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Abstract 

In this note we present some new results on distances in benzenoids. An algorithm is presented 
which, for a given benzenoid system G bounded by a simple circuit 2 with n vertices, computes 
the Wiener index of G in O(n) time. Also we show that benzenoid systems have a convenient 
dismantling scheme, which can be derived by applying breadth-first search to their dual graphs. 
Our last result deals with the clustering problem of sets of atoms of benzenoids systems. We 
show how the k-means clustering algorithm (for points in Euclidean space) can be efficiently 
implemented in the case of benzenoids. @ 1998 Elsevier Science B.V. All rights reserved 

1. Introduction 

Distance properties of molecular graphs form an important topic in chemical graph 
theory [27]. To justify this statement just recall the famous Wiener index which is also 
known as the Wiener number. This index is the first [28] but also one of the most 
important topological indices of chemical graphs. Its research is still very active, see 
recent reviews [16,23] and several new results in a volume [15] dedicated to the 50th 
anniversary of Wiener’s paper [28]. 

Benzenoid systems form one of the most important class of chemical graphs [ 121. 
Recently, Klaviar et al. [21] have shown that benzenoid systems provide so-called 
isometric embeddings into hypercubes and based on this fact a simple formula for 
the Wiener index of these graphs has been obtained. The approach was further de- 
veloped in the subsequent papers [ 13,141. Along these lines it was recently [5] ob- 
served that benzenoid systems can also be isometrically embedded into the Cartesian 
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product of three trees. As an application it was demonstrated how to compute the 
diameter of a benzenoid system in optimal time. Using the results from [5,21] in 
[7] a simple and practical algorithm for computing the Wiener index of a benzenoid 
systems has been proposed (its complexity is linear in the number of vertices of a 
benzenoid). 

Here we present some new results on distances in benzenoids. It is the main purpose 
of this note to give an optimal time algorithm for computing the Wiener index of 
a benzenoid. Also we show that benzenoid systems have a convenient dismantling 
scheme, which can be derived by applying breadth-first search to their dual graphs. Our 
third result deals with the clustering problem of sets of atoms of benzenoids systems. 
We show how the k-means clustering algorithm (for points in Euclidean space) can 
be efficiently implemented in the case of benzenoids. 

2. Isometric embeddings of benzenoid systems 

In this section we recall the results from [5,21] on embedding of benzenoid systems 
in hypercubes and products of trees. 

Benzenoid systems (alias benzenoid graphs or hexagonal systems) are graphs con- 
structed in the following manner [ 121. Let H be the infinite hexagonal lattice and let Z 
be a circuit on it. Then a benzenoid system G is formed by the vertices and edges of 
H, lying on Z and in the interior of the region bounded by Z. Throughout in this note 
we assume that N denote the number of vertices of G and n the number of vertices 
on the circuit Z. The vertex set of G is denoted by V(G). In a graph G the length of 
a path from a vertex v to a vertex u is the number of edges in the path. The distance 
dc(u,v) from u to u is the length of a shortest path connecting u and v. 

Given two connected graphs G and H, we say that G admits an isometric embedding 
(alias distance-preserving embedding) into H if there exists a mapping 

p: V(G) + V(H) 

such that 

ddB(u), B(v)> = dc(4 v), 

for all vertices u, u E V(G). 
The Cartesian product H = HI x . . . x H,,, of connected graphs HI,. . . , H, is the 

graph on the vertex set 

V(H) = {u = (u~,u~,...,u,): ui E V(Hi), i= l,...,m}. 

Two vertices u = (ui,uz,. . . ,um) and o = (ui,vz.. . ,v,) of H are adjacent if and only 
if the vectors u and v coincide in all but one position i, where u, and vi are adjacent 
in Hi. The distance between two vertices x = (xi,. . . ,x,) and y = (yi,. . . , ym) of H 
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is given by 

For example, if each factor H; is a Kz (the connected two-vertex graph with V(K?) = 
(0, l}), then H is just the m-cube (binary Hamming graph according to [21, IS]) which 
is equipped with the Hamming distance for which the distance between two binary 
m-tuples is equal to the number of coordinate positions in which they differ. 

Proposition 1 (Klaviar, Gutman and Mohar [21]). Every benzenoid system G has an 
isometric embedding into a hypercube. 

The dimension of the cube in which G embeds can be arbitrarily large (actually, it 
is equal to half the length of the bounding circuit Z). Instead of isometric embeddings 
of benzenoids into binary Hamming graphs [5] proposes such embeddings into the 
Cartesian product of trees (note that the graphs isometrically embeddable into products 
of two trees have been characterized in [3]). The main advantage is that independently 
of the size or of the form of the benzenoid G, there exists an isometric embedding of 
G into the Cartesian product of only three trees T,, i”~. and Tj. Each of these factors is 
uniquely determined by parallel cuts of a given direction of G. Since we will use this 
embedding in the next section, we present it in more details. 

Let G be a benzenoid system and let El, E2, and Ej denote the edges of G of a given 
direction. A basic direction is a direction orthogonal to one of the three edge directions 
of the haxagonal grid. Denote the basic directions by f,, A, A. For i = 1,2,3, let G, 
be the graph which is obtained from G be deleting all the edges of E;. Note that the 
connected components of the graph Gj are paths. One can easily show that every such 
path is the unique shortest path in G between its end-vertices. Define a graph T, whose 
vertices are the connected components of G; and where two such components P’ and 
P” are adjacent in z if and only if there are vertices u E P’ and v E P” which are end- 
vertices of an edge from E, (see Figs. 1 and 2 for an illustration). Since G is bounded 
by a Jordan curve Z, every T, is a tree (the existence of a cycle in z would imply 
that G contains a non-hexagonal interior face). This yields to the following canonical 
emdedding CY of G into the Cartesian product H = T, x T, x TJ. For any vertex r of 
G put 

a(v) = (P, QJ), 

where P, Q, and R are the connected components of the graphs Gr, G2, and G3, re- 
spectively, sharing the vertex v. Moreover, as is shown in [5], a provides an isometric 
embedding of G into H. 

To label the vertices of G one can proceed as follows. First we find the edges from 
each E,, i = 1,2,3 (this can be done while a usual representation of G as a doubly 
linked list is given) and the connected components of the graph Gi. After their labeling 
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Fig. 1. A benzenoid system G. 

Fig. 2. Gi and Z. 
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we can find the required incidence relation between them (i.e., to define the tree Z). The 
ith coordinate (i = 1,2,3) of a vertex v of G is the label of the connected component 
of G, from which u is taken. If G contains N vertices, then all these computations can 
be done in total O(N) time. The output of this algorithm consists of the trees T, Tz, T, 
and the labels of length three of the vertices of G. With this compact labeling of G 
one can work much as with points in three-dimensional space (see Section 5 for an 
illustration). Concluding, we obtain the following result (since trees are isometrically 
embeddable into hypercubes this also proves Proposition 1). 

Proposition 2 (Chepoi [5]). The cannonical embedding LX provides an isometric em- 
bedding of a benzenoid system G with N vertices into the graph H = T x TZ x fi. 
The trees z, T2, TX and the corresponding labels of the vertices of G can be computed 
in total O(N) time. 

One can easily notice that during the whole construction of the tree-factors G, T2, 
and T3 or of labels of the vertices of G we never used any distance information. 
However, using this structure, after an O(N) time precomputing, one can answers in 
0( 1) time per query questions of the form, ‘What is the distance between the vertices 
u and v of G ?’ Indeed, Proposition 2 reduces the problem of finding dc(u, v) to three 
similar problems on tree-factors, where we can use the algorithm of [17] for computing 
nearest common ancestors. Recall, that given a tree T rooted at r, the nearest common 
ancestor nca(x, y) of two vertices of x and y of T is the root of the smallest subtree 
of T that contains both vertices x and y. Hare1 and Tarjan [ 171 presented an algorithm 
for computing nca(x, y) of two given vertices in 0( 1) time. Since 

d+, y) = d&,r) f dr(y,r) - 2d&-,nca(x,~‘)), 

we can find the distance between x and y in constant time. This has been used in [5] 
to compute the diameter of a benzenoid system in linear time. 

3. Wiener index of benzenoid systems 

The Wiener index or Wiener number of a (molecular) graph G = (V, E) is defined 
as follows: 

W(G) = ; c c dc(u,v). 
UEY UEV 

First we recall the formula from [21] for computing the Wiener index of a benzenoid 
G with N vertices, if an isometric embedding of G into a cube of dimension q is 
given. Let Ni be the number of vertices v of G such that the ith coordinate of the label 
of u is equal to 1. 
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Proposition 3 (Klaviar et al. [21]). The Wiener index of G is equal to 

W(G) 
4 

= c Ni(N - 
i=l 

NJ 

Since q is usually much smaller than the number of pairs {u, a}, this formula signifi- 
cantly simplifies finding the Wiener index of a benzenoid. In many cases it immediately 
produces the formula for computing W(G). Using this formula combinatorial expres- 
sions for the Wiener index of compact pericondensed benzenoid hydrocarbons were 
given in [14]. However, to obtain a linear algorithm for computing the Wiener index 
we still need a similar formula for W(G) in the case when the canonical embedding a 
is given. For this we next recall a concept of the Wiener index on weighted trees [20]. 
A (vertex)-weighted tree (T, 7~) is a tree T together with a function n : V(T) + N+. 
The Wiener number W( T, 7t) of (T, 7~) is defined as 

W(G,w) = ; c 7c(u)n(v)dr(u,v). 
UJE I’(G) 

Let G be a benzenoid system and let T,, T2, T3 be the trees from the canonical 
embedding. For i = 1,2,3 we introduce weighted trees (8, q) as follows: for u E T 
let q(u) be the number of vertices x of G such that the ith component of a(x) is u. 
In other words, q(u) is just the number of vertices in the connected component of Gi 
which corresponds to the vertex u. 

Proposition 4 (Chepoi and Klaviar [7]). Let G be a benzenoid system and let CI be 
the canonical embedding of G into T x TI x TJ. Then 

W(G)= W(C,w)+ W(fi,712)+ W(Fi,7~3). 

By Proposition 4, an algorithm with complexity O(N) for computing W(G) will be 
provided by a linear algorithm for computing the Wiener index of a weighted tree. 
It is mainly the same as the linear algorithm for computing the Wiener index of an 
unweighted tree obtained by Mohar and Pisanski [22]. Its implementation is based on 
the following straightforward property (for a generalization see [20]). 

Lemma 5. Let (T,rc) be a weighted tree. For an edge e of T, let i’l and T2 be the 
connected components of T \ e and for i = 1,2 set 

ni(e) = C X(u). 
UE7; 

Then we have 

W(T,w) = C nl(e)nz(e). 
&T 
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Let (T, n) be a weighted tree. To find W( Z’, rr) we order the vertices of T so that the 
next vertex u is a leaf in the subtree induced by the vertices with a larger index. Let u 
be the neighbour of o in this subtree. Then add the factor $v)(M - n(o)) to the current 
sum and update rc(u) by letting rc(~) := rc(u)+ X(U). Note finally that using Proposition 
2 it is easy to obtain the weighted trees T in linear time O(N). Therefore, W(G) can 
be computed in O(N) time [7]. The algorithm is very simple and efficient for a manual 
calculation, but it is not optimal, because the lower bound for this problem is n(n), 
where n is the number of vertices on the bounding circuit Z of G. 

Now, we are going to present an optimal O(n) time algorithm for computing W(G). 
The main idea is that we can construct the weighted trees (Z’t , T-CI ), (T2, ~2) and (Tj, 7~) 
without an explicit definiton of the facial structure of G. Namely, we need as an input 
the bounding circuit Z of G given in the form of a circular list (so, we can consider Z as 
a simple polygon). Let $3 denote the region of the plane bounded by Z. The algorithm 
is based on the Chazelle algorithm [4] for computing all vertex-edge visible pairs of 
edges of a simple polygon with n vertices. Recall, that by this algorithm in optimal 
O(n) time one can obtain a decomposition of the 9 into strips (alias trapezoids), using 
parallel cuts of a given direction which pass through the vertices of Z. A straight line 
segment [p,q] of one of the basic directions J; is called a cut segment if p,q E Z and 
[p, q] belongs to the region $3 bounded by Z. 

Applying the algorithm of Chazelle separately for each of the basic directions .fi,A, 
f3, we find the subdivisions 9,, 9z and 533 of the region 9 into strips; see Fig. 2 for 
an illustration (some of strips can represent triangles). Namely, every 9; is returned 
in the usual representation as a doubly linked list. (We can consider Qi as a planar 
graph with strips as interior faces and the vertices of Z as the vertex-set.) Let $5’; the 
cuts of the ith direction participating in the subdivision 9i. In Vi we also include the 
vertices of Z where both incident edges do not belong to Ei (they can be viewed as 
degenerated cuts). Define a new graph 6 whose vertices are the cuts of %?; and two 
vertices of c are adjacent if and only if they belong to a common strip of gi. One 
can easily show that each I; is a tree, which can be derived from 9; in O(n) time. 

The width of strips of 9, takes only two values 1 and $. With some abuse of 
language, we will call an edge of I; thick if it is defined by a strip of width 1 and 
thin if the corresponding strip has width 4. Every cut of %i is incident in I; to exactly 
one thick edge, all remaining vertices of gi being incident only to thin edges. If we 
remove the thick edges of &, we will get the connected subgraphs of I; spanned by 
thin edges (we will call them thin components). Every thin component of fi has the 
same vertices of G as some connected component of the graph Gi. In other words, if 
we contract all thin edges of %$ we will obtain the tree z. 

Therefore, to compute the Wiener index of the weighted tree (7;, n) one can proceed 
as follows. For each c E %Yj we compute its length I,. Every cut c of %‘i (degenerated 
or not) has exactly (l=/&) + 1 vertices of the benzenoid system G. Define n’(c) = 

(IJfi) + 1. Then J&, r?(c) = N. To find W(7;, rc) we order the vertices of I; so 
that the next vertex c is a leaf in the subtree induced by the vertices with a larger 
index. Let c+ be the neighbour of c in this subtree. If the edge (c,c+) is thin, then 
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Fig. 3. 9i and z. 

put rc’(c+) := rr’(c+)+rr’(c). Otherwise, if the edge (c,c+) is thick, then add the factor 
rt’(c)(N - rc’(c)) to the current sum and update rr’(c+) by letting rc’(c+) := rc’(c+) + 
n’(c). The resulting sum will be W(z, xi). By Lemma 4 W(G) = Ci=, W(z, xi). The 
trees & and the weight functions rcni can be derived in total O(n) time. Therefore, W(G) 
can be computed within the same time bounds. Summarizing, we obtain the following 
result. 

Proposition 6. The Wiener index W(G) of a benzenoid system G bounded by a circuit 
Z with n vertices can be computed in optimal time O(n). 

4. Dismantling benzenoid systems 

We say that a face F of a benzenoid system G is pendant in G if it includes an 
edge, both endvertices of which have degree 2 in G (this is a particular instance of a 
more general definition of a pendant cycle given in [2]). Removing this pendant edge 
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Fig. 4. G, G* and a dismantling scheme of G*. 

from G then results in an isometric subgraph G’ of G. However, G’ is not necessarily 
a benzenoid system again. Next we will show that every benzenoid system with at 
least two faces has a pendant face, such that the subgraph induced by all other faces 
is again a benzenoid system. 

A dismantling scheme of a benzenoid G is a linear order FI, . . . , F,,, of its faces 
such that any Fi is a pendant face in the subgraph Gi induced by the union of faces 

Ft,Fz,,.,, Fi and all G = G,,,,G,,_t, . . . , GI are benzenoid systems. 
Let G* denote the (inner) dual graph of a benzenoid system G. The hexagonal faces 

of G correspond to the vertices of G* and two vertices of G* are adjacent if and 
only if the corresponding faces share an edge of G. The graph G* can be viewed as 
a subgraph of the triangular grid T (a regular tiling of the plane into triangles); see 
Fig. 4 for an illustration. Every vertex of T has three pairs of opposite neighbours, 
each of them defining a basic line, i.e., a line of one of three basic directions of the 
initial hexagonal grid H. 

Lemma 7. Let G be a benzenoid system. Then its inner dual graph G* does not 
contain isometric cycles of length larger than 3. 

Proof. Assume that G* has an isometric cycle C of length larger than 3. Let R be the 
region of the plane bounded by the circuit C. Pick a vertex x of C, and let y and z be 
the neighbours of x in C. Since y and z are not adjacent, there exists a basic line L, 
which passess through x and separates the vertices y and z (namely, y and z belong 
to different open halfplanes defined by L). This line intersects T along a convex set, 
i.e., for any vertices U, u E L n T and w E T, the equality dr(~, u) = dr(u, W) + &(w, u) 
implies that w belongs to the segment [uu]. The line L intersects the cycle C and all 
intersection points are vertices of G*. Let t # x be the vertex of C n L such that [xt] c 
9. Such a vertex necessarily exists: moving along L we enter W in x and then we 
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must exits 58 somewhere. Since C is a cycle of G*, all vertices of T n L belong to 
G*. Moreover, they induce the unique shortest path of T (and G*) between x, t E C. 
Since the vertices y,z E C do not belong to this path, we obtain a contradiction with 
the assumption that C is an isometric cycle of G”. 0 

The graphs which do not contain isometric cycles of length greater than 3 are called 
bridged [9,25]. Anstee and Farber [l] established that any bridged graph r has a 
following cop-win ordering: the vertices of r can be linearly ordered, 01, ~2,. . . , v,, so 
that, for each vi, i > 1, there is a neighbour vj, j < i, of vi, such that every vertex 
vk, k < i, adjacent to Vi is also adjacent to Vj. In [6] it is shown that any ordering 
of the vertices of a bridged graph r produced by breadth-$rst search is a cop-win 
ordering. This implies the following result. 

Proposition 8. Let G be a benzenoid system. Any ordering of the vertices of G* 
produced by the breadth-first search is a dismantling scheme of G. 

Proof. Let F = (u, v, w,x, y,z) be the last face of G in the breadth-first search ordering 
of G*. It is sufficient to establish that F is a pendant face of G and that the subgraph 
G’ of G induced by all other faces is again a benzenoid. By the result of [6] there 
is face F’ incident with F and all other faces incident to F. This implies that F is 
incident with at most two other faces FI and F2. If F and F’ intersect along the edge 
(x, y), then the edge (u, v) opposite to (x, y) is pendant. Thus F is a pendant face. 
If F is incident only with F’, then F has three pendant edges (z, u), (u, v) and (v,w). 
Removing them we obtain again a benzenoid. If F is incident with F’ and F’, then F 
has two pendant edges (u, v) and (v, w). Then (z, U, v, W,X) is a subpath of the boundary 
circuit Z. Replacing in Z this subpath by (z, y,x) we obtain a new circuit Z’. Since 
Z’ is the boundary of G’, we deduce that G’ is a benzenoid. Finally, if F has three 
neighbour faces, then Z enters F through z and exits this face through the vertex w. 
Replacing in Z the subpath (z, U, v, w) by (z, y,x, w) we will get a new circuit Z’. Again 
Z’ bounds the subgraph G’, i.e. G’ is a benzenoid. 0 

5. Clustering in benzenoid systems 

In this section we will adjust the well-known k-means algorithm for clustering points 
in Euclidean space to produce a clustering of a set of atoms (vertices) of a benzenoid 
system G. 

The main problem in clustering consists in sorting a set X = {xi,. . . ,xr} of objects 
into a number k of homogeneous clusters. The points in the same cluster should be 
as close (similar) as possible. The objects in different clusters should be as distant 
(dissimilar) as possible. Any method of clustering needs the formalization of such 
notions as a quality of the partition and the prototype of a class of the partition. Let 
P = {P, , . . . ,Pk} be a partition of X into k classes. In case when the objects of X are 
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points in Euclidean space [w”’ the majority of the clustering methods use the dispersion 
function as a quality of a partition P: 

D(P) = 2 1 d2(+,). 
i=l .x, EP, 

(1) 

In this formula Li = (L,!, . . ,Ly ) is the gravity center of the class P;, and cl(x, y) = 

(C:‘_,(X’ - y”)?)‘:* IS the Euclidean distance between the points x = (x’ , . . . ,x”‘) and 
y = (y’,...,y”‘). 

The problem of finding a partition of X minimizing the dispersion function D is 
known to be NP-complete. Instead, some simple procedures produce partitions of X 
which are local minima of the function D. One of the best known of them is the 
k-means algorithm (see the books of Duda and Hart [8] and Jain and Dubes [ 191). 
This algorithm starts with an arbitrary partition P’ of X into k classes. Then find 
the gravity centers of the classes of this partition. In the next iteration each object xi 
is moved to the class with gravity center closest to x,. Denote the obtained partition 
by P”. If P’ = P”, then stop, otherwise let P’ := P” and repeat the same procedure. 
The formal description of this algorithm is given below. 

k-means algorithm 
1. Choose any initial partition P’ = {Pi,. . , Pi} of X into k classes. 
2. Compute the prototypes Li, . . . , Lk of this partition. 
3. Construct the metric partition P” = {Py,. . ,Pi’}, where 

PI’ = {Xi EX:d(Xi,Li)=minl~,~/,d(x,,L,)}, 

Pi = {Xi E X:d(Xi,Lk) = millI<j~pd(x;,L;)}. 

4. If P” # P’, then set P’ := P” and go to step 2. Else stop, 

Returning to benzenoid systems, the following clustering problem can be formulated. 
Let G = ( V,E) be a benzenoid system with N vertices endowed with the standard 
distance do and let X = {xi,. . , , x,} be a set of atoms (vertices) of G. We wish to sort 
the atoms of X into k ‘homogeneous’ clusters according to the dispersion function D 
defined above. For this we can use the canonical embedding of G into the Cartesian 
product of three trees Ti, T2 and Tj. Using this, the distance do(x, y) between two 
given vertices X, y E I/ can be calculated in 0( 1) time. This immediately leads to 
efficient implementations of steps 2 and 3 of the k-means algorithm, provided the 
prototypes of classes are selected among vertices of G. For this we simply compute 

Q(r)) = &P, dE(U,Xj) for each vertex u of G and each class Pi of the partition P 
of X. A prototype of a class Pi is a vertex v of G which minimizes Di(u). 

However, the fact that G is an isometric subgraph of 5 x T2 x T3 allows to define the 
prototypes of classes not in G but in a larger geometric space, in analogy to clustering 
procedures in UP. Namely, let Z be a tree-network obtained by replacing each edge 
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of T, by a (solid) segment of unit length. Since any two points of Zare connected in 
Z by a unique path, its length can be regarded as the distance between selected points. 
The resulting metric dug on z extends the metric dz. Define II = 4 x Yz x 9& Then 
II is a cell complex whose cells are 3-dimensional cubes. II can be endowed with a 
distance d of Euclidean type. Namely, if x, y E II and x = (x*,x2,x3), y = (y’, y2, y3) 
with xs, ys E Z, then define 

d*(x> Y) 

Now, we are 
minimizes (at 

D(P) = 

searching for a partition P of X = {xi,. . . ,x,.} into k classes which 
least locally) the dispersion function 

5X d2(xj,Li). 
i=l x,EPi 

The prototypes L, , . . . , Lk of classes are selected among the points of the polyhedron II. 
To implement the k-means algorithm, for a given partition P = {PI,. . . ,Pk} of X we 
have to compute the prototypes LI , . . . , Lk Of all classes. Suppose that Pi = {Xi,, . . . ,Xipz }, 

and it is necessary to compute Li = (L!, Lf, L?), i = 1,. . . k. As in the case of points 
in Euclidean space, Lf will be the gravity center in z of the vertices x$ , . . . ,$pi of T,. 
It is known [ 10,24,26] that each collection of vertices in a tree-network has a unique 
gravity center, which can be computed in time linear in the number of vertices of the 
generating tree [ 10,261. 

Below we outline the algorithm communicated to us by A. Tamir [26]. Let F be a 
tree-network generated by a tree T with N vertices and let ol,. . . up be some vertices 
of T. We wish to find a point x of Y minimizing the (convex) function F(x) = 
CL, d&(X, ni). F or each vertex v it takes O(N) time to find the directional derivatives 
of F with respect to all edges incident to v (see [24] for definition and properties of 
directional derivatives). It is known that the gravity center lies on an edge incident 
to a vertex v such that F(v) <F(u) for all vertices u of T. It is now stdficient to 
show how to Ilnd such a vertex v in linear time. The algorithm is recursive. Find a 
centroid (simple median) of the tree T, say vertex m; this can be done in linear time 
by the algorithm of Goldman [lo]. By computing the directional derivatives of F at 
edges incident to m we will find the connected component of T (obtained by removing 
m), which contains the optimum. Let T’ denote the subtree induced by m and the 
vertices in the above component. By definition of the centroid, T’ as well as every 
other component contains at most N/2 vertices. We continue the same procedure with 
the tree T’. It is clear that the entire process takes O(N) time, since at each iteration 
we spend O(n) time and reduce the number of vertices by a factor of 2. 

To compute Lf , Lf, L; it is necessary to apply to each factor the algorithm described 
above. Note that in general the gravity center of some vertices is not located in a 
vertex of a tree-network. As a consequence, the prototype of a class can be an interior 
point of the polyhedron II. Concluding, we obtain that for a benzenoid system G with 
N vertices an iteration of the k-means algorithm can be performed in O(kN) time. 
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