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Constructing Almost Peripheral and Almost Self-centered Graphs Revisited
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Abstract. The center and the periphery of a graph is the set of vertices with minimum

resp. maximum eccentricity in it. A graph is almost self-centered (ASC) if it contains

exactly two non-central vertices and is almost peripheral (AP) if all its vertices but

one lie in the periphery. Answering a question from (Taiwanese J. Math. 18 (2014),

463–471) it is proved that for any integer r ≥ 1 there exists an r-AP graph of order

4r− 1. Using this result it is proved that any graph G can be embedded into an r-AP

graph by adding at most 4r − 2 vertices to G. A construction of ASC graphs from

(Acta Math. Sin. (Engl. Ser.) 27 (2011), 2343–2350) is corrected and refined. Two

new constructions of ASC graphs are also presented. Strong product graphs that are

AP graphs are also characterized and it is shown that there are no strong product

graphs that are ASC graphs. We conclude with some related open problems.

1. Introduction

If G is a graph, then the distance dG(u, v) between vertices u and v of G is the usual

shortest-path distance. The eccentricity eccG(u) of the vertex u is max{dG(u, x) : x ∈
V (G)}. If G will be clear from the context we may shorten the notation to d(u, v) and

ecc(u), respectively. The minimum eccentricity and the maximum eccentricity over all

vertices of G, respectively, are the radius rad(G) and the diameter diam(G) of G. The

center C(G) and the periphery P (G) of G is the set of vertices of minimum, respectively

maximum, eccentricity, their elements being called central resp. peripheral vertices. We

refer to [15] for some general results on the structure of the center and the periphery of a

graph and to [13] for some related extremality results.

Central and peripheral vertices are important, among others, in location theory and

in the investigation of complex networks. If every vertex is central, in other words, when

C(G) = V (G) holds, then G is called a self-centered (SC) graph [2,8,14]. In this framework

we also refer to related eccentric graphs [3] and eccentric digraphs [5]. Several classes of

graphs closely related to self-centered graphs have also been introduced and studied. When
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|C(G)| = |V (G)| − 2 holds, that is, when G contains exactly two non-central vertices, G

is called an almost self-centered (ASC) graph [1, 9]. On the other hand, when |P (G)| =

|V (G)| − 1 holds, that is, when all vertices but one are peripheral, G is called an almost-

peripheral (AP) graph [10]. AP graphs recently found an application in the study of

the so-called non-self-centrality of networks [17], while embeddings into ASC graphs were

further investigated in [18]. (For some other recent studies of eccentricity see [4,7,12,16].)

To summarize, a graph G is

• SC graph, if |C(G)| = |V (G)|,

• ASC graph, if |C(G)| = |V (G)| − 2, and

• AP graph, if |P (G)| = |V (G)| − 1.

Clearly, in an ASC graph the two non-central vertices are necessarily diametrical and

hence peripheral, while in an AP graph the only non-peripheral vertex is a unique central

vertex.

The rest of the paper is organized as follows. In the rest of the section additional

definitions needed are given. In Section 2 constructions of AP graphs are considered while

in Section 3 constructions of ASC graphs are treated. In Section 4, we propose several

related open problems.

We say that G is an r-SC graph (resp. r-ASC graph, resp. r-AP graph) if G is an

SC graph (resp. ASC graph, resp. AP graph) of radius r. A subgraph H of a graph G

is isometric if dH(u, v) = dG(u, v) holds for any u, v ∈ V (H). The vertex deleted d-

cube Q−d , d ≥ 1, is obtained from the d-cube Qd by removing one of its vertices. The

Cartesian product G�H of graphs G and H is the graph with V (G�H) = V (G)×V (H)

and (g, h) is adjacent to (g′, h′) if and only if gg′ ∈ E(G) and h = h′, or g = g′ and

hh′ ∈ E(H). The strong product G �H of graphs G and H is the graph obtained from

the Cartesian product G�H by adding the edges between the vertices (g, h) and (g′, h′)

for which gg′ ∈ E(G) and hh′ ∈ E(H) hold. Finally, for a positive integer n we will use

the notation [n] = {1, 2, . . . , n}.

2. Constructing AP graphs

In [10] it was observed that Q−d is a (d− 1)-AP graph for any d ≥ 2. It was also demon-

strated that for any integer r ≥ 2 there exists an r-AP graph of order 4r + 1. Motivated

by this result it was asked whether there exist r-AP graphs of order n < 4r + 1 for any

r ≥ 4. We now reply the question as follows.

Theorem 2.1. For any integer r ≥ 1 there exists an r-AP graph of order 4r − 1.
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Proof. P3 and the vertex deleted 3-cube Q−3 are required examples for r = 1 and r = 2,

respectively. For an example that verifies the assertion for r = 3 consider the graph

obtained from the 8-cycle on vertices v1, . . . , v8 with natural adjacencies, and vertices

x, y, z, where x is adjacent to v1 and v7, y to v3 and v5, and z to v4 and v8 (cf. [10, Figure 1]).

It thus remains to prove the result for r ≥ 4.

If r ≥ 4, then let Gr be the graph constructed as follows. Its vertex set is

V (Gr) = {v1, . . . , v2r+1} ∪ {u1, . . . , ur} ∪ {w1, . . . , wr−4} ∪
{
v′1, . . . , v

′
r+1

}
.

In the particular case r = 4 we thus have {w1, . . . , wr−4} = ∅. The edges of Gr are

as follows. The vertices v1, . . . , v2r+1 induce a cycle C (of length 2r + 1). The vertices

v1, . . . , vr+1, ur, . . . , u1 in the respective order induce another cycle C ′ (also of length

2r + 1). For i ∈ [r − 4], the vertex wi is adjacent to ui+1 and to ui+2. Finally, v′1 is

adjacent to u1 and to v2r+1, while the vertex v′r+1 is adjacent to ur and to vr+2. The

graph Gr is schematically shown in Figure 2.1.

C

C ′

· · ·

· · ·

· · ·

· · ·

v′1 v1
v2 v3 v4 vrvr−1

vr+1 v′r+1

vr+2vr+3vr+4v2r−1 v2r−2v2rv2r+1

u1

u2 u3 u4

ur

ur−1ur−2ur−3

w1 w2 wr−4

Figure 2.1: Graph Gr.

We claim that Gr is an r-AP graph. For this sake note first that both cycles C and

C ′ are isometric subgraphs. In addition, the same assertion also holds for the cycle

C ′′ = u1, u2, . . . , ur, v
′
r+1, vr+2, . . . , v2r+1, v

′
1, u1

which is of length 2r + 2. From these facts it quickly follows that the eccentricity of every

vertex of C ′′ is r + 1. In particular, if 2 ≤ i ≤ r + 1, then the vertex opposite to vr+i on

C ′′ is the vertex ui−1 and hence d(vr+i, ui−1) = r + 1. But then also d(wi−2, vr+i) = r + 1

for 3 ≤ i ≤ r − 2. Therefore, also ecc(wi) = r + 1, i ∈ [r − 4]. It remains to consider

the vertices vi, i ∈ [r + 1]. We first observe that d(v1, v
′
r+1) = d(v2, v

′
r+1) = r + 1 and

that d(vr, v
′
1) = d(vr+1, v

′
1) = r + 1. Next, for 4 ≤ i ≤ r − 1, d(vi, wr−i) = r + 1. Finally,

ecc(v3) = r, so we conclude that C(Gr) = {v3} and P (Gr) = V (Gr) \ {v3}.
Since |V (Gr)| = (2r + 1) + r + (r − 4) + 2 = 4r − 1, the argument is complete.
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If G is a graph and r is a positive integer, then the r-AP index of G is defined [10] as

follows:

APr(G) = min {|V (H)| − |V (G)| : H is r-AP graph, G induced in H} .

Using Theorem 2.1 we get:

Theorem 2.2. If r ≥ 1 and G is an arbitrary graph, then APr(G) ≤ 4r − 2.

Proof. Let G be a graph and r ≥ 1. Let Hr be an r-AP graph of order 4r− 1. The graph

Hr exists by Theorem 2.1. Let C(Hr) = {u} and let x be an arbitrary peripheral vertex of

Hr. We now construct the graph Ĝr as follows. First set V (Ĝr) = (V (Hr) \ {x})∪ V (G).

The edge set of Ĝr consists of E(G), all the edges of Hr not incident to x, and all the edges

ww′, where w ∈ V (G) and w′ is a neighbor of x in Hr. In other words, Ĝr is obtained

from Hr by replacing x with G and connecting all the vertices of G to all the neighbors

of x.

We now consider the eccentricities of the vertices of Ĝr. To simplify the notation, we

will refer to them as vertices from V (G) and from V (Hr). Let first w ∈ V (G). Then for

any other vertex w′ ∈ V (G), d
Ĝr

(w,w′) ≤ 2. In addition, for w′′ ∈ V (Hr), dĜr
(w,w′′) =

dHr(x,w′′). Consequently, ecc
Ĝr

(w) = r + 1. Let next w ∈ V (Hr). Then for any w′ ∈
V (Hr), d

Ĝr
(w,w′) = dHr(w,w′), and for any w′ ∈ V (G), d

Ĝr
(w,w′) = dHr(w, x). It

follows that ecc
Ĝr

(w) = eccHr(w). But then Ĝr is an r-AP graph with C(Ĝr) = {u}.

The construction from the proof of Theorem 2.2 improves the construction from [10,

Theorem 2.3]. The latter construction would lead to a weaker conclusion asserting that

APr(G) ≤ 4r − 1.

Remark 2.3. The upper bound for APr(G) in Theorem 2.2 is not sharp in general. For

example, it was proved in [10, Theorem 3.1] that AP2(G) ≤ 5 for an arbitrary graph G

with at least two vertices and that equality holds precisely for complete graphs.

Different graph operations are often useful to construct families of graphs with given

properties. For the AP graphs, the strong product appears to be such. Before character-

izing AP strong product, we observe the following.

Lemma 2.4. If G and H are connected graphs and (g, h) ∈ V (G�H), then

eccG�H((g, h)) = max {eccG(g), eccH(h)} .

Proof. We can argue as follows:

eccG�H((g, h)) = max
{
dG�H((g, h), (g′, h′)) : (g′, h′) ∈ V (G�H)

}
= max

{
max

{
dG(g, g′), dH(h, h′)

}
: (g′, h′) ∈ V (G�H)

}
= max

{
max

{
dG(g, g′) : g′ ∈ V (G)

}
,max

{
dH(h, h′) : h′ ∈ V (H)

}}
= max {eccG(g), eccH(h)} ,
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where in the second equality we have used the well-known fact that for any connected

graphs G and H, dG�H((g, h), (g′, h′)) = max {dG(g, g′), dH(h, h′)}, see [6, Proposition 5.4].

Proposition 2.5. Let G and H be connected graphs and r ≥ 1. Then G�H is an r-AP

graph if and only if G and H are r-AP graphs.

Proof. Suppose first that G and H are r-AP graphs. Let C(G) = {g} and C(H) =

{h}. Then by Lemma 2.4, eccG�H((g, h)) = max {r, r} = r. Similarly, for any h′ ∈
V (H), h′ 6= h, eccG�H((g, h′)) = max {r, r + 1} = r + 1 and for any g′ ∈ V (G), g′ 6= g,

eccG�H((g′, h)) = max {r + 1, r} = r + 1. Finally, if g′ ∈ V (G), g′ 6= g, and h′ ∈ V (H),

h′ 6= h, then eccG�H((g′, h′)) = max {r + 1, r + 1} = r+1. Hence G�H is an r-AP graph

with C(G�H) = {(g, h)}.
Conversely, suppose that G � H is an r-AP graph. Let C(G � H) = {(g, h)}, so

that eccG�H((g, h)) = r while the eccentricity of any other vertex of G � H is r + 1.

By Lemma 2.4 and by the commutativity of the strong product we may without loss

of generality assume that eccG(g) = r and eccH(h) = s, where r ≥ s. Then for any

vertex g′ ∈ V (G), g′ 6= g, we have eccG�H((g′, h)) = r + 1 = max {eccG(g′), s}, hence

eccG(g′) = r + 1. This implies that G is an r-AP graph. Similarly, for any vertex

h′ ∈ V (H), h′ 6= h, we must have eccH(h′) = r + 1. But this implies (since s ≤ r) that

actually s = r holds which in turn implies that also H is an r-AP graph.

To conclude the section we note that no non-trivial Cartesian product graph is an

AP graph. Indeed, assume on the contrary that G�H is an AP graph, where both G

and H are connected graphs on at least two vertices. Let C(G�H) = {(g, h)} and let

eccG(g) = a and eccH(h) = b. Then, since both G and H have at least two vertices,

G contains a vertex of eccentricity a + 1, and H contains a vertex of eccentricity b + 1.

But then the set of eccentricities of G�H contains a + b, (a + 1) + b = a + (b + 1), and

(a + 1) + (b + 1), so G�H cannot be an AP graph.

3. Constructing ASC graphs

In this section we are interested in constructions of ASC graphs. We first correct a related

result from the literature. Then we continue with two novel constructions of ASC graphs

from some specific graphs and discuss the corresponding graphs with exactly two different

eccentricities. At the end of the section we observe that there are no non-trivial strong or

Cartesian product graphs that are ASC graphs.

In [9, Theorem 2.3] the following result was stated.
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Let G be an r-SC graph, u an arbitrary vertex of G, and X the set of eccentric vertices

of u. Let H be a graph obtained from G by joining a new vertex x to all vertices of X. If

the subgraph of G induced by X is of diameter at most 2, then H is an r-ASC graph.

To see that H need not be an r-ASC graph, consider first the sporadic example shown

on the left-hand side of Figure 3.1. The graph G from the figure is a 2-SC graph, and u′

is the only diametrical vertex of u, so that X = {u′}. The graph H is thus obtained from

G by connecting the new vertex x to u′. But now in H, the vertex x has three diametrical

vertices, so H is not an ASC graph.

G

u
u′ x

···

···

v1

v2

vr−1 vr

vr+1

vr+2vr+3

v2r

Y

Figure 3.1: Sporadic example and graphs Yr.

More generally, consider the following infinite family. If Y is an arbitrary graph and

r ≥ 3, then construct the graph Yr as follows. Take the disjoint union of Y and the cycle

C2r whose consecutive vertices are v1, v2, . . . , v2r, and connect every vertex of Y with vr,

vr+1 and vr+2. In other words, take the join between Y and the subgraph of C2r induced

by the vertices vr, vr+1 and vr+2. The construction is shown on the right-hand side of

Figure 3.1, where the thick lines represent the joints between Y and vertices vr, vr+1 and

vr+2, respectively.

Note that the cycle C2r is an isometric subgraph of Yr and that v1 is the unique

eccentric vertex for any vertex y of Y . Note also that dYr(y, v1) = r. Consecutively, Yr is

an r-SC graph. Select now u to be an arbitrary vertex of Y (or the vertex vr+1), then the

set of diametrical vertices of u consists of the single vertex v1. Hence the graph H from

the above statement is obtained from Yr by attaching a pendant vertex x to v1. But now

eccH(x) = r+ 1 with EccH(x) = {vr+1}∪V (Y ), (The notation EccG(x) stands for the set

of eccentric vertices of x in G, that is, vertices y with dG(x, y) = eccG(x).) so H is not an

r-ASC graph.

We now correct [9, Theorem 2.3] as follows. We include its complete proof for the sake
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of completeness and to point out the missing point in the original argument.

Theorem 3.1. Let G be an r-SC graph, u an arbitrary vertex of G, and X the set of

eccentric vertices of u, where the subgraph of G induced by X is of diameter at most 2.

Let H be the graph obtained from G by joining a new vertex x0 to all vertices of X. Then

H is an r-ASC graph if and only if
⋂

x∈X EccG(x) = {u}.

Proof. Note first that dH(x0, u) = r + 1. Consider next w ∈ V (H) \ {x0, u} and let x′ be

an arbitrary vertex from X. Since G is an r-SC graph, dG(w, x′) ≤ r and consequently

dH(x0, w) ≤ r + 1. We conclude that eccH(x0) = r + 1. By the same argument we also

get that eccH(u) = r + 1.

Consider next a vertex w ∈ V (H) \ {u, x0}. Since G is an r-SC graph, there exists a

vertex w′ ∈ V (G) such that dG(w,w′) = r. Select an arbitrary shortest (w,w′)-path in H,

denote it with P . If x0 does not lie on P , then P is a path that completely lies in G and

hence its length is r. Otherwise P passes x0, that is, P is of the form P ′x′x0x
′′P ′′, where

x′, x′′ ∈ X and P ′ is a (w, x′)-subpath in P and P ′′ is an (x′′, w′)-subpath in P . Note that

x′ and x′′ are not adjacent, since otherwise P would not be a shortest path. In addition,

since X induces a subgraph of G of diameter at most 2, there exists a vertex y ∈ X

adjacent to x′ and x′′. Then the path P ′x′yx′′P ′′ is a shortest (w,w′)-path of length r in

G. Therefore dH(w,w′) = r. Similarly, if w′′ ∈ V (G), w′′ 6= w,w′, then dH(w,w′′) ≤ r.

It remains to consider dH(w, x0), where w ∈ V (G) \ {u}. (This case is missing in the

proof of [9, Theorem 2.3].) We claim that dH(w, x0) ≤ r holds for all w ∈ V (G)\{u} if and

only if
⋂

x∈X EccG(x) = {u}. Suppose first that dH(w, x0) ≤ r holds for all w ∈ V (G)\{u}.
Then dH(w, x′) ≤ r− 1 holds for one vertex x′ ∈ X. Consequently,

⋂
x∈X EccG(x) = {u}.

Conversely, suppose that
⋂

x∈X EccG(x) = {u}. Since dH(x0, u) = r+1, it follows that for

each vertex w ∈ V (G) \ {u}, there exists x′ ∈ X such that dH(x′, w) ≤ r − 1. Therefore,

dH(w, x0) ≤ r (for all w ∈ V (G) \ {u}). In conclusion, H is an r-ASC graph if and only

if
⋂

x∈X EccG(x) = {u}.

We remark that all the examples of ASC graphs provided in [9] related to Theorem 3.1

fulfill the condition
⋂

x∈X EccH(x) = {u}.
In the following theorem we give a novel construction of ASC graphs from a graph

with special central structure by adding only one vertex.

Theorem 3.2. Let r ≥ 2 and let G be a connected graph with rad(G) = r − 1 and

diam(G) = r. If there exists a vertex u ∈
⋂

eccG(v)=r−1 EccG(v), such that |EccG(u)| = 1,

then the graph H obtained by attaching a new pendant vertex x to u in G, is an r-ASC

graph.

Proof. Assume that EccG(u) = {w}. Note that eccG(u) = r for otherwise eccG(u) = r− 1

would hold which in turn implies that dG(u, u) = 0 = r − 1, which is not possible.
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Then we immediately get dH(x,w) = r + 1. It follows that eccH(u) = r from the fact

that x is pendant in H. Moreover, we have eccH(v) = r for any vertex v ∈ V (G) with

eccG(v) = r − 1 since x ∈ EccH(v) with dH(v, x) = r. For any vertex y ∈ V (G) \ {u,w}
different from any vertex v with eccG(v) = r− 1, we first find that dH(y, x) ≤ r since u is

not an eccentric vertex of y in G. Further, there is at least one vertex y′ ∈ EccG(y) with

dH(y, y′) = dG(y, y′) = r. Therefore we have eccH(y) = r. Thus H is an r-ASC graph as

desired.

Note that the smallest example for Theorem 3.2 is provided by G = P3 in which case

the resulting 2-ASC graph is H = P4. For another sporadic example consider the vertex

deleted 3-cube Q−3 (or any Q−d , d ≥ 3, for that purpose) in which case the resulting 3-ASC

graph is obtained from Q−3 by attaching a new vertex to one of its vertices of degree 2.

A key property that we require from the graph G in Theorem 3.2 is that

(3.1) |{ecc(u) : u ∈ V (G)}| = 2.

Graphs fulfilling (3.1) form a wide generalization of ASC graphs, of AP graphs, as well as

of the so-called WAP graphs that were introduced in [17] as the graphs in which all but

two vertices lie in the periphery. The remaining two vertices of a WAP graph then both

lie in the center from the following result due to Lesniak [11]: If G is a connected graph,

then for each integer k in the range rad(G) < k ≤ diam(G), the graph G contains at least

two vertices of eccentricity k. Hence, if |C(G)| = 1 or 2, then the graph G fulfilling (3.1)

is an (r− 1)-AP and an (r− 1)-WAP graph, respectively. And if |C(G)| = |V (G)|− 2, the

graph G fulfilling (3.1) is an (r − 1)-ASC graph.

To conclude the section we give an infinite family of graphs that fulfill condition (3.1).

Let r ≥ 3 and consider the graph as schematically shown in Figure 3.2.

...

. . .

. . .

. . .

. . .

G0

yr−1

zr−1

x1

y1

z1

xr−1

w1 wr−1

Figure 3.2: Graph G with only two eccentricities r − 1 and r.

Here G0 is an arbitrary graph, each of whose vertices is adjacent to any vertex from

{x1, y1, z1, w1}. The black vertices have eccentricity r − 1 and the white vertices have
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eccentricity r in G. It is then straightforward to verify that the graph G satisfies the

conditions of Theorem 3.2, since the vertex zr−1 (yr−1, resp.) can be viewed as u in the

statement of Theorem 3.2, and x1 (w1, resp.) as w in the above proof.

After establishing Theorem 3.2, we naturally ask the following question: When an

ASC graph can be constructed by adding only two pendant vertices to a given graph?

As a special example, for a connected graph G of order n with two vertices u and v of

degree n− 1, we can get a 2-ASC graph by adding one pendant vertex to u and the other

pendant vertex to v. In the following theorem we propose a more general related result

for the graphs fulfilling (3.1).

Theorem 3.3. Let r ≥ 3, let G be an (r− 1)-WAP graph with C(G) = {u, v}, and let H

be the graph obtained from G by attaching a pendant vertex u′ to u and a pendant vertex

v′ 6= u′ to v. If dG(u, v) = r − 1, then H is an r-ASC graph.

Proof. Clearly, eccG(u) = eccG(v) = r−1. In addition, eccH(u′) = eccH(v′) = r+1 by the

definition of a WAP graph, the construction of H from G, and the fact that dG(u, v) = r−1.

So it suffices to show that eccH(w) = r for any vertex w ∈ V (G). Note that u′ is a pendant

vertex adjacent to u with eccH(u′) = r + 1. It follows that eccH(u) = r. Similarly, we

have eccH(v) = r. For any vertex w ∈ V (G)\{u, v}, we observe that dG(u,w) ≤ r−1 and

dG(v, w) ≤ r − 1, that is, dH(u′, w) ≤ r and dH(v′, w) ≤ r. Moreover, there is a vertex

w′ ∈ EccG(w) with dG(w′, w) = r. Then we conclude that eccH(w) = r. Thus H is an

r-ASC graph as desired.

In Figure 3.3 an example of an (r − 1)-WAP graph which satisfies the condition of

Theorem 3.3 is presented. Its central vertices are v1 and wr and are emphasized with

filled vertices.

· · ·

· · ·

· · ·

· · ·

v1
v2 v3 v4 vr−1

vr−2vr−3

ur−2ur−3ur−4u4u3u2u1

w1
w2 w3 w4

u4

wr

wr−1wr−2wr−3

y1 y2 y3 yr−3 yr−2

yr−1

Figure 3.3: An (r − 1)-WAP graph with r ≥ 3.

We conclude the section with the following negative result.
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Proposition 3.4. Let G and H be connected graphs on at least two vertices. Then neither

G�H nor G�H is an ASC graph.

Proof. Suppose on the contrary that G�H is an r-ASC graph for some r ≥ 1. Let (g, h)

be one of the two peripheral vertices of G � H so that eccG�H((g, h)) = r + 1. Using

the commutativity of the strong product we may without loss of generality assume that

eccH(h) ≤ eccG(g) = r + 1. If h′ is another vertex of H, then eccG�H((g, h′)) ≥ r + 1 and

thus necessarily eccG�H((g, h′)) = r + 1. Hence, G�H is an r-ASC graph, it follows that

for any g′ 6= g, we have eccG�H((g′, h)) = r which (in view of Lemma 2.4) in turn implies

that eccG(g′) ≤ r. This would means that g is the unique vertex of G with the (maximum)

eccentricity r + 1. We have a contradiction because a vertex of G that is diametrical to g

must have eccentricity at least r + 1.

Suppose next that G�H is an r-ASC graph for some r ≥ 1 and let (g, h) and (g′, h′)

be the vertices of G�H with dG�H((g, h), (g′, h′)) = r + 1. Clearly, g 6= g′ and h 6= h′.

But then dG�H((g, h′), (g′, h)) = r + 1, a contradiction.

4. Some open problems

In this section we propose some open problems for further research.

In view of Theorem 2.2 and Remark 2.3 we pose:

Problem 4.1. Let r ≥ 3. Does there exist a graph G with APr(G) = 4r − 2?

We further elaborate the above problem into:

Problem 4.2. If the answer to Problem 4.1 is positive, is K1 a unique such graph? In

addition, are complete graphs extremal with respect to APr in the class of all graphs on

at least two vertices?

Moreover, determining the minimum order of r-AP graphs (for a given r) would be

helpful for the above problems.

If G is a graph and r is a positive integer, then the r-ASC index of G is defined [9] as

follows:

ASCr(G) = min {|V (H)| − |V (G)| : H is r-ASC graph, G induced in H} .

Note that the graph G defined in Theorem 3.2 has ASCr(G) = 1. In view of it, we

naturally give:

Problem 4.3. Characterize the graphs G with ASCr(G) = 1.
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