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Abstract

The edge-Wiener index is conceived in analogous to the traditional Wiener index and it is

defined as the sum of distances between all pairs of edges of a graph G. In the recent years, it has

received considerable attention for determining the variations of its computation. Motivated by

the method of computation of the traditional Wiener index based on canonical metric represen-

tation, we present the techniques to compute the edge-Wiener and vertex-edge-Wiener indices

of G by dissecting the original graph G into smaller strength-weighted quotient graphs with

respect to Djoković-Winkler relation. These techniques have been applied to compute the exact

analytic expressions for the edge-Wiener and vertex-edge-Wiener indices of coronoid systems,

carbon nanocones and SiO2 nanostructures. In addition, we have reduced these techniques to

the subdivision of partial cubes and applied to the circumcoronene series of benzenoid systems.
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1 Introduction

Quantitative structure-activity and structure-property relationship (QSAR/QSPR) studies have

become important tools in computer aided drug discovery and predictive toxicology by providing

correlations between the properties of molecules and their topology in terms of mathematical quan-

tities. Such topological indices assist in drug discovery [5,6] by providing efficient in-silico tools by

reducing a large set of potential chemicals into smaller sets by clustering techniques on the basis

of similarity of the computed topological indices. Consequently, these techniques have reduced the

cost of drug discovery or simplified toxicity predictions. The significance of QSAR/QSPR study

makes it crucial that appropriate descriptors are utilized to obtain proper correlations between its

activities/properties and its structure. Distances between atoms and/or bonds dependences of in-

dices such as the Wiener, the edge-Wiener, and the vertex-edge-Wiener with the best performance

on the molecular structure are studied to improve their applicability for analyzing the structural

activities of biomolecules by encoding the information relating to both the topology of the molecule

and the chemical nature of atoms and bonds [29]. Since the activity of a molecule is closely related

to its structure, graph theory has been found to be a useful tool by way of providing techniques for

efficient computation of topological indices.

Chemical graph theory is an interdisciplinary science that applies graph theoretical tools to

enumerate, characterize, and quantify molecular structures and spectroscopy. One of the principal

areas of research in chemical graph theory is to seek techniques to reduce the topological structure

of a molecule into a single number or a set of quantifiers, called the topological indices. Topological

indices also aid in the synthesis of new molecules. There are various topological descriptors which

are computed on the basis of topological distances, vertex degrees, hybrid degree-distances, and

other connectivity based indices. The main focus of the current study are the edge-Wiener and

vertex-edge-Wiener indices which are distance-based topological descriptors.

The traditional Wiener index was discovered on the basis of the observation that there exists

a correlation between the boiling point of a paraffin and its molecular structures [33]. The Wiener

index of a graph G is defined as the sum of topological distances between all pairs of vertices of

G. It has attracted a considerable attention by many researchers in chemical and mathematical

literature [28]. The edge-Wiener index was introduced in analogous to the Wiener index as the sum

of the distances between all pairs of edges of G. The edge distance can in turn be defined in a couple

of different ways. For two edges one can say that the distance between the edges is the minimum
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distance among the end vertices of the edges, cf. [15,20]. On the other hand, it is also reasonable to

consider the distance between two edges to be the distance between the corresponding vertices in

the line graph, cf. [10, 15]. Luckily, these two definitions differ only by the additive factor
(|E(G)|

2

)
.

Even before the edge-Wiener index was introduced as a topological index, it was studied in [12,13]

as the Wiener index of a line graph.

In the recent years, mathematical techniques for the computation of the edge-Wiener index

have been considered by a number of researchers, see [4, 7, 9, 19, 26, 27, 30, 35, 37] and a survey [14].

Motivated by the vertex and edge versions of the Wiener indices, the vertex-edge-Wiener index was

introduced in [20] and it is defined as the sum of distances between all pairs of G consisting of a

vertex and an edge. The standard cut method technique for the vertex-edge-Wiener index has been

developed in [1,19]. The origin of the cut method, however, is the paper [23] in which the standard

cut method was developed for the Wiener index. The cut method and its extensions/modifications

up to the year 2015 are surveyed in [25].

It was noticed that the standard cut method based on Θ-partitions fails to characterize the

topological properties of chemical structures such as coronoids and carbon nanocones. To overcome

such challenges, the Θ∗-partition was efficiently used in which strength-weighted graph makes the

computation elegant [2] by properly defining topological indices for strength-weighted graphs. In

the graph representation of organic compounds, the atomic mass, bond lengths or bond angles,

are not taken into account, where as the chemical bonding of atoms is regarded as being their

most important characteristics. To measure the chemical similarity and diversity of compounds for

the study of structure property relationships, topological indices such as the edge-Wiener and the

vertex-edge-Wiener can be developed with a more general approach for molecular graphs containing

heteroatoms and multiple bonds with strength-weighted schemes based on atomic number, covalent

radius, covalent bond weights, electronegativity [16, 17]. Such graphs with corresponding chemical

databases can be considered as strength-weighted graphs for the efficient computation of indices

compared to conventional method. The primary motivation behind working on the edge-Wiener

and the vertex-edge Wiener indices is that they could be useful in determining biological activities

of the molecule such as DNA binding affinity, bond path, and so on, to be deployed in the discovery

of anticancer and antitumor drugs [31,36].

In this paper, we develop a method for the computation of the edge-Wiener index and the

vertex-edge Wiener index of a graph G by dissecting it into quotient graphs with respect to the

canonical isometric embedding of G. The principle method involves the decomposition of a graph
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G into its convex components using the cut method [21, 23] by means of the transitive closure of

the Djoković-Winkler relation [11, 34]. The rest of the paper is organized as follows. In Section

2, we define the graph theoretical preliminaries considered in the present study. Section 3 outlines

the computational techniques and the proofs for the edge-Wiener index and the vertex-edge-Wiener

index of strength-weighted graphs. In Section 4, we apply the developed techniques to compute

the exact analytical expressions of the edge-Wiener index and vertex-edge-Wiener index for the

coronoid systems, carbon nanocones and SiO2 nanostructures. Furthermore, we formulate the

indices discussed in the current study for the subdivision of partial cubes and apply this technique

on the subdivision of circumcoronene series in Section 5. We close with concluding remarks in

Section 6.

2 Graph theoretical concepts

Throughout the paper we denote a finite simple connected graph asG = (V (G), E(G)). The distance

dG(u, v) between vertices u, v ∈ V (G) is the lenght of a shortest u, v-path. If e = ab ∈ E(G) and

u ∈ V (G), then the distance dG(u, e) between them is defined as min{dG(u, a), dG(u, b)}. The

distance DG(e, f) between edges e = ab and f = uv is the minimum number of edges along a

shortest e, u-path or a shortest e, v-path [15, 20]. The edge-Wiener index We and the vertex-edge-

Wiener index Wve of a graph G are defined as

We(G) =
∑

{e,f}⊆E(G)

DG(e, f),

and

Wve(G) =
∑

u∈V (G)

∑
f∈E(G)

dG(u, f).

The Cartesian product G1� · · · �Gk of graphs G1, . . . , Gk has the vertex set V (G1) × · · · ×

V (Gk), vertices (u1, . . . , uk) and (v1, . . . , vk) being adjacent if they differ in exactly one position,

say position i, and in this position we have uivi ∈ E(Gi). The Cartesian product of graphs gives

rise to important classes of graphs, for example, the n-dimensional grid is the n-fold Cartesian

product of paths, while Cartesian products of complete graphs are known as Hamming graphs. In

particular, the n-dimensional hypercube Qn is the n-fold Cartesian product of K2. Equivalently,

V (Qn) = {0, 1}n, vertices in Qn being adjacent if then differ in precisely one position alias bit.

A subgraph H of a graph G is said to be isometric if for any u, v ∈ V (H), dH(u, v) = dG(u, v). A
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mapping f : V (H) → V (G) is an isometric embedding of H into G if f(H) is an isometric subgraph

of G. If for some n a graph H admits an isometric embedding into Qn, then we say that H is a

partial cube.

We now define the Djoković-Winkler relation Θ [11,34] which plays a crucial role in our compu-

tations. If e = ab ∈ E(G) and f = cd ∈ E(G), then eΘf if dG(a, c) + dG(b, d) ̸= dG(a, d) + dG(b, c).

The relation Θ is reflexive and symmetric, but not transitive in general. If G is a partial cube,

then Θ is also transitive and hence an equivalence relation. Moereover, in that case for any Θ-class

F , the graph G − F consists of exactly two connected components [23]. In general, the transi-

tive closure Θ∗ of Θ forms an equivalence relation on any connected graph G and thus partitions

E(G) into Θ∗-classes F(G). If F(G) = {F1, . . . , Fr}, then each graph G − Fi consists of at least

two connected components Ci
1, . . . , C

i
ri . The quotient graph G/Fi with respect to the part Fi of

the partition F(G) is the graph with the vertex set V (G/Fi) = {Ci
j ; 1 ≤ j ≤ ri} and the edge

set E(G/Fi) = {Ci
jC

i
k; ∃ x ∈ V (Ci

j) and y ∈ V (Ci
k) such that xy ∈ Fi}. Finally, a partition

E(G) = {E1, . . . , Ek} of E(G) is coarser than the partition F(G), if each part Ei is the union of one

or more Θ∗-classes of G.

3 We and Wve of strength-weighted graphs

The concept of a strength-weighted graph was introduced in [2] as a triple Gsw = (G,SWV , SWE)

where G is a simple graph and SWV , SWE are respectively pairs of weighted functions defined on

V (G) and E(G):

• SWV = (wv, sv), where wv, sv : V (Gsw) → R+
0 ,

• SWE = (we, se), where we, se : E(Gsw) → R+
0 .

In the context of topological indices, we restrict to the case we = 1 for every edge e ∈ Gsw,

and henceforth Gsw = (G, (wv, sv), se). Consequently, if u, v ∈ V (Gsw) and e, f ∈ E(Gsw), then

dG(u, v) = dGsw(u, v), dG(u, f) = dGsw(u, f) and DG(e, f) = DGsw(e, f). The quotient graph of

Gsw with respect to the Θ∗-class Ei of Gsw is defined as Gsw/Ei = (G/Ei, (w
i
v, s

i
v), s

i
e) where the

weighted functions wi
v, s

i
v, and sie are defined as follows:

• wi
v : V (Gsw/Ei) → R+, wi

v(C) =
∑

x∈V (C)

wv(x), ∀ C ∈ V (Gsw/Ei),

• siv : V (Gsw/Ei) → R+, siv(C) =
∑

xy∈E(C)

se(xy) +
∑

x∈V (C)

sv(x), ∀ C ∈ V (Gsw/Ei),
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• sie : E(Gsw/Ei) → R+, sie(CD) =
∑

xy∈Ei
x∈V (C), y∈V (D)

se(xy), ∀ CD ∈ E(Gsw/Ei).

The vertex distance-based, degree-distance-based and counting related topological indices have al-

ready been defined for strength-weighted graph in [2]. Moreover, if wv = se ≡ 1 and sv ≡ 0 for

a topological index TI, then TI(Gsw) = TI(G). In this way, we now carefully define the edge

distance-based topological indices such as the edge-Wiener index and the vertex-edge-Wiener index

for strength-weighted graphs in order to devise an elegant general method for their computation of

indices.

Definition 1. The edge-Wiener index of a strength-weighted graph Gsw is

We(Gsw) =
∑

{u,v}⊆V (Gsw)

sv(u) sv(v) dGsw(u, v) +
∑

{e,f}⊆E(Gsw)

se(e) se(f) DGsw(e, f)

+
∑

u∈V (Gsw)

∑
f∈E(Gsw)

sv(u) se(f) dGsw(u, f). (1)

Definition 2. The vertex-edge-Wiener index of a strength-weighted graph Gsw is

Wve(Gsw) =
∑

{u,v}⊆V (Gsw)

{
wv(u) sv(v) + wv(v) sv(u)

}
dGsw(u, v)

+
∑

u∈V (Gsw)

∑
f∈E(Gsw)

wv(u) se(f) dGsw(u, f). (2)

Prior to strength-weighted graphs, there were techniques for computing the vertex distance-

based topological indices by considering the vertex-weights [8, 22,24] and following these ideas and

extending some of the insights of benzenoid systems [9,19], a technique, based on the seminal paper

in this direction [19], was recently developed [32] for the edge-Wiener index by considering edge-

weights. Actually, the technique was converting the problem of computing the edge-Wiener index to

the problem of computing the sum of the Wiener index, edge-Wiener index and vertex-edge-Wiener

index of weighted quotient graphs corresponding to the Θ∗-classes, in parallel to the approach

from [19] for Θ-classes. What we now notice is that graphs under question are edge-weighted

graphs and that the technique converts graphs into both vertex and edge-weighted graphs, which

implies that the technique is not iterative in nature. Since the notations are somehow inconsistent

when one intends to find both vertex and edge distance-based topological indices, we believe that

the strength-weighted graphs will be useful for this purpose with any combination of vertex and

edge-weighted functions. For the sake of completeness, we prove the following theorem and, in
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addition, extend the idea to the vertex-edge-Wiener index.

Theorem 3. Let Gsw =
(
G, (wv, sv), se

)
be a strength-weighted graph and E(Gsw) = {E1, . . . , Ek}

a partition of E(G) coarser than F′(Gsw). If TI ∈ {We,Wve}, then

TI(Gsw) =
k∑

i=1

TI(G/Ei, (w
i
v, s

i
v), s

i
e).

Proof. Since V (Gsw) = V (G), E(Gsw) = E(G), dGsw = dG, and DGsw = DG, we can follow the

contraction mappings of canonical metric representations from [21, 32]. Let ℓi : V (G) → V (G/Ei)

be given by ℓi(x) = Ci
j , where Ci

j is the connected component of G− Ei such that x ∈ Ci
j . Define

now the mapping αi : E(G) → V (G/Ei) ∪ E(G/Ei) as

αi(xy) =


ℓi(x) ∈ V (G/Ei); {x, y} ⊆ V (Ci

j),

ℓi(x)ℓi(y) ∈ E(G/Ei); x ∈ V (Ci
j), y ∈ V (Ci

k).

Furthermore, it was already proved that the distance between two vertices [24] and distance between

two edges [32] can be computed by using the distances in the quotient graphs as follows:

dG(u, v) =

k∑
i=1

dG/Ei
(ℓi(u), ℓi(v)),

DG(e, f) =
k∑

i=1

DG/Ei
(αi(e), αi(f)).

In a similar way, one can prove that the distance between vertex and edge can be obtained by using

the distances in the quotient graph as follows:

dG(u, f) =
k∑

i=1

dG/Ei
(ℓi(u), αi(f)).

Using these facts we complete the proof in the following two cases.

Case 1: (TI = We)

We(Gsw) =
∑

{u,v}⊆V (G)

sv(u) sv(v) dGsw(u, v) +
∑

{e,f}⊆E(G)

se(e) se(f) DGsw(e, f)

+
∑

u∈V (G)

∑
f∈E(G)

sv(u) se(f) dGsw(u, f)
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=
∑

{u,v}⊆V (G)

sv(u) sv(v)

( k∑
i=1

dG/Ei
(ℓi(u), ℓi(v))

)

+
∑

{e,f}⊆E(G)

se(e) se(f)

( k∑
i=1

DG/Ei
(αi(e), αi(f))

)

+
∑

u∈V (G)

∑
f∈E(G)

sv(u) se(f)

( k∑
i=1

dG/Ei
(ℓi(u), αi(f))

)

=
k∑

i=1

( ∑
{ℓi(u),ℓi(v)}⊆V (G/Ei)

siv(ℓi(u)) s
i
v(ℓi(v)) dG/Ei

(
ℓi(u), ℓi(v)

)
+

∑
{αi(e),αi(f)}⊆E(G/Ei)

sie(αi(e)) s
i
e(αi(f)) DG/Ei

(
αi(e), αi(f)

)
+

∑
ℓi(u)∈V (G/Ei)

∑
αi(f)∈E(G/Ei)

siv(ℓi(u)) s
i
e(αi(f)) dG/Ei

(
ℓi(u), αi(f)

))

=

k∑
i=1

We(G/Ei, (w
i
v, s

i
v), s

i
e).

Case 2: (TI = Wve)

Wve(Gsw) =
∑

{u,v}⊆V (Gsw)

[
wv(u) sv(v) + wv(v) sv(u)

]
dGsw(u, v)

+
∑

u∈V (Gsw)

∑
f∈E(Gsw)

wv(u) se(f) dGsw(u, f)

=
∑

{u,v}⊆V (G)

[
wv(u) sv(v) + wv(v) sv(u)

] ( k∑
i=1

dG/Ei
(ℓi(u), ℓi(v))

)

+
∑

u∈V (G)

∑
f∈E(G)

wv(u) se(f)

( k∑
i=1

dG/Ei
(ℓi(u), αi(f))

)

=

k∑
i=1

( ∑
{ℓi(u),ℓi(v)}⊆V (G/Ei)

[
wi
v(ℓi(u)) s

i
v(ℓi(v)) + wi

v(ℓi(v)) s
i
v(ℓi(u))

]
dG/Ei

(
ℓi(u), ℓi(v)

)
+

∑
ℓi(u)∈V (G/Ei)

∑
αi(f)∈E(G/Ei)

wi
v(ℓi(u)) s

i
e(αi(f)) dG/Ei

(
ℓi(u), αi(f)

))

=
k∑

i=1

Wve(G/Ei, (w
i
v, s

i
v), s

i
e).
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We now exemplify the technique for obtaining the expressions of the edge-Wiener index and

the vertex-edge-Wiener index of strength-weighted graphs. Consider the graph G as depicted in

Figure 1(a). The Θ∗-classes E1 and E2 of G are shown in Figures 1(b) and 1(c), respectively. The

strength-weighted graphs of G with respect to the Θ∗-classes are given in Figures 2(a) and 2(b).

(a)

E
1

(b)

E
2

(c)

Figure 1: A graph G with Θ∗-classes.

2,1( )

2,1( )

2,1( )

1, 0( )

22

1

11

(a)

3, 2( )

4, 5( )

3

(b)

Figure 2: Strength-weighted quotient graphs (a) G/E1 (b) G/E2.

We now calculate the edge-Wiener index of the two quotient graphs individually by using

Eqn. (1) and then sum them up to obtain the edge-Wiener index of G, that is,

We(G) = We(G/E1, (w
1
v, s

1
v), s

1
e) +We(G/E2, (w

2
v, s

2
v), s

2
e).

In view of (1) we set We(G/Ei) = W 1
e (G/Ei) +W 2

e (G/Ei) +W 3
e (G/Ei), where

W 1
e (G/Ei) =

∑
{u,v}⊆V (G/Ei)

sv(u) sv(v) dGsw(u, v),

W 2
e (G/Ei) =

∑
{e,f}⊆E(G/Ei)

se(e) se(f) DGsw(e, f),

W 3
e (G/Ei) =

∑
u∈V (G/Ei)

∑
f∈E(G/Ei)

sv(u) se(f) dGsw(u, f).
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For the quotient graph G/E1, the edge-Wiener index is computed as follows:

W 1
e (G/E1) = 1 · 1(1) + 1 · 1(2) + 1 · 1(1) = 4,

W 2
e (G/E1) = 1 · 2(1) + 2 · 1(1) = 4,

W 3
e (G/E1) = 1 · 1(1) + 1 · 2(1) + 1 · 1(1) + 1 · 1(1) + 1 · 1(1) + 1 · 1(1) + 1 · 2(1) + 1 · 1(1) = 10.

We conclude that We(G/E1) = 4 + 4 + 10 = 18.

Similarly, we compute for the quotient graph G/E2: W
1
e (G/E2) = 5 ·2(1) = 10, W 2

e (G/E2) = 0,

W 3
e (G/E2) = 0. Hence We(G/E2) = 10 and thus

We(G) = We(G/E1) + We(G/E2) = 28.

We next proceed to compute the vertex-edge-Wiener index for the graph G from Figure 1 by

following the same technique, where we have

Wve(G) = Wve(G/E1, (w
1
v, s

1
v), s

1
e) +Wve(G/E2, (w

2
v, s

2
v), s

2
e).

Again in view of (2) we set Wve(G/Ei) = W 1
ve(G/Ei) +W 2

ve(G/Ei), where

W 1
ve(G/Ei) =

∑
{u,v}⊆V (G/Ei)

{wv(u) sv(v) + wv(v) sv(u)} dGsw(u, v),

W 2
ve(G/Ei) =

∑
u∈V (G/Ei)

∑
f∈E(G/Ei)

wv(u) se(f) dGsw(u, f).

Then,

W 1
ve(G/E1) = 1 · 1 + 2 · 1 + 1 · 2 + 2(2 · 1 + 1 · 2) + 1 · 1 + 1 · 1 + 2 · 1 + 1 · 2 = 19,

W 2
ve(G/E1) = 2 · 1 + 2 · 2 + 1 · 2 + 1 · 2 + 2 · 1 + 2 · 2 + 2 · 1 + 2 · 1 + 2 · 1 + 2 · 1 = 24,

Wve(G/E1) = 19 + 24 = 43.

Similarly, W 1
ve(G/E2) = 4 · 2 + 5 · 3 = 23, W 2

ve(G/E2) = 0, Wve(G/E2) = 23, and therefore,

Wve(G) = Wve(G/E1) + Wve(G/E2) = 43 + 23 = 66.
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4 Computation of We and Wve for certain molecular structures

In this section, we apply the formulas obtained in Theorem 3 to compute the edge-Wiener index

and the vertex-edge-Wiener index of coronoid systems, carbon nanocones, and SiO2 nanostructures.

4.1 Coronoid systems

A benzenoid system is a finite connected substructure of the parent infinite hexagonal system which

is obtained by arranging regular hexagons with no cut vertices such that two hexagons are either

disjoint or have a common edge between them. A coronoid system is obtained from a benzenoid

system by deleting few interior vertices and their corresponding edges to form a unique interior face

bounded by a polygon of length greater than six.

The circumcision process of obtaining structures with polygonal holes pose considerable chal-

lenges in computing indices of such structures. In [2], the authors have computed various distance-

based, degree-distance-based and counting related topological indices by applying the concept of

strength-weighted graphs on the coronoid structures. To proceed with the computation of the edge-

Wiener index of such coronoid systems, we refer to [2] for the cuts and the strength-weighted values

of the quotient graphs.

Theorem 4. Let G be the K1(n, p, q, r) coronoid structure, where r ≥ 1, n ≥ 3, and 1 ≤ p = q ≤ n.

Then,

1. We(G) = 1
2(36n

3r2+216n2pr2+126n2r3+432np2r2+504npr3+189nr4+288p3r2+504p2r3+

378pr4+144r5+48n3r+288n2pr−138n2r2+576np2r−528npr2−450nr3+384p3r−540p2r2−

900pr3 − 339r4 + 16n3 + 96n2p − 350n2r + 192np2 − 1392npr + 21nr2 + 128p3 − 1396p2r +

30pr2+388r3− 136n2− 544np+824nr− 544p2+1644pr+238r2+384n+768p− 625r− 360).

2. Wve(G) = 1
6(144n

3r2 + 864n2pr2 + 504n2r3 + 1728np2r2 + 2016npr3 + 756nr4 + 1152p3r2 +

2016p2r3+1512pr4+576r5+240n3r+1440n2pr−312n2r2+2880np2r−1200npr2−1350nr3+

1920p3r − 1224p2r2 − 2700pr3 − 975r4 + 96n3 + 576n2p − 1584n2r + 1152np2 − 6288npr −

696nr2 +768p3 − 6312p2r− 1416pr2 +758r3 − 768n2 − 3072np+3354nr− 3072p2 +6684pr+

1515r2 + 2040n+ 4080p− 2210r − 1800).

Proof. The coronoid structure K1(n, p, q, r) depicted in Figure 3 has |V (G)| = 2(r + 1)(2n + 4p +

3r − 5) and |E(G)| = 3(r + 2)(2n+ 4p+ 3r − 5). Due to the presence of the cavity, the Θ∗-classes

on the structure are along the periphery of the cavity and the boundary of the cavity as shown in

11



Figure 3. There are 2r horizontal cuts on the periphery of which r horizontal cuts {Ehi : 1 ≤ i ≤ r}

along the North direction are symmetric to the r horizontal edge cuts along the South direction.

Similarly, there are other 4r cuts along the periphery of which r acute cuts {Eai : 1 ≤ i ≤ r} running

respectively along the North-West and South-East directions are symmetric to the r obtuse cuts

respectively along the North-East and South-West directions. There are n + 2p − 1 middle edge

cuts along the boundary of the hole in which E2, E3 cuts are symmetric to E1 and the remaining

n+ 2p− 4 cuts which are symmetric to E4 are shown in Figure 3. Hence, the total number of Θ∗-

classes in G is 6r + n+ 2p− 1. Their corresponding quotient graphs along with strength-weighted

functions are shown in Figure 4. The strength-weighted functions whose values are not given in the

figure are presented in Table 1.
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Figure 3: Coronoid structure K1(n, p, q, r) with typical Θ∗-classes.
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Figure 4: Quotient graphs (a) G/Ehi (b) G/Eai (c) G/E1 (d) G/E4.
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Table 1: Strength-weighted values for the quotient graphs of K1(n, p, q, r).

Quotient graphs wv sv

G/Ehi;

1 ≤ i ≤ r

a1 = i(i+ 2n+ 2r − 2)

a2 = |V (G)| − a1

b1 =
1
2(6in− 2n− 2r − 9i+ 6ir + 3i2 + 2)

b2 = |E(G)| − b1 − (n+ r + i− 1)

G/Eai;

1 ≤ i ≤ r

a3 = i(i+ 2p+ 2r)

a4 = |V (G)| − a3

b3 =
1
2(6ip− 2p− 2r − 3i+ 6ir + 3i2)

b4 = |E(G)| − b3 − (p+ r + i)

G/Ei;

1 ≤ i ≤ 3
a5 = (r + 1)(2n+ 4p+ 3r − 5)

b5 =
1
2(4n+ 8p− 11r + 6nr+

12pr + 9r2 − 12)

G/Ei;

4 ≤ i ≤ n+ 2p− 1

a6 = 2(n+ 2p− r + nr+

2pr + r2 − 3)

a7 = r2

b6 = 2n+ 4p− 5r + 3nr + 6pr + 3r2 − 7

b7 =
3
2r(r − 1)

We denote

We(G1) =

r∑
i=1

We(G/Ehi, (w
hi
v , shiv ), shie ) =

r∑
i=1

b1b2,

We(G2) =

r∑
i=1

We(G/Eai, (w
ai
v , saiv ), saie ) =

r∑
i=1

b3b4,

We(G3) = We(G/Ei, (w
i
v, s

i
v), s

i
e) = b25,

We(G4) = We(G/Ei, (w
i
v, s

i
v), s

i
e)

= 2

(
2b6b7 + b26 + b27 + r2 + 4r + 1 + 2

(
rb6 + b6 + rb7 + 2b7

))
.

Therefore,

We(G) = 2We(G1) + 4We(G2) + 3We(G3) + (n+ 2p− 4)We(G4),

from which the stated expression is routinely computed.

We proceed similarly in order to obtain the vertex-edge-Wiener index. Denote,

Wve(G1) =

r∑
i=1

Wve(G/Ehi, (w
hi
v , shiv ), shie ) =

r∑
i=1

(
a1b2 + a2b1

)
,

13



Wve(G2) =

r∑
i=1

Wve(G/Eai, (w
ai
v , saiv ), saie ) =

r∑
i=1

(
a3b4 + a4b3

)
,

Wve(G3) =Wve(G/Ei, (w
i
v, s

i
v), s

i
e) = 2a5b5,

Wve(G4) =Wve(G/Ei, (w
i
v, s

i
v), s

i
e)

=4

(
a6b7 + a7b6 + a6b6 + a7b7 + b6 + 2b7 + a6 + 2a7 + r(a6 + a7 + 2) + 1

)
.

Therefore,

Wve(G) = 2Wve(G1) + 4Wve(G2) + 3Wve(G3) + (n+ 2p− 4)Wve(G4),

from which the stated expression is obtained routinely.

Since r-circumscribed C32H16 and C48H24 are the special cases of K1(n, p, q, r), we substitute

K(3, 1, 1, r) and K(3, 2, 2, r) respectively into the analytical expressions obtained in Theorem 4 to

compute their edge-Wiener and vertex-edge-Wiener indices.

Corollary 1. For r ≥ 1, let G be an r-circumscribed C32H16 coronoid structure. Then,

1. We(G) = 1
2(144r

5 + 606r4 + 1288r3 + 1465r2 + 769r + 160).

2. Wve(G) = 1
6(576r

5 + 2805r4 + 6608r3 + 8379r2 + 5104r + 1200).

Corollary 2. For r ≥ 1, let G be an r-circumscribed C48H24 coronoid structure. Then,

1. We(G) = 1
2(144r

5 + 984r4 + 3412r3 + 6139r2 + 4513r + 1152).

2. Wve(G) = 1
6(576r

5 + 4317r4 + 16004r3 + 31083r2 + 26308r + 7776).

Theorem 5. Let G be the K2(n, p, q, r) coronoid structure, where r ≥ 1, n ≥ 3, and 1 ≤ p < q ≤ n.

Then

1. We(G) = 1
10(180n

3r2 +540n2pr2 +540n2qr2 +660n2r3 +540np2r2 +1080npqr2 +1440npr3 +

540nq2r2+1440nqr3+1230nr4+180p3r2+540p2qr2+660p2r3+540pq2r2+1440pqr3+1230pr4+

180q3r2 + 660q2r3 + 1230qr4 + 738r5 + 240n3r + 720n2pr + 720n2qr − 630n2r2 + 720np2r +

1440npqr−1140npr2+720nq2r−1140nqr2−2080nr3+240p3r+720p2qr−630p2r2+720pq2r−

1140pqr2−2200pr3+240q3r−630q2r2−2200qr3−2250r4+80n3+240n2p+240n2q−1720n2r+

14



240np2+480npq−3440npr+240nq2−3440nqr−150nr2+80p3+240p2q−1720p2r+240pq2−

3440pqr− 270pr2 +80q3 − 1720q2r− 270qr2 +1120r3 − 680n2 − 1360np− 1360nq+3960nr−

680p2− 1360pq+3960pr− 680q2+3960qr+1305r2+1920n+1920p+1920q− 2843r− 1800).

2. Wve(G) = 1
15(360n

3r2 + 1080n2pr2 + 1080n2qr2 + 1320n2r3 + 1080np2r2 + 2160npqr2 +

2880npr3 +1080nq2r2 +2880nqr3 +2460nr4 +360p3r2 +1080p2qr2 +1320p2r3 +1080pq2r2 +

2880pqr3+2460pr4+360q3r2+1320q2r3+2460qr4+1476r5+600n3r+1800n2pr+1800n2qr−

630n2r2+1800np2r+3600npqr−960npr2+1800nq2r−960nqr2−2680nr3+600p3r+1800p2qr−

630p2r2 + 1800pq2r − 960pqr2 − 2920pr3 + 600q3r − 630q2r2 − 2920qr3 − 3480r4 + 240n3 +

720n2p+ 720n2q − 3870n2r + 720np2 + 1440npq − 7680npr + 720nq2 − 7680nqr − 2085nr2 +

240p3+720p2q−3870p2r+720pq2−7680pqr−2385pr2+240q3−3870q2r−2385qr2−440r3−

1920n2−3840np−3840nq+7975nr−1920p2−3840pq+7915pr−1920q2+7915qr+3195r2+

5100n+ 5100p+ 5100q − 5101r − 4500).
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Figure 5: Coronoid structure K2(n, p, q, r) with its typical Θ∗-classes.

Proof. The coronoid structure K2(n, p, q, r) depicted in Figure 5 has |V (G)| = 2(r + 1)(2n + 2p +

2q+3r− 5) and |E(G)| = (3r+2)(2n+2p+2q+3r− 5). Applying the Djoković-Winkler relation,

the Θ∗-classes on this coronoid structure along the periphery of the cavity, there are r horizontal

cuts {Ehi : 1 ≤ i ≤ r} along the North direction which are symmetric to another r horizontal cuts

along the South direction; r acute cuts {Eai : 1 ≤ i ≤ r} along the South-East direction symmetric

to another r acute cuts along the North-West direction; and r obtuse cuts {Eoi : 1 ≤ i ≤ r} along

the South-West direction symmetric to r obtuse cuts along the North-East direction; while the

Θ∗-classes along the boundary of the hole consists of n+ p+ q − 1 middle cuts in which 3 cuts are
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symmetric to E1 and n+ p+ q− 4 cuts are symmetric to E4 as shown in the Figure 5. Hence, there

are a total of 6r + n + p + q − 1 number of Θ∗-classes in G. The corresponding quotient graphs

obtained on applying these cuts along with their strength-weighted functions are shown in Figure

6 and the vertex-strength-weighted functions not defined in the Figure 6 are shown in Table 2.
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Figure 6: Quotient graphs (a) G/Ehi (b) G/Eai (c) G/Eoi (d) G/E1 (e) G/E4.

Table 2: Strength-weighted values for the quotient graphs of K2(n, p, q, r).

Quotient graphs wv sv

G/Ehi;

1 ≤ i ≤ r

a1 = i(i+ 2n+ 2r − 2)

a2 = |V (G)| − a1

b1 =
1
2(6in− 2n− 2r − 9i+ 6ir + 3i2 + 2)

b2 = |E(G)| − b1 − (n+ r + i− 1)

G/Eai;

1 ≤ i ≤ r

a3 = i(i+ 2p+ 2r)

a4 = |V (G)| − a3

b3 =
1
2(6ip− 2p− 2r − 3i+ 6ir + 3i2)

b4 = |E(G)| − b3 − (p+ r + i)

G/Eoi;

1 ≤ i ≤ r

a5 = i(i+ 2q + 2r)

a6 = |V (G)| − a5

b5 =
1
2(6iq − 2q − 2r − 3i+ 6ir + 3i2)

b6 = |E(G)| − b5 − (q + r + i)

G/Ei;

1 ≤ i ≤ 3

a7 = (r + 1)(2n+ 2p+

2q + 3r − 5)

b7 =
1
2(4n+ 4p+ 4q − 11r + 6nr+

6pr + 6qr + 9r2 − 12)

G/Ei;

4 ≤ i ≤ n+ p+ q − 1

a8 = 2(n+ p+ q − r+

nr + pr + qr + r2 − 3)

a9 = r2

b8 = 2n+ 2p+ 2q − 5r + 3nr + 3pr+

3qr + 3r2 − 7

b9 =
3
2r(r − 1)

We denote

We(G1) =
r∑

i=1

We(G/Ehi, (w
hi
v , shiv ), shie ) =

r∑
i=1

b1b2,
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We(G2) =

r∑
i=1

We(G/Eai, (w
ai
v , saiv ), saie ) =

r∑
i=1

b3b4,

We(G3) =

r∑
i=1

We(G/Eoi, (w
oi
v , s

oi
v ), s

oi
e ) =

r∑
i=1

b5b6,

We(G4) = We(G/Ei, (w
i
v, s

i
v), s

i
e) = b27,

We(G5) = We(G/Ei, (w
i
v, s

i
v), s

i
e)

= 2

(
2b8b9 + b28 + b29 + r2 + 4r + 1 + 2

(
rb8 + b8 + rb9 + 2b9

))
.

Therefore,

We(G) = 2We(G1) + 2We(G2) + 2We(G3) + 3We(G4) + (n+ p+ q − 4)We(G5).

Similarly, we obtain for the vertex-edge-Wiener index as follows.

Wve(G1) =

r∑
i=1

Wve(G/Ehi, (w
hi
v , shiv ), shie ) =

r∑
i=1

(
a1b2 + a2b1

)
,

Wve(G2) =

r∑
i=1

Wve(G/Eai, (w
ai
v , saiv ), saie ) =

r∑
i=1

(
a3b4 + a4b3

)
,

Wve(G3) =

r∑
i=1

Wve(G/Eoi, (w
oi
v , s

oi
v ), s

oi
e ) =

r∑
i=1

(
a5b6 + a6b5

)
,

Wve(G4) = Wve(G/Ei, (w
i
v, s

i
v), s

i
e = 2a7b7,

Wve(G5) = Wve(G/Ei, (w
i
v, s

i
v), s

i
e)

= 4

(
a8b9 + a9b8 + a8b8 + a9b9 + b8 + 2b9 + a8 + 2a9 + r(a8 + a9 + 2) + 1

)
.

Therefore,

Wve(G) = 2Wve(G1) + 2Wve(G2) + 2Wve(G3) + 3Wve(G4) + (n+ p+ q − 4)Wve(G5),

from which we obtain the expression.
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Corollary 3. For r ≥ 1, let G be an r-circumscribed C40H20 coronoid structure K2(3, 1, 2, r). Then,

1. We(G) = 1
10(738r

5 + 5130r4 + 13360r3 + 17565r2 + 10837r + 2520).

2. Wve(G) = 1
15(1476r

5 + 11280r4 + 32920r3 + 48165r2 + 33509r + 8820).

4.2 Carbon nanocones

Since the advent of carbon nanotubes and fullerenes, curved forms of carbon with conical tips

consisting of curved graphite sheets with open cones are also known to exist and these structures

have been of great interest for several researchers. These conical shaped nanocones are formed by

removing a wedge and joining the edges to form the base of the conical part. Each edge of the

polygonal cycle of dimension m ≥ 3 on the base or the core forms a hexagon and hence surrounded

by n layers of hexagons, as a consequence of which the outer boundary consists of n+ 1 hexagons,

see Figure 7.

We now proceed to compute the edge-Wiener and vertex-edge-Wiener indices of carbon nanocones.

1 2 3 4 n+1

1

2

34

m

1 2 n

Figure 7: The structure of carbon nanocone CNCm(n).

Theorem 6. Let G be the carbon nanocone structure CNCm(n). For m odd, m > 3 and n ≥ 1,

1. We(G) = 1
160(n+1)(45m3n3+480m2n4+45m3n2+800m2n3−912mn4+20m3n+380m2n2−

1313mn3 + 20m3 − 20m2n− 377mn2 − 80m2 + 92mn+ 60n2 + 60m+ 60n).

2. Wve(G) = 1
120(n+1)(45m3n3+480m2n4+90m3n2−912mn4+1090m2n3+45m3n+780m2n2−

1693mn3 + 200m2n− 882mn2 + 30m2 − 173mn+ 30n2 − 60m+ 60n+ 30).
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Proof. We know that |V (G)| = m(n + 1)2 and |E(G)| = m(n + 1)(3n + 2)/2. The Θ∗-classes

along the periphery are formed by the linear hexagonal chain {E1i : 1 ≤ i ≤ n}, and for each

i, E2i, E3i, . . . , Emi cuts are symmetric to E1i with a total of mn cuts along the periphery. The

graph with edge cut G − E1i, and the quotient graph G/E1i are shown in Figures 8(a) and 8(b),

respectively. The strength-weighted values of the quotient graph G/E1i are given below.

a1 = i(i+ 2n+ 2), b1 = 1
2(3i− 2n+ 6in+ 3i2 − 2),

a2 = |V (G)| − a1, b2 = |E(G)| − b1 − (n+ 1 + i),

e1 = (n+ 1 + i).

We denote

We(G1) =

n∑
i=1

We(G/Ei, (w
i
v, s

i
v), s

i
e) =

n∑
i=1

b1b2,

Wve(G1) =

n∑
i=1

Wve(G/Ei, (w
i
v, s

i
v), s

i
e) =

n∑
i=1

(
a1b2 + a2b1

)
.
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Figure 8: (a) {E1i : 1 ≤ i ≤ n} (b) Quotient graph G/E1i.

Since m is odd, there exists a unique edge cut E1 along the core. The graph with the edge cut

E1 along with its corresponding strength-weighted graph is depicted in Figures 9(a) and 9(b). The

vertex strength-weight and edge-strength values are:

a3 = (n+ 1)2, b3 =
3
2n(n+ 1), e2 = (n+ 1).
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Figure 9: (a) G− E1 (b) Quotient graph G/E1.

We denote

We(G2) =We(G/E2, (w
1
v, s

1
v), s

1
e) = m

m−1
2∑

i=1

ib23 +m

m−3
2∑

i=1

ie22 +
1

4
(m− 1)2b3e2,

Wve(G2) =Wve(G/E2, (w
1
v, s

1
v), s

1
e) = 2m

m−1
2∑

i=1

ia3b3 +
1

4
(m− 1)2a3e2.

Therefore, We(G) = mWe(G1) + We(G2) and Wve(G) = mWve(G1) + Wve(G2), from which the

formulae are deduced.

Theorem 7. Let G be the carbon nanocone structure CNCm(n). For m even, m > 4 and n ≥ 1,

1. We(G) = 1
160m(n+1)(45m2n3 +480mn4 +105m2n2 +800mn3 − 912n4 +80m2n+200mn2 −

1268n3 + 20m2 − 200mn− 212n2 − 80m+ 232n+ 80).

2. Wve(G) = 1
120m(n+1)(45m2n3+480mn4+120m2n2+1090mn3−912n4+105m2n+690mn2−

1648n3 + 30m2 + 20mn− 732n2 − 60m− 8n).

Proof. When m is even, the Θ∗-classes along the periphery are the same as defined in Theorem 6

and we proceed with the same computation for the peripheral cuts. For the core, the Θ∗-classes

formed by {Ei : 1 ≤ i ≤ m
2 } are shown in Figure 10(a). The quotient graph G/Ei is the complete
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graph K2 and the vertex-weight and edge-strength values labeled on the Figure 10(b) are defined

as follows: a4 =
1
2m(n+ 1)2, b4 =

1
4(n+ 1)(2m+ 3mn− 4), and e3 = 2(n+ 1).
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Figure 10: (a) {G− Ei : 1 ≤ i ≤ m
2 } (b) Quotient graph G/Ei.

Denote,

We(G3) = We(G/Ei, (w
i
v, s

i
v), s

i
e) = b24,

Wve(G3) = Wve(G/Ei, (w
i
v, s

i
v), s

i
e) = 2a4b4.

Therefore, We(G) = mWe(G1)+
m
2 We(G3) and Wve(G) = mWve(G1)+

m
2 Wve(G3), from which the

formulae are obtained.

4.3 SiO2 nanotubes

SiO2 nanotubes are among the most frequently utilized inorganic material as they possess unique

physico-chemical properties. The mesoporous silica with empty channels lends to functionalization

and attracts wide applications in drug discovery for controlled release and drug/gene delivery. It

is formed by merging the pendant edges along the right and left sides of the octagonal mesh of an

SiO2 nanosheet of dimension (p, q−1) to form a tubular structure with length p and circumeference

q. The structure of SiO2 nanotube with p rows and q columns shown in the Figure 11 clearly has
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|V (G)| = q(3p+ 4) vertices and |E(G)| = 4q(p+ 1) edges [3].

1 2 3 q -1

2

p

q

Figure 11: SiO2 nanotube (p, q).

Theorem 8. If G is the SiO2 nanotube of dimension (p, q), where p ≥ 1 and q ≥ 3 is odd, then

1. We(G) = 1
3q(16p

3q + 12p2q2 + 24p2q + 3p2 + 24pq2 − pq + 12q2 − 12q).

2. Wve(G) = q(p+ 1)(8p2q + 6pq2 + 14pq + p+ 8q2 + 4q − 4).
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Figure 12: Convex cuts on G (a) Pi (b) Hi (c) V1.

Proof. The Djokovič-Winkler relation when applied to the SiO2 nanotube forms Θ∗-classes of G

which are depicted in Figure 12. Each pendant edge cut forms its own Θ∗-class along the upper

and lower open ends of G denoted as Pi, {Pi : 1 ≤ i ≤ 2q}, while the horizontal cuts denoted as Hi,

{Hi : 1 ≤ i ≤ p} are in the form of circular rings of G running along the p rows. When the length

of the circular ring q is odd, there exists a unique vertical cut denoted as V1. Clearly, the number of

Θ∗-classes formed by G when q is odd is 2q+ p+1. The corresponding quotient graphs of each cut
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are shown in Figure 13 with the edge-strength value 1 on each edge. The vertex-strength-weighted

values which are not given in the figure are presented in Table 3.
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Figure 13: Quotient graphs (a) G/Pi (b) G/Hi (c) G/V1.

Denote,

We(G1) = We(G/Pi, (w
i
v, s

i
v), s

i
e) = 0,

Wve(G1) = We(G/Pi, (w
i
v, s

i
v), s

i
e) = u1v2,

We(G2) = We(G/Hi, (w
i
v, s

i
v), s

i
e) = 2v3v4 + q(v3 + v4) + q(q − 1),

Wve(G2) = Wve(G/Hi, (w
i
v, s

i
v), s

i
e) = 2(u3v4 + v3u4) + q(u3 + u4 + v3 + v4) + 2q(q − 1),

We(G3) = We(G/V1, (w
1
v, s

1
v), s

1
e)

=q

(
2

q−1
2∑

i=1

v25i+ 2

q−1∑
i=1

v5(p+ 1)i+ 2

q−2∑
i=1

(p+ 1)2i+ (q − 1)(p+ 1)2 + p(p+ 1)

)
,

Wve(G3) = Wve(G/V1, (w
1
v, s

1
v), s

1
e)

= q

(
4

q−1
2∑

i=1

u5v5i+ 2

q−1
2∑

i=1

v5(p+ 1)(2i− 1) + v5q(p+ 1) + 2

q−1∑
i=1

u5(p+ 1)i+ 2

q−1∑
i=1

(p+ 1)2i

+ 2p(p+ 1)

)
.

Therefore, We(G) = 2qWe(G1) +
p∑

i=1
We(G2) +We(G3) and Wve(G) = 2qWve(G1) +

p∑
i=1

Wve(G2) +
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Wve(G3) , which yield the stated expressions.

Table 3: Strength-weighted values for the quotient graphs of SiO2.

Quotient graphs wv sv

G/Pi;

1 ≤ i ≤ 2q

u1 = 1

u2 = |V (G)| − 1

v1 = 0

v2 = |E(G)| − 1

G/Hi;

1 ≤ i ≤ p

u3 = 3qi

u4 = 3q(p+ 1− i)

v3 = q(4i− 1)

v4 = q(4p− 4i+ 3)

G/V1 u5 = 2p+ 3 v5 = 2p+ 2

Theorem 9. If G is the SiO2 nanotube of dimension (p, q), where p ≥ 1 and q ≥ 2 is even, then

1. We(G) = 1
3q(16p

3q + 12p2q2 + 24p2q + 6p2 + 24pq2 − pq + 6p+ 12q2 − 12q + 3).

2. Wve(G) = 2q(p+ 1)(4p2q + 3pq2 + 7pq + p+ 4q2 + 2q − 1).

Proof. The pendant and horizontal edge cuts follow the same computation as in Theorem 8. If

the circular rings of SiO2 nanotube are of even length, then there are q
2 vertical cuts denoted as

{Vi : 1 ≤ i ≤ q
2}, see Figure 14(a), and thus the number of Θ∗-classes formed by G are 5

2q + p. The

vertex-strength-weighted values not given in the quotient graph depicted in the Figure 14(b) are

u6 =
3pq
2 + 2q − (p+ 1), v6 = 2(pq + q − p− 1) and the edge-strength value on each edge is 1.

Now denote,

We(G4) = We(G/Vi, (w
i
v, s

i
v), s

i
e)

= 2(v26 + 2v6(p+ 1) + (p+ 1)2 + p(p+ 1)),

Wve(G4) = Wve(G/Vi, (w
i
v, s

i
v), s

i
e)

= 4(u6v6 + v6(p+ 1) + u6(p+ 1) + (p+ 1)2 + p(p+ 1)).

Therefore, We(G) = 2qWe(G1)+
p∑

i=1
We(G2)+

q
2We(G4) and Wve(G) = 2qWve(G1)+

p∑
i=1

Wve(G2)+

q
2Wve(G4), from which the formulae are deduced.
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(b)

Figure 14: (a) Convex cut Vi (b) Quotient graph G/Vi.

5 We and Wve of subdivisions of partial cubes

We begin this section by recalling the PI index and the standard cut-method for We, Wve and PI

indices. The PI index of a simple graph G is defined as

PI(G) =
∑

e=uv∈E(G)

[
mu(e|G) +mv(e|G)

]
,

where mu is the number of edges lying closer to u than to v, and mv is defined analogously. If G

is a partial cube and F(G) = {F1, . . . , Fk} its Θ-partition, then recall that G − Fi consists of two

connected components. If n1(Fi) and n2(Fi) denote the order, and m1(Fi) and m2(Fi) the size of

these components, then

• [35] We(G) =
k∑

i=1
m1(Fi) m2(Fi),

• [1] Wve(G) =
k∑

i=1
[n1(Fi) m2(Fi) + n2(Fi) m1(Fi)],

• [18] PI(G) = |E(G)|2 −
k∑

i=1
|Fi|2.

The subdivision Sub(G) of a graph G is obtained by replacing every edge uv of G by a vertex xuv

and connecting xuv with u and v. The number of vertices and edges of Sub(G) are |V (G)|+ |E(G)|

and 2|E(G)|, respectively. Let G be a partial cube with Θ-classes Fi = {ujvj : 1 ≤ j ≤ s}. It has

been proved in [3] that if |Fi| ≥ 3, then the quotient graph is K2 with vertex-strength-weighted
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values (n1(Fi),m1(Fi)) and (n2(Fi),m2(Fi)) and edge-strength value |Fi| as shown in the Figure

15(a). The Θ∗-classes of Sub(G) are then F ′
i = {ujxj , xjvj : 1 ≤ j ≤ s}, the corresponding

quotient graph being the complete bipartite graph K2,|Fi| with edge-strength 1 for all the edges and

vertex-strength-weighted values for one partite vertices as (ai(F
′
i ), bi(F

′
i )) and (ci(F

′
i ), di(F

′
i )) and

the other partite vertices (1, 0) each as shown in the Figure 15(b) where ai(F
′
i ) = n1(Fi) +m1(Fi),

bi(F
′
i ) = 2m1(Fi), ci(F

′
i ) = n2(Fi) +m2(Fi), and di(F

′
i ) = 2m2(Fi). If |Fi| ≤ 2 (that is, if s = 1 or

2), then we have F ′
i = {ujxj , xjvj : 1 ≤ j ≤ s} which is a union of two Θ∗-classes in Sub(G) and

the above arguments hold.

K2

| |F
i

m2( )F
in2

( )F
i,

m1( )F
in1

( )F
i, )(

( )

(a)

K
2,| |Fi

(1 0, )

b
i

( )F
ia

i
,

1

1

1

1

1

1

1

1

1

1

( )F
i d

i
( )F

ic
i

, ( )F
i( ( ))

(1 0, )

(1 0, )

(1 0, )

(1 0, )

(b)

Figure 15: Quotient graphs (a) G/Fi (b) Sub(G)/F ′
i .

Theorem 10. Let F(G) = {F1, . . . , Fk} be the Θ-partition of a partial cube G and let F′(Sub(G)
)
=

{F ′
1, . . . , F

′
k} be the Θ∗-partition of Sub(G). If TI ∈ {We,Wve}, then

TI
(
Sub(G)

)
=

k∑
i=1

TI
(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
.

Furthermore,

1. We

(
Sub(G)

)
= 8We(G) + PI(G) + |E(G)|(|E(G)| − 1).

2. Wve

(
Sub(G)

)
= 4Wve(G) + 8We(G) + PI(G) + |E(G)|(2|E(G)|+ |V (G)| − 2).

Proof. By Theorem 3, it is easy to see that TI
(
Sub(G)

)
=

k∑
i=1

TI
(
Sub(G)/Fi, (w

i
v, s

i
v), s

i
e

)
. As

noted above, the quotient graph Sub(G)/Fi is isomorphic to K2,|Fi| with strengths and weights as

given in Figure 15. Therefore, TI
(
Sub(G)

)
=

k∑
i=1

TI
(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
. Applying the concept of
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strength-weighted functions of quotient graphs, we compute the indices as follows.

(i) We(Sub(G)) =
k∑

i=1

We

(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
=

k∑
i=1

[
2bi(F

′
i )di(F

′
i ) + |Fi|

[
bi(F

′
i ) + di(F

′
i )
]
+ |Fi|(|Fi| − 1)

]

=
k∑

i=1

[
2(2m1(Fi))(2m2(Fi)) + |Fi|

[
2m1(Fi) + 2m2(Fi) + |Fi| − 1

]]
= 8We(G) + PI(G) + |E(G)|(|E(G)| − 1).

(ii) Wve(Sub(G)) =

k∑
i=1

Wve

(
K2,|Fi|, (w

i
v, s

i
v), s

i
e

)
=

k∑
i=1

[
2
[
ai(F

′
i )di(F

′
i ) + bi(F

′
i )ci(F

′
i )
]
+ |Fi|

[
bi(F

′
i ) + di(F

′
i ) + ai(F

′
i ) + ci(F

′
i )
]

+ 2|Fi|(|Fi| − 1)

]
=

k∑
i=1

[
2
[
(n1(Fi) +m1(Fi))2m2(Fi) + (n2(Fi) +m2(Fi))(2m1(Fi))

]
+ |Fi|

[
3m1(Fi) + 3m2(Fi) + n1(Fi) + n2(Fi) + 2|Fi| − 2

]]
= 4Wve(G) + 8We(G) + PI(G) + |E(G)|(2|E(G)|+ |V (G)| − 2).

The results obtained in Subsection 4.3 can also be obtained alternatively from Theorem 10 by

considering SiO2 nanotube as the subdivision of Pn�Cm, provided that the indices We, Wve, and

PI are known for Pn�Cm. Moreover, Theorem 10 can be readily applied to SiO2 nanotorus as the

subdivision of Cn�Cm. We now demonstrate the Theorem 10 on the subdivision of circumcoronene

series to compute their We and Wve indices. The structure of circumcornene series Hn is depicted

in Figure 16.

Theorem 11. For a circumcoronene series of benzenoid system Hn, n ≥ 1,

1. [35] We(Hn) =
3
10(246n

5 − 340n4 + 140n3 − 5n2 − n).

2. [1] Wve(Hn) =
1
5(492n

5 − 340n4 + 25n2 + 3n).

3. [1] PI(Hn) = 81n4 − 68n3 + 12n2 − n.
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Figure 16: The structure of circumcoronene Hn.

Combining Theorems 10 and 11, we obtain the following theorem.

Theorem 12. If n ≥ 1, then

1. We(Sub(Hn)) =
1
5n(2952n

4 − 3495n3 + 1340n2 − 30n− 17).

2. Wve(Sub(Hn)) = n(984n4 − 899n3 + 268n2 + 8n− 1).

6 Conclusion

This study involves the investigation of edge and vertex-edge variants of Wiener indices, in the

main part of the paper for strength-weighted graphs, and in the last part for subdivisions of partial

cubes. The principle key idea involved is the dissection of a graph with respect to the edges using

the transitive closure property of Djoković-Winkler relation. We have applied the obtained results of

the variants under study for strength-weighted graphs on the molecular graphs of coronoid systems,

carbon nanocones and SiO2 nanostructures. Further, the implementation on the subdivision of a

family of partial cubes has been carried over on the circumcoronene series. We anticipate that

the newly developed techniques will have several chemical applications in computer assisted drug

discovery and predictive computational toxicology.
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[11] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14(3)

(1973) 263–267.

29



[12] A.A. Dobrynin, Distance of iterated line graphs, Graph Theory Notes N. Y. 37 (1999) 8–9.

[13] I. Gutman, Distance of line graphs, Graph Theory Notes N. Y. 31 (1996) 49–52.

[14] A. Iranmanesh, M. Azari, Edge-Wiener descriptors in chemical graph theory: a survey, Curr.

Org. Chem. 19(3) (2015) 219–239.

[15] A. Iranmanesh, I. Gutman, O. Khormali, A. Mahmiani, The edge versions of the Wiener

index, MATCH Commun. Math. Comput. Chem. 61(3) (2009) 663–672.

[16] O. Ivanciuc, QSAR comparative study of Wiener descriptors for weighted molecular graphs,

J. Chem. Inf. Comput. Sci. 40(6) (2000) 1412–1422.

[17] O. Ivanciuc, T. Ivanciuc, D. Cabrol-Bass, A.T. Balaban, Comparison of weighting schemes

for molecular graph descriptors: Application in quantitative structure-retention relationship

models for alkylphenols in gas-liquid chromatography, J. Chem. Inf. Comput. Sci. 40(3)

(2000) 732–743.

[18] P.E. John, P.V. Khadikar, J. Singh, A method of computing the PI index of benzenoid

hydrocarbons using orthogonal cuts, J. Math. Chem. 42(1) (2007) 37–45.
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[37] P. Žigert Pleteršek, The edge-Wiener index and the edge-hyper-Wiener index of phenylenes,

Discrete Appl. Math. 255(1)(2019) 326–333.

31


