2

⌋
.

Proof. The proof is by induction on n(G). We first check the cases when 2 ≤ n(G) ≤ 5.
If n(G) = 2, then G = K2, and if n(G) = 3, then G ∈ {K3, P3}. For all these three
(split) graphs the assertion clearly holds. From [18, Proposition 5.3] we recall that if G
is a (partially dominated, isolate-free) chordal graph, then γg(G) ≤ 2n(G)/3. As split
graphs are chordal, the same conclusion holds for split graphs. Hence, if n(G) = 4,
then γg(G) ≤ 2n(G)/3 = 8/3, that is, γg(G) ≤ 2. Suppose finally that n(G) = 5. If
k = 2, then since G is connected, at least one of the vertices, say x1, of K has at least
two neigbors in I. Then the move d1 = x1 yields γg(G) ≤ 2. If k = 3, then Dominator
starts the game with d1 = x1 where x1 is a vertex of K having at least one neighbor in
I. If the game is not finished yet, then Staller must finish the game in her first move
by dominating the only undominated vertex in I. Hence again γg(G) ≤ 2. Finally, if
k ∈ {4, 5}, then γg(G) = 1. This proves the basis of the induction.

Assume now that the result is true for all split graphs up to and including n − 1
vertices, where n ≥ 6. We distinguish two cases.

Case 1: degI(xr) ≤ 1, r ∈ [k].
In this case we clearly have |I| ≤ |K|. If i = 0, then G = Kk and the assertion is clear.
Otherwise, let Dominator start the game by playing a vertex of K with a neighbor in
I. Then, in every subsequent move (either by Staller or by Dominator), exactly one
new vertex (in I) will be dominated. It follows that γg(G) = |I|. Consequently,

γg(G) = |I| = |I|+ |I|
2

≤ |K|+ |I|
2

=
n(G)

2
.

Case 2: degI(xr) ≥ 2, for some r ∈ [k].
We may without loss of generality assume that x1y1, x1y2 ∈ E(G). The initial strategy
of Dominator is to play d1 = x1. After that Staller selects a vertex optimally which
means that she plays ys, where s /∈ [2], unless, of course, the game is over after the
move d1 = x1. (We note that because of the Continuation Principle if N [x] ⊆ N [w]
and both x and w are legal moves, we may assume Staller will play x over w.) Set
Z = {x1, y1, y2, ys}. Then, since Staller has played optimally (and Dominator maybe
not), after the first two moves we have

γg(G) ≤ 2 + γg
(
G
∣∣ ∪z∈Z N [z]

)
.

4



Set G′ = G \ {x1, y1, y2, ys}. After x1 and ys have been played, the vertices x1, y1, y2,
and ys are saturated. Therefore, by the Continuation Principle,

γg
(
G
∣∣ ∪z∈Z N [z]

)
≤ γg(G′) .

Since n(G′) = n(G)− 4, we can combine the above two inequalities with the induction
hypothesis into

γg(G) ≤ 2 + γg
(
G
∣∣ ∪z∈Z N [z]

)
≤ 2 + γg(G′) ≤ 2 +

⌊
n(G)− 4

2

⌋
=

⌊
n(G)

2

⌋
and we are done. �

The assumption of Theorem 3.1 thatG is connected is essential. For instance, for the
complement Kn of Kn (both of these graphs being split graphs) we have γg(Kn) = n.
Note also that Theorem 3.3 supports Conjecture 1.1. In this respect we mention a very
interesting dichotomy that detecting hamiltonicity is difficult on K1,5-free split graphs
but polynomial on K1,4-free split graphs [20].

Combining Theorem 3.1 with Theorem 2.2 we get that if G is a connected split
graph with n(G) ≥ 2, then

γg
′(G) ≤ γg(G) + 1 ≤

⌊
n(G)

2

⌋
+ 1 =

⌊
n(G) + 2

2

⌋
. (1)

To slightly improve this bound, we first show the following:

Lemma 3.2 Let G be a connected split graph. If there exists a vertex xr ∈ K with
degI(xr) = 0, then xr is an optimal first move of Staller in S-game.

Proof. Suppose that s′1 = xr. Then Dominator has an optimal reply in K, say d′1 = xs,
s 6= r. Indeed, the Continuation Principle implies that if d′1 = yt ∈ I, then any neighbor
of yt is at least as good for Dominator as yt. After the moves s′1 = xr and d′1 = xs
are played, the set of vertices dominated is X = K ∪ NG(xs). Hence if Staller had
played some other vertex, Dominator can still play xs, unless Staller played xs. In any
case, if Y is the set of vertices dominated after such two moves, then X ⊆ Y . By the
Continuation Principle it follows that s′1 = xr is an optimal move. �

Now we can improve (1) as follows:

Theorem 3.3 If G is a connected split graph with n(G) ≥ 2, then γ′g(G) ≤
⌊
n(G)+1

2

⌋
.

Proof. The assertion is clearly true for K2, hence we may assume in the rest that
n(G) ≥ 3. By Lemma 3.2 and the Continuation Principle, Staller’s first move s′1 is
either a vertex of I, or a vertex from K with no neighbour in I. Let G′ = G\s′1. Clearly,
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G′ is a connected split graph with n(G′) = n(G)− 1 ≥ 2, hence from Theorem 3.1 we
get γg(G′) ≤ b(n(G)− 1)/2c. Therefore, applying the Continuation Principle again, we
have

γ′g(G) = 1 + γg(G|N [s′1]) ≤ 1 + γg(G′) ≤ 1 +

⌊
n(G)− 1

2

⌋
=

⌊
n(G) + 1

2

⌋
as claimed. �

In view of Theorem 3.1 we say that G is a 1/2-split graph if γg(G) = bn(G)/2c. To
conclude the section we present two families of 1/2-split graphs.

Let Gk, k ≥ 2, be the split graph with the split partition (K, I), where K =
{x1, . . . , xk} and I = {y1, . . . , yk} (that is, i = k), and where xryr, r ∈ [k], are the only
edges between K and I. Then it is straightforward to see that γg(Gk) = γg

′(Gk) = k,
that is, Gk is a 1/2-split graph and the bounds of Theorems 3.1 and 3.3 cannot be
improved in general.

The above graphs Gk are of even order, hence the bounds of Theorems 3.1 and 3.3
are the same. Let next Hk, k ≥ 2, be a split graph obtained from Gk by adding one
more vertex yk+1 to I and the edge xkyk+1. Then degI(xk) = 2. From Dominator’s first
move d1 = xk in D-game and Staller’s first move s′1 = yk+1 in S-game we respectively
infer that γg(Hk) = k and γg

′(Hk) = k + 1. These values again achieve the upper
bounds in the respective theorems.

4 1/2-split graphs of even order

We now characterize the 1/2-split graphs that have even order. In the following two
lemmas we first exclude split graphs that are not such.

Lemma 4.1 Let G be a connected split graph of even order and suppose that at least
one of the following conditions is fulfilled:

(i) i < k;

(ii) i > 2k;

(iii) there exists a vertex xr ∈ K with degI(xr) = 0;

(iv) there exists a vertex xr ∈ K with degI(xr) ≥ 3;

(v) there exist xr, xs ∈ K with degI(xs) = 2 and NI(xr) ⊆ NI(xs).

Then G is not a 1/2-split graph.
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Proof. In view of Theorem 3.3 we need to show that if one of the conditions (i)-(v)

holds, then γg(G) <
⌊
n(G)
2

⌋
.

(i) Suppose i < k. Let Dominator start the game by playing a vertex xr ∈ K
with at least one neighbor in I. After this move the vertices left undominated are
X = I\NI(xr). Clearly, |X| ≤ i−1. Since in the rest of the game at least one new vertex
is dominated on each move, γg(G) ≤ 1 + (i− 1) = i < (k+ i)/2 = n(G)/2 = bn(G)/2c.

(ii) Assume i > 2k. Then there exists a vertex xr ∈ K with degI(xr) ≥ 3. Let
Dominator start a D-game with d1 = xr, and let Staller reply with an optimal move.
After these two moves the graph G′ obtained from G by removing all saturated vertices
is again a connected partially dominated split graph with at most n(G) − 5 vertices.
Indeed, G′ does not contain d1 = xr, the neighbors of xr in I (at least three of them),
and s1. Therefore,

γg(G) ≤ 2 + γg(G′) ≤ 2 + (n(G)− 5)/2 = (n(G)− 1)/2 < n(G)/2 = bn(G)/2c ,

where the second inequality holds by Theorem 3.1.
(iii) Suppose that there exists a vertex xr ∈ K with degI(xr) = 0. Because of (i)

we can assume that k ≤ i. Therefore, since degI(xr) = 0, there exists a vertex xs ∈ K
with degI(xs) ≥ 2. Let Dominator start the game by playing d1 = xs. Then, after the
first move of Staller, the graph G′ obtained from G by removing all saturated vertices
is a connected partially dominated split graph with at most n(G)− 5 vertices because
it does not contain d1 = xs, the neighbors of xs in I (at least two of them), the first
move of Staller s1, and xr. The conclusion now follows by the same argument as in (ii).

(iv) If there exists a vertex xr ∈ K with degI(xr) ≥ 3, then after Dominator plays xr
and Staller an arbitrary (optimal) move, we again have a connected partially dominated
split graph with at most n(G)− 5 vertices after removing all saturated vertices.

(v) Let Dominator start the game by playing d1 = xs. Then xr, xs, and the two
neighbors of xs in I have no role in the continuation of the game. So again, after
the first move of Staller, removing all saturated vertices from G we have a partially
dominated connected split graph of order at most n(G)− 5. �

Lemma 4.2 If G is a connected split graph of even order and there exists a vertex in
K which is not adjacent to a leaf in I, then γg(G) < bn(G)/2c .

Proof. Let x1 ∈ K be a vertex that is not adjacent to a leaf in I. If degI(x1) ≥ 3,
then we are done by Lemma 4.1(iv).

Suppose next that degI(x1) = 1. Let y1 be the vertex of I adjacent to x1. Since y1 is
not a leaf, we may assume that x2 ∈ K is another neighbor of y1. If degI(x2) ≥ 2, then
we are done by Lemma 4.1(iv) and (v). Suppose therefore that degI(x2) = 1. Then
N [x1] = N [x2], hence by [1, Proposition 1.4] we have γg(G) = γg(G|x1) = γg(G− x1).
Therefore, having in mind Theorem 3.1 and the fact that n is even,

γg(G) = γg(G− x1) ≤ b(n(G)− 1)/2c < bn(G)/2c .
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The remaining case to consider is that degI(x1) = 2. Let y1, y2 ∈ I be the neighbors
of x1 in I. Recall that by our assumption y1 and y2 are not pendant vertices. If y1
and y2 have a common neighbor xr in K, r 6= 1, then in view of Lemma 4.1(iv)
we may assume that degI(xr) = 2, but then NI(x1) ⊆ NI(xr) and we are done by
Lemma 4.1(v). It follows that there exist vertices x2, x3 ∈ K such that x2 is adjacent
to y2 and x3 is adjacent to y1. Using Lemma 4.1(v) again we see that degI(x2) =
degI(x3) = 2. Let y3 and y4 be the other neighbors in I of x3 and x2, respectively. Let
Z = {x1, x2, x3, y1, y2, y3, y4} and let G1 and G2 be the subgraphs of G induced by Z
and V (G)\Z respectively. Clearly, G1 is a connected split graph. The same holds for G2

unless it is the empty graph. It can be easily verified that γg(G1) = γ′g(G1) = 3. Hence
by Theorem 2.3 they are no-minus graphs with γg(G1) = γ′g(G1) and hence by [11,
Theorem 2.11] we have γg(G1∪G2) = γg(G1)+γg(G2). Moreover, by Theorem 3.1 and
because n is even we have

γg(G2) ≤ b(n(G)− 7)/2c = (n(G)− 8)/2

and consequently

γg(G1 ∪G2) ≤ 3 + (n(G)− 8)/2 = (n(G)− 2)/2 < bn(G)/2c .

The argument will be complete by proving that γg(G) ≤ γg(G1∪G2). For this sake
we proceed by the imagination strategy as follows. Consider a real D-game played on
G and at the same time Dominator imagines a D-game played on G1 ∪G2. Dominator
plays optimally in the game on G1 ∪ G2 and copies his moves from there to the real
game on G. On the other hand, Staller plays optimally in the real game on G (this
is the only game being played by Staller), and Dominator copies each move of Staller
to the imagined game. Since a D-game is played in both games, Dominator will first
play a vertex of K in the real game which is played on G. Hence every move of Staller
will be a vertex from I, thus newly dominating only this vertex. It follows that every
move of Staller in the real game is a legal move in the imagined game. On the other
hand, a legal move of Dominator in the imagined game may not be legal in the real
game. If this happens, Dominator cannot copy this move to the real game; instead,
he selects an arbitrary legal move in the real game (if there is such a move available,
otherwise the game is over). Under this strategy, the set of vertices dominated in the
imagined game is always a subset of the set of vertices dominated in the real game.
Hence, if s is the number of moves played in the real game and t the number of moves
in the imagined game, then s ≤ t. Moreover, since Dominator may not play optimally
on G (but Staller does), we have γg(G) ≤ s. Similarly, as Dominator plays optimally
on G1 ∪ G2, we infer that γg(G1 ∪ G2) ≥ t. Therefore, γg(G) ≤ s ≤ t ≤ γg(G1 ∪ G2)
which completes the argument. �

Theorem 4.3 A connected split graph of even order is a 1/2-split graph if and only if
every vertex in K is adjacent to at least one leaf in I and degI(xi) ∈ [2] for i ∈ [k].
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Proof. Suppose that γg(G) = bn(G)/2c. Then by Lemma 4.2 every vertex of K is
adjacent to at least one leaf in I and by Lemma 4.1(iii) and (iv), degI(xi) ∈ [2] for
every vertex xi ∈ K.

Conversely, suppose that G is a connected split graph of even order in which every
vertex in K is adjacent to at least one leaf in I and degI(xi) ∈ [2] for i ∈ [k]. By
Theorem 3.1 we need only to prove that Staller has a strategy that guarantees that a D-
game will last at least bn(G)/2c moves. After each move we consider that the resulting
graph is a partially dominated graph without saturated vertices. The corresponding
Strategy of Staller is the following.

First, In Phase 1, she selects vertices which are not pendent vertices in I. After
this is no longer possible for Staller, Phase 1 is over and Phase 2 begins. At that time
the vertices from I that are not yet dominated are pendent vertices. In Phase 2 Staller
selects pendent vertices which are neighbors of degree-2 vertices from K as long as this
is possible. Phase 3 starts when the only not yet dominated vertices from I are those
that are adjacent to vertices of K with exactly one neighbor in I.

Consider the number of saturated vertices during this game. Since degI(xi) ∈ [2],
i ∈ [k], after each move of Dominator in Phases 1 and 2 the number of newly saturated
vertices is at most three. By the strategy of Staller, after each of her moves in these
two phases the number of saturated vertices increases by exactly one. Suppose that
Phase 2 is finished with the kth move of Staller. Then the number of saturated vertices
is at most 3k + k = 4k. If there are l vertices in Phase 3 yet to be dominated, then
the game is finished by the next l moves. After each such move, no matter whether it
was done either by Dominator or Staller, two newly saturated vertices are created and
therefore n(G) ≤ 4k+ 2l. The described strategy of Staller may not be optimal, hence

γg(G) ≥ 2k + l =
2(2k + l)

2
≥ n(G)

2
=

⌊
n(G)

2

⌋
.

Suppose next that Phase 2 is finished with the kth move of Dominator. In this case
the number of saturated vertices at this stage of the game at most 3k+ k− 1 = 4k− 1.
Let again l be the number of vertices yet to be dominated in Phase 3. Then the
number of not yet saturated vertices is exactly 2l. Since G is of even order, the number
of vertices already saturated is at most 4k− 2. Hence n(G) ≤ 4k− 2 + 2l and therefore

γg(G) ≥ (2k − 1) + l =
2(2k − 1 + l)

2
=

4k − 2 + 2l

2
≥ n(G)

2
=

⌊
n(G)

2

⌋
,

and we are done. �
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5 Concluding remarks

In [3] it was proved that the game domination number of a graph G is bounded by the
domination number γ(G) of G as follows:

γ(G) ≤ γg(G) ≤ 2γ(G)− 1 .

Consequently, to prove Conjecture 1.1, it suffices to consider “only” graphs G with the
property γ(G) > (n(G) + 2)/4. Moreover, since for a graph G with a hamiltonian path
we clearly have γ(G) ≤ dn(G)/3e, it suffices to concentrate just on graphs G with the
domination number roughly between n(G)/4 and n(G)/3.

In Section 4 we have characterized 1/2-split graphs of even order. It would likewise
be of interest to characterize 1/2-split graphs of odd order. It seems possible to proceed
along the similar lines as in Section 4, however the consideration turned out to be more
lengthy and technical.

Split graphs have different important generalizations. Chordal graphs form one
of them. Since trees are chordal graphs and there exist infinite families of the so-
called 3/5-trees (see [2, 16]), Theorem 3.1 does not extend to chordal graphs. Another
important generalization of split graphs are 2K2-free graphs, that is, graphs that do
not contain two independent edges as an induced subgraph, cf. [8, 9]. Now, C5 belongs
to this class and γg(C5) = 3, hence Theorem 3.1 also does not extend to 2K2-free
graphs. Let us therefore ask whether there is some natural superclass of split graphs to
which Theorem 3.1 extends. Actually we know of one such class (tri-split graphs), see
below. But this extension is rather straightforward, hence let us rephrase the question
as follows:

Problem 5.1 Is there a natural superclass of split graphs to which Theorem 3.1 extends
“non-trivially”?

At the end of Section 2 we have mentioned tri-split graphs that were inroduced
in [11]. They are defined as follows. A graph G is a tri-split graph if V (G) can be
partitioned into three disjoint sets A 6= ∅, B, and C with the following properties. The
set A induces a clique, B induces an independent set, and C and arbitrary graph. Each
vertex from A is adjacent to each vertex from C (that is, there is a join between A
and C), and no vertex of B is adjacent to a vertex in C. So the only neighbors of the
vertices from C are in A. Now, if a D-game is played of a tri-split graph G, then the
first move of dominator will be on A, and after this move all vertices in C and in A are
dominated. This means that every vertex of C is saturated and the game continues as
it would be played on the split graph induced by A∪B. But then Theorem 3.1 extends
to tri-split graphs.
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