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A matrix approach to the computation of the Wiener index of fasciagraphs and rotagraphs is described. 
This approach yields efficient algorithms for the above mentioned problem. The running time of our 
algorithms is independent of the number of monographs, if we regard basic arithmetic operations (such as 
addition and multiplication) to take a constant time. 

1. INTRODUCTION 

The notion of a polygraph was introduced in chemical 
graph theory as a formalization of the chemical notion of 
polymers.’ Fasciagraphs and rotagraphs form an important 
class of polygraphs. In the language of graph theory they 
describe polymers with open ends and polymers that are 
closed upon themselves, respectively. They are highly 
structured, and this structure makes it possible to design 
efficient algorithms for computing several graph invariants.2 
In this paper we show how the structure of fasciagraphs and 
rotagraphs can be used to obtain efficient algorithms for 
computing the Wiener index of such graphs. More precisely, 
if we regard basic arithmetic operations such as addition and 
multiplication to take a constant time, then the time 
complexity of our improved algorithms (theorem 5 )  depends 
only on the size k of a monograph in the polygraph and is 
independent of the number of monographs n. 

The paper is organized as follows. Motivation for studying 
such problems and definitions of polygraphs, rotagraphs, and 
fasciagraphs are given in section 1. Section 2 describes 
matrix approach to the computation of the Wiener index of 
fasciagraphs and rotagraphs. Two basic algorithms that 
realize this approach are presented (algorithms A and B). In 
section 3 possible extensions of these algorithms are briefly 
sketched. Using more sophisticated mathematical methods 
this approach is further extended, and the two algorithms 
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are considerably improved in section 4. How to realize all 
these algorithms efficiently is discussed in section 5.  The 
paper ends with some concluding remarks in section 6 .  

Let GI, G2, ..., Gn be arbitrary, mutually disjoint graphs, 
and let XI, XZ, ..., X, be a sequence of sets of unordered 
pairs of vertices (i.e., edges) such that an edge of Xi joins a 
vertex of V(Gi) with a vertex of V(Gi+l). Moreover, we 
choose edges in X, to join vertices from V(G& with vertices 
from V(G1). For convenience we also set Gn+l = GI. A 
polygraph 

Q, = Q,(G,, G2, e . . ,  G,; Xi, X2, ..., X,) 
over monographs GI, G2, ..., G, is defined in the following 
way: 

V(Qn) = V(G1) U***UV(GJ 

E(QJ = 
E(G1) U XI U E(G2) U X2 U***U E(Gn) U Xn 

For a polygraph 52, and for i = 1, 2, ..., n we also define 

Li = {u E V(GJ 3v E V(G,+,) : uv E Xi} 

Rj  = {u E V(G,+,)/ 3v E V(GJ : uv E X i }  
In general RinLi+l need not be empty. In the special case 
when GI, G2, ..., G, are all isomorphic to a graph G (i.e., all 
graphs Gi are disjoint copies of the monograph G )  and X I  = 
XZ = ... = X ,  = X we call the polygraph a rotagraph and 
denote it by w,(G;X). Afasciagraph &(G,X) is defined 
similarly as a rotagraph w,(G;X) except that there are no 
edges between the f i s t  and the last copy of a monograph, 
i.e., X, = 0. Since in a rotagraph all the sets Li and the sets 
Ri are equal, we will denote them by L and R, respectively. 
The same notation will be used for fasciagraphs as well, 
keeping in mind that L, and R, are empty. 

Throughout the paper we will without loss of generality 
denote the vertices of a graph G by 1, 2, ..., k. Recall that 
the Wiener index is defined for an arbitrary connected graph 
G as follows. Let D(G) = [ d ~ ]  be the distance matrix of G, 
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Le., the k x k matrix whose entry dij is equal to the length 
of a shortest path in G between vertices i and j .  The Wiener 
index W(G) of G is the number 

k k  r k  k 

This index was introduced in 1947.3 Although it was the 
first topological index studied, even today it is a very widely 
employCd graph theoretical de~criptor.~ In addition to 
conventional applications, the recent studies show its ap- 
plicability in the prediction of ultrasonic sound velocities in 
alkanes and  alcohol^,^ the rate of electroreduction of chlo- 
robenzenes: cytostatic and antihistaminic activities of certain 
drugs; and the discrimination of various fullerene isomers.8 
The Wiener index of polymer molecular graphs that cor- 
respond to our notion of polygraphs has been studied in refs 
9- 1 1. Regarding the computation of the Wiener index see, 
e.g., refs 12-16. 

2. THE BASIC ALGORITHM 
The theory of path algebrasI7 was used in ref 2 to derive 

a general algorithm for computing some graph invariants on 
polygraphs including the domination number and the inde- 
pendence number and solving the k-colorability decision 
eroblem. The general idea of the algorithm of KlavZar and 
Zerovnik is to transform the problem of computing a 
particular graph invariant on a polygraph to the computation 
of certain matrix products, where the matrix product is 
defined in a nonstandard way depending on the particular 
problem to be solved. The present paper applies the same 
idea to the problem of computing the Wiener index. In this 
paper, however, we try to avoid the general theory and give 
only the definitions which are necessary to make the 
following presentation self-contained. 

We wish to remark that similar ideas were already used 
by some authors. BabiC, Graovac, Mohar, and Pisanski give 
formulas for the matching polynomial of a polygraph 
involving the trace of a certain matrix product,' and Gutman, 
KolakoviC, Graovac and BabiE present a method for comput- 
ing the Hosoya index of polymers.I8 Our method is also 
similar to the transfer matrix methods as described, e.g., in 
ref 19. 

We consider matrices with entries from the set I N 0  U (w}, 

Le., we add to the set of nonnegative integers a special 
element 00 called infinity. For an n x p matrix A and an p 
x m matrix B we define their product C = A o B of size n 
x m as 

For an extensive survey of (mathematical) results and a 
thorough development of the theory concerning the above 
matrix product the interested reader is invited to consult ref 
20. 

Let Vn(G,X) and ;,(G,X) be a fasciagraph and a rotagraph, 
respectively, and recall that V(G) = (1, 2, .., k). Define a 
k x k transition matrix A(X) = [av] in the following way: 

- I  00; otherwise 
1; i E L , j E R , a n d i j E X  

ag - 
Note that i E L belongs to some monograph G, whilej E R 
belongs to the next copy of G .  

The Wiener index of &,(GX) can be computed by the 
following algorithm: 

Algorithm A 

1 .  compute Do := D(G) 

2. determine A(X) 

3. for 1 = 1,2, ..., n - 1 do D, := Dl-, o A ( X )  o Do 

k k  

4. so :=e dii 
i=l j=i+l  

k k  

5 .  for 1 = 1,2, ..., n - 1 do sl := (DJg 
j=l  j=1 

n- 1 

6.  W ( q n ( G $ ) )  := (n - i ) ~ ,  
i=O 

To prove the correctness of the above algorithm we need 
an additional assumption that each copy of a monograph G 
is an isometric subgraph of V,,(G;X). A subgraph H of a 
graph G is an isometric subgraph, if the distance between 
any two vertices of H in G is achieved by a shortest path 
which lies completely in the subgraph H. Isometric sub- 
graphs and isometric embeddings of graphs form an impor- 
tant part of graph theory. We refer to ref 2 1 for a survey on 
results and applications of isometric subgraphs. 

Theorem 1. Suppose that each copy of the monograph 
G is a connected isometric subgraph of the fasciagraph 
&(G;X). Then algorithm A correctly computes the Wiener 
index of Vn(G;X). 

Proof. Consider the fasciagraph Vn(G;X). Observe first 
that because of the obvious symmetry and since each 
monograph is an isometric subgraph, the distance between 
any two vertices from Gi and G,, i < j ,  and the conesponding 
two vertices from Gi, and Gy, i' < j', coincide if j - i = j' 
- i'. Therefore it is enough to compute the distances 
between the first and any other copy of the monograph. 

We claim that matrices DI, 1 = 0, 1, ..., ne- 1, calculated 
in steps 1 and 3 of the algorithm contain distances in V,(G,X) 
between all pairs of vertices i, j ,  where i E V(GI)  and j E 
V(G[+l). The claim is true for E = 0 by the definition of DO 
and the isometry assumption. Suppose now that the claim 
holds for I - 1, I 2 1 and consider the equality DI = DI-' 
0 A(X) 0 DO. Then 

By the induction hypothesis, (Dt-,)is is the length of a shortest 
path between vertices i and s, where i E V(G1) and s E ~ ( G I ) .  
Observe finally that (A(X) o is the length of a shortest 
path that does not use any edge of GI between s (considered 
as a vertex in V(G;)) and the vertexj E V(GI+I).  This implies 
the claim. 

It follows from the claim that the distance matrix of the 
fasciagraph W,(G;X) can be written in the block form 
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‘0 1 2 3 2 1. 
1 0 1 2 3 2  

3 2 1 0 1 2  
2 3 2 1 0 1  

2 1 0 1 2 3  and 

*l 2 3 2 1 0, 

JUVAN ET AL. 

’ 0 0 0 0 0 0 0 0 1 0 0  

0 0 0 0 0 0 1  0 0 0 0  

0 0 0 3 0 0 0 0 0 0 0 0  

W O O 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0  
h 

where DT is the transpose of the matrix DI. Now it is clear 
that step 6 correctly computes W(tp,(G;X)). 

Note that it also follows from the above proof that 

Dl+j = D,  0 DJ, i, j 2 0 
To compute the Wiener index of on(G;X) we will use the 

same idea as in algorithm A. However, we have to take 
care of some additional details. Let u and u be vertices from 
different copies of G. Then we must consider two possible 
directions to connect u and u by a shortest path. If u E V(GJ 
and u E V(G,), i < j ,  then a shortest path between u and v 
can pass through monographs GI,  G,+I ,  ..., G,-I ,  GI (the first 
direction) or through monographs GI,  GI-l, ..., G I ,  Gn, ..., 
G,+I, GJ (the second direction). In the presentation we will 
use the same notation as in algorithm A, except that instead 
of DI we will have two distance matrices DI and D;, where 
0; will contain the distances between the vertices of GI and 
GI+I in the first direction and DI will contain the distances 
between the same pairs of vertices in the whole rotagraph 
o,(G;X).  Observe that the distances in the second direction 
are closely related to the distances in the first direction since 
D;Tis the distance matrix between the vertices of and 
GI in the second direction. This way algorithm A extends 
to the case of rotagraphs as follows. 

Algorithm B 

1.  compute Do = Dh := D(G)  

‘3 4 3 2 1 2’ 
4 3 2 1 2 3  
5 4 3 2 3 4  
6 5 4 3 4 5  and 
5 6 5 4 3 4  
b4 5 4 3 2 3 ,  

2. determine A(X) 

’6 7 6 5 4 5’ 
7 6 5 4 5 6  
8 7 6 5 6 7  
9 8 7 6 7 8  
8 9 8 7 6 7  

17 8 7 6 5 6 ,  

3. for 1 = 1,2, ..., n - 1 do 0; := D;-l o A ( X )  o Do 

4. for 1 = 1,2,  ..., n - 1 do D, := min{D;,D’,T_,}, 
where (min(A,B}),i = min{(A),i,(B),i} 

k k  

5.  so :=c 2 dU 
i= 1 j=i+ 1  

k k  

6. for 1 = 1,2,  ..., n - 1 do sl := c c ( D l ) , .  
;=1j=1 

- n-1 

To show the correctness of the above algorithm we need 
the same assumption on the monographs as in theorem 1. 

Theorem 2. Suppose that each copy of the monograph 
G is a connected isometric subgraph of the rotagraph 
wn(G;X). Then algorithm B correctly computes the Wiener 
index of w,(G;X). 

The proof of the theorem is very similar to the case of 
fasciagraphs, and we will therefore omit the details. We 

Figure 1. The fasciagraph H3. 

note, however, that step 7 is simplified compared to step 6 
of algorithm A because of the circular symmetry of rota- 
graphs. 

In fact, algorithm B can be made more efficient by 
observing the following facts. First note that if s 2 t, then 

(D& - (D3ii 2 s - t 

Hence, for I I n/2 we have 

( 0 3 ~  I (D;-,)~ + 21 - n = (D;-J,~ + 21 - n 

Since is at most (DE,)ii plus twice the diameter of 
the monograph G, which is in turn bounded by k - 1, we 
conclude that 

3. NONISOMETFUC MONOGRAPHS 

It is possible to extend algorithms A and B also to the 
case when monographs are not isometric subgraphs of the 
polygraph. However, we still need a much weaker assump- 
tion, namely that the polygraph is “locally connected”, which 
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is bounded independently of n. Denote by C the constant 
matrix C = D, - Dp and set P = q - p .  

Lemma 4. Let p ,  P ,  and C be defined as above. Then 
for every i 2 p and every j L 0 such that i + j P  5 n we 
ha ve 

means that any pair of vertices in the same monograph is at 
distance at most d for some constant d independent of n. In 
such a case a shortest path between two vertices u, v E V(Gi) 
can leave G,. But since the distance between u and u is at 
most d, such a path can use only monographs Gi-fn],  ..., 
Gt+(d,~]. This implies that the distance matrices of the 
monographs G,, [d/2] < i 5 n - [d/2],  in the fasciagraph 
and all distance matrices of the monographs in the rotagraph 
are identical. Moreover, they can be computed efficiently 
by considering only a smal l  portion of the polygraph, namely, 
only at most d + 1 successive monographs. 

Following the above discussion, algorithm B remains 
unchanged except that in step 1 the matrix DO (= Dh) has to 
be computed as described above, Le.,   DO)^ must be the 
distance in w,(G,X) between the vertices i a n d j  from GO. 

When considering fasciagraphs with nonisometric mono- 
graphs, we have to perform some additional changes. Since 
fasciagraphs do not possess the circular symmetry of 
rotagraphs, the first and the last [W2] copies of monographs 
have to be considered separately. Because of these excep- 
tional monographs the generalization of algorithm A is more 
complicated and less practical. 

4. FURTHER IMPROVEMENTS 

Using more sophisticated mathematical reasoning it is 
possible to further improve the above procedures for 
determining the Wiener index of fasciagraphs and rotagraphs. 

Consider a fasciagraph Wn(G;X) and let @= (DO, ..., Dn-i} 
be the set of distance matrices determined by algorithm A. 
We would like to show that for large enough indices 1 
matrices DI have a special structure that enables us to 
compute the Wiener index efficiently. For this purpose, let 
us define a relation - on C3 by the requirement A - B if 
and only if A - B is a constant matrix, i.e., a matrix with all 
entries equal. It is easy to check that - is an equivalence 
relation on C3. Moreover, the chosen matrix product o is 
compatible with - in the following sense. 

Lemma 3. Let A, B, and C be matrices of size k x k 
with C being a constant matrix. Then 

(A  + C)  o B = A  o B + C 
Proof. Denote by c the entries of the constant matrix C. 

By the definition of 0 we have 

= min ((A), + c + (B)y) 

= min ((A)il + (B)o) + c = (A  o B)ii + c 
Islzk 

ldsk 

which proves the claim. 
The number of equivalence classes that @ is partitioned 

into by - is bounded by (2k - l)k*. This is easily proved 
by using the fact that the difference between any two 
elements of an arbitrary matrix DI cannot be greater than 2k 
- 2. The number of distinct equivalence classes is thus 
bounded by a (possibly large) constant that depends only 
on the size k of a single monograph and is independent of 
the number n of monographs. Therefore if n is large enough, 
there is the first index q such that the matrix D, is equivalent 
to some previous matrix, say Dp. Note that q 5 (2k - l)k’ 

Di+jp = Di + j C  

Proof. We will prove the claim by double induction on 
j and i .  If j = 0, there is nothing to prove. Consider now 
the case j = 1 .  If i = p ,  then the claim holds by the definition 
of P. Suppose now that Di-l+P = Dj-1 + C. Then 

Note that induction hypothesis was used at the second 
equality and that lemma 3 with A = Di-I and B = A(X) 0 DO 
was applied at the third one. Therefore the claim is true 
also for j = 1. 

Suppose that the assertion holds for j - 1, Di+(i-l)P = Di + (j - 1)C. Then again by induction hypothesis and by (2)  
where we use i + (j - l ) P  in the place of i we have 

Now we are ready to state our main result, an explicit 
formula for the Wiener index of fasciagraphs. 

Theorem 5. Let G be a connected graph with k vertices 
and suppose that each copy of G is an isometric subgraph 
of V,,(G;X). Define p ,  q,  P, and C as above and let all entries 
of C be equal to c.  Set m = [(n - p)/P]  and let r = n - 1 
- mP. Then 

r (m - l ) P  

2 

2 ( n - r -  3 2 

k2c(m - 1)mP 

Proof. Observe first that our definitions of m and r imply 
p - 1 5 r .c q - 1. Following algorithm A, the Wiener 
index W = W(Vn(G;X)) can be expressed as W = WI + W2, 
where 

r n- 1 

Wl  = z ( n  - i)si and W, = (n - i)si 
i=O i=r+l 

Using lemma 4 the term W2 can be further transformed into 

n-1 m-I P 

= - r - iP - j ) ( s ,  + ik2c) 
i=O j =  1 

Now a routine calculation shows that 
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P ( m  - l ) P  
w, = m e ( n  - r - 

j= 1 2 

2 Y ’  3 2 1  

which we have claimed. 
Theorem 5 implies that in order to obtain the Wiener index 

of a given fasciagraph it is enough to compute only the 
matrices DO, ..., D,.+p, where P and r are defined as 
previously. Let us recall that r and P cannot be too large, 
Le., there is an upper bound on r and P that is independent 
of the number of monographs n. For n large enough this 
considerably improves algorithm A, which requires all 
matrices DO, ..., D,-, to be computed. 

The results of theorem 5 can also be extended to the case 
when monographs are connected but not isometric subgraphs 
of the fasciagraph. As mentioned in section 3, in such a 
case the first and the last [M2] monographs have to be 
considered separately, and this additional requirement in- 
creases the complexity of the obtained formula. 

Let us illustrate the use of theorem 5 by an example. 
Example 2. Consider a fasciagraph H,, obtained by taking 

n monographs c6 connected as in Figure 1 for the case n = 
3.  From calculations in example 1 it follows that D2 = DI + C where C is a constant matrix with all entries equal to 3. 
Therefore we have k = 6 ,  p = 1, q = 2, P = 1, c = 3, m = 
n - 1 ,  and r = 0. Applying theorem 5 we get 

1 W(H,,) = ns0 + ~ ( n  - l)ns,  + 18(n - 2)(n - 1)n 

= n(27 + 63(n - 1 )  + 18(n - 2)(n - 1 ) )  

= 9n2(2n + 1 )  

As expected, for n = 3 this gives W (H3) = 567. 
The same ideas can also be applied in the case of 

rotagraphs. Let s; be defined by the formula in step 6 of 
algorithm B where D; is taken instead of DI. Following 
algorithm B and the discussion after it, the Wiener index W 
= W(w,,(G,X)) of a rotagraph wn(G;X) can be expressed as 
W = n(2W1 + W2)/2, where 

N n-N-I . .  

w, =cs;, w,= si 
i=O i=N+ 1 

and N = [n/2] - k 4- 1. Here we have used the fact that the 
sum of elements of D‘T is the same as in 0;. The first term 
can be handled similarly as the whole Wiener index in 
theorem 5.  If we take n’ = N + 1 and adopt the meaning of 
p’, q’, P, c’, m’ and J from theorem 5 with respect to the 
sequence of matrices D6, D;,  ..., Dk-I ,  we have 

r’ “-1 P 

r’ P (m’ - 1)” 
= + m’&;j+i + P’k2c’ 

i=O i= 1 L 

Note that parameters p’, q’, P‘, c‘, m’, and r’ are the same 
for both sequences of matrices D6, ..., D t - I  and 0: ..., 

The sum WZ contains at most 2k -2 texms. Since D;Y+l 
(and hence also SN+I) can be computed with a small number 
of arithmetic operations using the above techniques, W2 can 
also be computed efficiently. 

Let us illustrate the above discussion by an example. 
Example 3. Consider the rotagraph HA obtained from the 

fasciagraph H,, of example 2 by adding two edges between 
the last and the first copy of the monograph C6. Since both 
directions in HL are equivalent, we have Dl = D;? From the 
calculations in previous examples we already know that D; 

I - C is the constant matrix with all entries equal to 3. 
Hence for every 1 L 1 we have (D;+l)i, > (Day. Let us 
remark that this property is not true for arbitrary fasciagraphs 
or rotagraphs even if each monograph is an isometric 
subgraph. We leave it to the interested reader to construct 
such an example. On the other hand, it is always true that 
(D;+p)b > (Da,,. Now it follows that DI = D; for 1 I [n/2] 
and DI = D:-/ for 1 > [n/2].  This enables us to take n’ = 
[(n - 1)/2] + 1 and henceforth reduce the term W2 to 0 if n 
is odd, and to sn/2 if n is even. Since k = 6 ,  p’ = 1 ,  q’ = 2, 
P = 1, e’ = 3,  r’ = 0, and m’ = n’ - 1 ,  we have WI = 
9(6n’2 - 4n‘ + 1) and also sn/2 = 18 + 54n when n is even. 
Summing up these two expressions (when necessary) and 
multiplying the sum by n/2 we get 

D;T- 1. 

- D’ - 

As expected, for n = 3 this gives W(H;) = 459. 

5.  COMPUTING THE MATRICES D/ FASTER 

If only a particular distance matrix, say DI, is needed, it 
is possible to further optimize the complexity of computation. 
Recall that DI = DI-I o A(X) 0 DO, 1 I 1 ,  and hence 

It is well-known (ref 22, p 399) that for fast computation of 
the Zth power of a matrix at most 210g21 matrix products have 
to be computed. The complexity of computing a matrix 
product depends on the size of the matrices involved. In 
our case, the dimension of A(X) o DO is equal to the number 
of vertices of G .  We show in this section that it is possible 
to compute DI by computing the power of a smaller matrix 
of size which equals the number of vertices in L (or in R, if 
this set is smaller). If the number of vertices in L (or in R )  
is much smaller than the number of vertices of the mono- 
graph G, this gives a considerable saving in the computation 
time. 

In example 1 many elements of the matrix A(X) are equal 
to the special element 00, This causes a lot of redundant 
computation that can be avoided. The rows in A(X) 0 DO 
corresponding to the vertices not involved as endpoints of 
edges given by X are trivial, i.e., have all elements equal to 
00. Analyzing the computation which is really needed in 
example 1 we see that we need to compute only powers of 
a matrix of size 2 x 2 and not of size 6 x 6 .  

The general idea uses the above observation. Let us call 
a row (column) of A(X) with all elements equal to oQ trivial. 
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00 00 *** 00‘ 

00 0 00 ‘0. 00 

I =  00 00 0 *** 00 
i i f % . f  

00 00 00 *** 0 

Label the nontrivial rows and columns with il, i2, ..., if and 
jl, j2, ..., jf,, respectively. 

A(X)= 

rows with at 
+ .  least one 1 
c 

A ( X )  = 

~ T T T ~ T  
j z  . .. 

1 1 00’ 

0 0 1  w w w  

1 00 1 
w w 1  W O O  

w w w w w  

columns with at least one 1 

Let 

be the matrix obtained from A(X) by deleting all trivial rows 
and columns. Hence f is of size t x t’. Then 

D, = D~ D = D ~  M ~ A  o ~ t  D 

= D o ~ o A  (M’ D o A  o ~ ‘  D 
= D ~  M ~ A  o A  o ~ t  D 

D, = D, 0 A 0 D 

where D =!M’ o D o M. By induction we have 

D, = Dl-, o A o D 
= D M~ (A Df-, (A M‘ D M) o f  M‘ D 

= D M (A D f ,  o A  M‘ D (3) 

The size of the matrix b is t’ x t and hence the size of 
the matrix f 0 A is t x t .  Similarly, 

D, = D M ~ A  (D o&l-l  M‘ D 

Now the size of the matrix 
Therefore, to compute any DI, the (I - 1)th power of a 

“small” matrix of size t x t (or t’ x r‘) is needed in addition 
to a constant number (five) of “larger” matrix products. 

o f is f x t’. 

6.  CONCLUSIONS 

It is possible to extend the results of this paper also to the 
case when monographs are not isometric subgraphs of the 
polygraph (see section 3). But since such extended algo- 
rithms would be much more involved than the presented 
ones, it seems that such a generalization is short of practical 
value. 

Distances between a fixed vertex and all other vertices of 
a graph are usually computed using a breadth-first ~ e a r c h . ~ ~ , ~ ~  
Our algorithms A and B (with improvements presented in 
section 5 )  are roughly of the same time complexity with the 
difference that they are formulated in the language of 
matrices instead of in the language of graph theory. As an 
additional advantage, this matrix approach enables us to 
further improve the designed algorithms in a very simple 
way. 

The problem treated in this paper is a particular case of 
the so-called path pr0b1ems.I~ The path problems are 
frequently encountered in operations research and the 
examples are given by problems of the shortest path, the 
longest path, the path with the maximum capacity, the listing 
of all possible paths, etc. For each particular problem a 
suitable abstract algebraic structure is introduced. Here it 
has been shown that by using the binary operation defined 
by the equation (I), one can develop an algorithm that 
computes the Wiener index of rotagraphs and fasciagraphs 
efficiently. 

Before closing we would like to point out that it is possible 
to use this approach for computing the Wiener index of 
arbitrary polygraphs, too. In this case, each monograph G,, 
1 I i I n, of a polygraph Q, = Q,(GI, Gz, ..., G,,; X I ,  X2, 
..., X, )  has its own distance matrix DI(’ and each edge set X, 
is associated with its transition matrix A(’) = A(X,) = 
[a:;], where 

u E L,, u E R, and uv E X, d?‘ = { 2; 
The matrice! DI can thus be expressed in terms of D = DO, 
M ,  M’, and A as follows: 

Similarly as in algorithm B, denote by Dj” the matrix 
containing distances between vertices of the monographs Gi 
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and Gi+, in the first direction. Then D’!’ = Dp’ and 

As before, the distances in the second direction are easily 
obtained using the distance matrices D’y’. Finally, for 
every i ,  1 I i I n 

is the required matrix containing distances between vertices 
of the monographs G; and Gi+r in the polygraph 8,. 

This approach yields an algorithm of time complexity 
O(n2) which is no better than the well-known general 
methods for arbitrary graphs.’* However, if a polygraph does 
not have many nonisomorphic monographs, then it still may 
be possible to gain some savings in computation time from 
the approach applied in this paper. Moreover, this approach 
seems to be quite suitable for parallel computations. 
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