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Abstract

Fibonacenes (zig-zag unbranched catacondensed benzenoid hydrocarbons) are a class

of polycyclic conjugated systems whose molecular graphs possess remarkable proper-

ties, often related with the Fibonacci numbers. This article is a review of the chem-

ical graph theory of fibonacenes, with emphasis on their Kekulé–structure–related and

Clar–structure–related properties.
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0. FIBONACCI NUMBERS

The sequence of integers F0, F1, F2, F3, . . . , named after Leonardo Pisano aka Fibonacci

(1170–1250), is defined by means of the recurrence relation

Fn = Fn−1 + Fn−2

and by means of the initial conditions

F0 = 0 ; F1 = 1 .

Thus, F2 = 1 , F3 = 2 , F4 = 3 , F5 = 5 , F6 = 8 , F7 = 13 , F8 = 21 , F9 = 34 , F10 = 55 ,

etc.

The mathematical theory of Fibonacci numbers is very interesting and can be found

in pertinent books (for instance, in [1, 2]) or in the articles published in the journal

“Fibonacci Quarterly”.1

1. INTRODUCTION

Fibonacenes are unbranched catacondensed benzenoid hydrocarbons in which all non-

terminal hexagons are angularly annelated. Their structure should be evident already

from the examples depicted in Fig. 1.

The name fibonacene2 was proposed by Balaban in 1989 [3], although it seems to be

first mentioned somewhat earlier [4]. The name is due to the (long known [5, 6, 7]) fact

that the Kekulé structure count of fibonacenes coincides with the Fibonacci numbers; for

details see below.

In order to define fibonacenes (or more precisely: the molecular graphs of fibonacenes)

in a more precise manner, we need to recall some basic notions from the theory of ben-

zenoid systems [8]. In what follows we employ the terminology and definitions employed

in an earlier review [9].

1When reading a book or an article in which Fibonacci numbers are encountered, one should always
check the way in which these are defined. Some authors use the initial conditions F0 = F1 = 1 , and thus
their “Fibonacci numbers” are shifted by one relative to the present ones.

2In view of some recent disputes concerning the spelling of the name, it may be useful to repeat
Balaban’s original words from [3]: We are aware that fibonaccenes would be etymologically more suitable
but we suppressed one c for the simplicity and for similarity with the established name “acenes”.
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Figure 1: The fibonacenes with four, five, and six hexagons; cf. Fig. 3.

Definition 1. A hexagonal system is a connected plane graph without cut-vertices in

which all inner faces are hexagons (and all hexagons are faces), such that two hexagons are

either disjoint or have exactly one common edge, and no three hexagons share a common

edge.

Definition 2. A hexagonal system is said to be simple if it can be embedded into the

regular hexagonal lattice in the plane without overlapping of its vertices. Hexagonal

systems that are not simple are called jammed .

Hexagons sharing a common edge are said to be adjacent or neighboring . Two

hexagons of a hexagonal system may have either two common vertices (if they are adja-

cent) or none (if they are not adjacent). A vertex of a hexagonal system belongs to at

most three hexagons. A vertex shared by three hexagons is called an internal vertex of



the respective hexagonal system.

Definition 3. A hexagonal system is said to be catacondensed if it does not possess

internal vertices. A hexagonal system is said to be pericondensed if it possesses at least

one internal vertex.

A hexagon of a catacondensed hexagonal system has either one, two, or three neighbor-

ing hexagons. A hexagon having exactly one neighboring hexagon is said to be terminal .

A hexagon having three neighboring hexagons is said to be branched .

Definition 4. A catacondensed hexagonal system possessing at least one branched

hexagon is said to be a branched catacondensed hexagonal system. A catacondensed

hexagonal system without branched hexagons is called a hexagonal chain.

A hexagonal chain with h hexagons, h ≥ 2 , possesses two terminal hexagons and

h − 2 hexagons that have two neighbors. Hexagons being adjacent to exactly two other

hexagons are classified as angularly or linearly annelated. A hexagon adjacent to exactly

two other hexagons possesses two vertices of degree 2. If these two vertices are adjacent,

then the hexagon is angularly annelated , if these two vertices are not adjacent, then it is

linearly annelated .

Definition 5. A fibonacene is a hexagonal chain without linearly annelated hexagons.

One should note that fibonacenes may be either simple or jammed. Among the ex-

amples shown in Fig. 1 only the last one (with h = 6) is jammed; it corresponds to

the chemical compound called “hexahelicene”. In many graph–theory–based studies (in-

cluding those outlined in the present paper) it is convenient to consider the class of all

fibonacenes, including both simple and jammed. Sometimes, however, jammed systems

would be excluded, see e. g. [8]. Anyway, all properties of fibonacenes discussed in this

review are independent of whether these are or are not simple.

Throughout this article h always denotes the number of hexagons.

In what follows, for the sake of brevity, a hexagonal chain and a fibonacene with h

hexagons will be referred to as an h-hexagonal chain and an h-fibonacene, respectively.



2. SYMMETRY AND ENUMERATION OF FIBONACENES

According to symmetry, fibonacenes can be mirror–symmetric (S), centro–symmetric

(C) and asymmetric (A). Characteristic examples of these symmetry types are shown in

Fig. 2.

S C A

Figure 2: Examples (the smallest possible) of a mirror–symmetric (S), centro–symmetric

(C) and asymmetric (A) fibonacenes. The symmetry axis and the center of symmetry are

indicated in S and C , respectively.

If S(h) , C(h) , and A(h) are, respectively, the number of mirror–symmetric, centro–

symmetric, and asymmetric h-fibonacenes, then for h ≥ 3 [3],

S(h) =

{
2h/2−2 if h is even

2(h−1)/2−1 if h is odd

C(h) =

{
2h/2−2 if h is even

0 if h is odd

A(h) =

{
2h−4 − 2h/2−2 if h is even

2h−4 − 2(h−1)/2−2 if h is odd
.

The total number of h-fibonacenes is T (h) = S(h) + C(h) + A(h) , and thus

T (h) =

{
2h−4 + 2h/2−2 if h is even

2h−4 + 2(h−1)/2−2 if h is odd
. (1)

It is easy to see that

lim
h→∞

A(h)

T (h)
= 1



implying that almost all fibonacenes are asymmetric. (Analogous results are known also

for hexagonal systems in general, as well as for catacondensed and pericondensed hexag-

onal systems [10].)

Denote by J(h) the number of jammed h-fibonacenes. The J(h)-values were deter-

mined by Balaban for the first few values of h [3]:

h 3 4 5 6 7 8 9 10

J(h) 0 0 0 1 2 5 11 26

T (h) 1 2 3 6 10 20 36 72

Although at the first glance, the J(h)-values appear to be much smaller than T (h) ,

in the limit h →∞ , almost all h-fibonacenes happen to be jammed.

3. BASIC PROPERTIES OF FIBONACENES

A molecular graph representing any h-fibonacene has 4h + 2 vertices, of which 2h + 4

are of degree 2 and 2h−2 of degree 3. This graph has 5h+1 edges, of which h+4 connect

two vertices of degree 2, 2h connect two vertices of degree 3, and 2h− 3 connect vertices

of degree 2 and 3. For more detail on these “anatomic” properties see [8].

The Wiener index of hexagonal systems was much investigated [9], among which also of

fibonacenes. Among the fibonacenes with a fixed number of hexagons three are extremal

with regard to their Wiener indices: the helicene (Hh), the zig-zag fibonacene (Zh), and

the serpent (Sh), see Fig. 3. Their Wiener indices conform to the expressions:

W (Hh) = (8 h3 + 72 h2 − 26 h + 27)/3 (2)

W (Zh) = (16 h3 + 24 h2 + 62 h− 21)/3 (3)

W (Sh) =





(32 h3 + 168 h2 − 6 h + 81)/9 if h = 3k , k = 1, 2, 3, . . .

(32 h3 + 168 h2 − 6 h + 49)/9 if h = 3k + 1 , k = 0, 1, 2, . . .

(32 h3 + 168 h2 − 6 h + 16)/9 if h = 3k + 2 , k = 0, 1, 2, . . .

(4)

Formulas (2), (3), and (4) seem to have been first reported in [11], [11], and [12],

respectively. It has been shown [13] that Hh has the smallest Wiener index among all h-

hexagonal chains, whereas Sh has the smallest Wiener index among all simple h-hexagonal

chains [12]. The system Zh has the greatest Wiener index among all h-fibonacenes.
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Figure 3: Three extremal fibonacenes: helicene (Hh), zig-zag fibonacene (Zh), and serpent

(Sh); see also Fig. 1.

The same fibonacene Zh was shown to have maximal energy among all h-hexagonal

chains [14].

A peculiar result was obtained by considering the average Wiener index Wavr(h) in

the set F(h) of all fibonacenes with h hexagons. By definition,

Wavr(h) =
1

|F(h)|
∑

G∈F(h)

W (G) .

It was shown [15] that Wavr(h) is necessarily an integer, implying that the sum of the

Wiener indices of all h-fibonacenes is divisible by the number T (h) of h-fibonacenes.

(Recall that T (h) is given by Eq. (1).) Furthermore,

Wavr(h) = 4 h3 + 16 h2 + 6 h + 1 .

4. KEKULÉ STRUCTURES OF FIBONACENES

Denote by K{H} the number of Kekulé structures (or, in the language of graph theory,

the number of perfect matchings) of the hexagonal system H .

Before formulating the main result of this section, we state without proof a more

general regularity for the number of Kekulé structures.

Let R be a (molecular) graph and let u and v be its two adjacent vertices. Let S be

another (molecular) graph and x and y its adjacent vertices. Let the graphs H1, H2, H3, H4
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Figure 4: Four different ways in which angular annelation can be done.

be obtained by annelating (in an angular manner) the fragments R and S to a hexagon,

as shown in Fig. 4.

Theorem 1. (a) If the fragments R and S have both an even number of vertices, then

K{H1} = K{H2} = K{H3} = K{H4} .

(b) If the fragments R and S have both an odd number of vertices, then K{H1} = K{H4}
and K{H2} = K{H3} , but K{H1} and K{H2} may differ.

(c) If the fragment R has even and S odd number of vertices (or vice versa), then K{H1} =

K{H2} = K{H3} = K{H4} = 0 .

It is immediate to see that part (a) of Theorem 1 is directly applicable to fibonacenes,

implying:

Corollary 1.1. All h-fibonacenes have equal number of Kekulé structures.

A long–time known [5, 6], easy–to–prove, and frequently used [7, 8, 17, 18, 19, 20, 21,

22], result on Kekulé structures is the following:

Theorem 2. The number of Kekulé structures of the zig-zag fibonacene Zh is equal to

the (h + 2)-th Fibonacci number,

K{Zh} = Fh+2 , h ≥ 1 .

Corollary 2.1. The number of Kekulé structures of any h-fibonacene is equal to the



(h + 2)-th Fibonacci number.

5. CLAR STRUCTURES OF FIBONACENES

Denote the number of Clar structures [8, 16] of a hexagonal system H by C(H) , and

its Clar number, that is the number of aromatic sextets in any of the Clar structures, by

Cl(H) . Recall that the calculation of both C(H) and Cl(H) is not an easy task, and was

the subject of several earlier studies [23, 24, 25].

In connection with the Clar structures one can establish results similar to those for

Kekulé structures (but not involving Fibonacci numbers). First we have an analog of

Theorem 1:

Theorem 3. Using the notation employed in Theorem 1 (cf. Fig. 4), the following holds.

(a) If the fragments R and S have both an even number of vertices, then C{H1} =

C{H2} = C{H3} = C{H4} and Cl{H1} = Cl{H2} = Cl{H3} = Cl{H4} .

(b) If the fragments R and S have both an odd number of vertices, then C{H1} = C{H4} ,

C{H2} = C{H3} , and Cl{H1} = Cl{H4} , Cl{H2} = Cl{H3} , but C{H1} and C{H2}
as well as Cl{H1} and Cl{H2} may differ.

(c) If the fragment R has even and S odd number of vertices (or vice versa), then C{H1} =

C{H2} = C{H3} = C{H4} = 0 and Cl{H1} = Cl{H2} = Cl{H3} = Cl{H4} = 0 .

Corollary 3.1. All h-fibonacenes have equal number of Clar structures and equal Clar

numbers.

In Fig. 5 are shown the Clar structures of the zig-zag h-fibonacenes for h = 4 and

h = 5 . By inspection of this figure one easily reaches the following general conclusion:

Theorem 4. The zig-zag fibonacene Zh has dh/2e aromatic sextets. If h is odd, it has a

unique Clar structure. If h is even, it has h/2 + 1 distinct Clar structures.

Corollary 4.1. The number of Clar structures of any h-fibonacene is equal to 1 (if h is

odd) or to h/2 + 1 (if h is even). The Clar number of any h-fibonacene is dh/2e .

The fact that the modes of cyclic conjugation and the distribution of π-electrons, as

represented by the Clar structures, are significantly different in fibonacenes with odd and
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Figure 5: Clar structures of the zig-zag 4– and 5-fibonacenes. Here C(Z4) = 3 , Cl(Z4) = 2

and C(Z5) = 1 , Cl(Z5) = 3 .

even number of hexagons attracted some attention [26, 27, 28]. However, no significant

difference between the stability and “aromaticity” of odd and even fibonacenes could be

envisaged by any of the theoretical approaches, in harmony with the existing experimental

data [29, 30].

6. FIBONACENES AS MAXIMUM CYCLE RESONANT HEXAGONAL

CHAINS

In this section we show that fibonacenes can be characterized among hexagonal chains

using a concept from the resonance theory. To state and prove the result, some preparation

is needed.

Disjoint cycles of a graph G are called mutually resonant if there exists a Kekulé

structure M of G such that any of the given cycles in M -alternating. G is k-cycle resonant

if it contains at least k disjoint cycles and any r disjoint cycles, where 1 ≤ r ≤ k, are

mutually resonant.

Let H be a hexagonal system and let P be a path whose endvertices are of degree

three in H and all the other vertices are of degree two in H. Then we say that P is



a 3,3-boundary path of H . Then we have the following nice characterization of 2-cycle

resonant hexagonal systems proved by Gou and Zhang in [31].

Theorem 5. Let H be a hexagonal system with at least two disjoint hexagons. Then

H is 2-cycle resonant if and only if H is a catacondensed hexagonal system with no

3,3-boundary path of even length.

In fact, 2-cycle resonance is critical when considering higher cycle resonance, as the

next result from [31] asserts.

Theorem 6. Let H be a 2-cycle resonant hexagonal system and let k be the maximum

number of disjoint cycles in H. Then H is k-cycle resonant.

Combining Theorems 5 and 6 we obtain the following result that characterizes fi-

bonacenes among hexagonal chains. Call a hexagonal system H maximum cycle resonant

if H is k-cycle resonant, where k is the maximum number of disjoint cycles of H. Then:

Theorem 7. Let H be a hexagonal chain. Then H is a fibonacene if and only if H is

maximum cycle resonant.

Proof. If a hexagonal chain H consists of one or two hexagons, the theorem is clear.

Suppose H contains at least three hexagons. Then we easily see that H contains no 3,3-

boundary path of even length if and only if H is a fibonacene. Then Theorem 5 implies

that H is 2-cycle resonant if and only if H is a fibonacene and Theorem 6 completes the

argument. ¤

Theorem 7 has been first stated explicitly by Shiu, Lam, and Zhang in [32]. Their

somewhat more complicated proof also uses results of [31]. In [32] two extremal properties

concerning the number of matchings and the number of independent sets are also proved

for fibonacenes. We also add that in [33] the theory of cycle resonance is further developed.

In particular, an algorithm is proposed that determines whether a planar 2-connected

bipartite graph is 1-cycle resonant.

7. FIBONACENES AS FIBONACCI CUBES



We continue with the role of fibonacenes in the resonance theory. In this section we

demonstrate a surprising connection between fibonacenes and graphs that were introduced

in theoretical computer science as a model for interconnection networks.

Let H be a hexagonal system. Then the vertex set of the resonance graph R(H) of H

consists of all Kekulé structures of H, where two Kekulé structures are adjacent whenever

their symmetric difference is the edge set of a hexagon of H ; an example of a fibonacene

and its resonance graph is shown on Fig. 6.
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Figure 6: The Kekulé structures of Z4 and the resonance graph R(Z4) .

Resonance graphs have been independently introduced in the chemical literature [34,

35, 36] as well as in the mathematical literature [37]. For more result on the resonance

graphs see [38, 39, 40, 41, 42].

Consider now the following seemingly unrelated concept that has been introduced

in [43, 44] as a model for interconnection networks, see also [45, 46, 47, 48].

The vertex set of the Fibonacci cube Γn, n ≥ 1 , is the set of all binary strings b1b2 . . . bn

containing no two consecutive ones. Two vertices are adjacent in Γn if they differ in

precisely one bit, cf. Fig. 7 where the first four Fibonacci cubes are shown.
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0100100 1000 0000000000
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Figure 7: The Fibonacci cubes Γ1, Γ2, Γ3, and Γ4 .

Compare Figures 6 and 7 to note that Γ4 is just the resonance graph of Z4, that is,

Γ4 = R(Z4). This is not a coincidence, as our final theorem from [49] asserts.

Theorem 8. Let H be an arbitrary fibonacene with n hexagons. Then R(H) = Γn .
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[17] S. J. Cyvin, Kekulé structures of polyphenes, Monatsh. Chem. 113 (1982) 1127–1131.
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