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Slovenia
{sandi.klavzar, uros.milutinovic}@uni-mb.si

Received February 15, 2002

AMS Subject Classification: 05A10, 11B83

Abstract. Several different approaches to the multi-peg Tower of Hanoi problem are equivalent.
One of them is Stewart’s recursive formula

S(n, p) = min{2S(n1, p)+S(n−n1 , p−1) | n1, n−n1 ∈ Z
+}.

In the present paper we significantly simplify the explicit calculation of the Frame-Stewart’s
numbers S(n, p) and give a short proof of the domain theorem that describes the set of all pairs
(n, n1), such that the above minima are achieved at n1.
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1. Introduction

The problem of finding the smallest number of moves in the Multi-peg Tower of Hanoi
problem, that is, in the Tower of Hanoi problem with more than three pegs, has been
posed by Dudeney [5] in 1908. (The classical Tower of Hanoi problem with three pegs
goes back to Lucas [2].) In 1941 two solutions for the multi-peg version appeared, one
due to Frame [7] and the other to Stewart [15]. However, already in the editorial note [6]
following [15] it was pointed out that the solutions miss an argument that the proposed
algorithms are indeed optimal. Proving that these “presumed optimal solutions” are
optimal became a notorious open problem.

Bode and Hinz [1] verified that for four pegs and up to 17 disks the Frame-Stewart’s
approach agrees with the optimal solution. Recently Szegedy [16] proved that for p

pegs at least 2Cpn1/(p−2)
moves are needed. This bound is optimal up to a constant

factor in the exponent for fixed p. For the definition of the problem as well as for
more information on the history of it we refer to [8, 9]. The Tower of Hanoi has many
connections to different areas of mathematics. For instance, a closer look to the Tower
∗ Supported by the Ministry of Education, Science and Sport of Slovenia under the grant 0101-504.
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of Hanoi problem enabled Hinz and Schief [10] to compute the average distance of the
Sierpiński gasket, while in [4] it is shown that the graphs of the classical Tower of Hanoi
problem contain (in a sense) unique 1-perfect codes.

Stewart’s presumed optimal solution for n ≥ p≥ 4 is given by the recursive scheme:

S(n, p) = min
{

2S(n1, p)+S(n−n1, p−1) |n1 ∈ {1, . . . ,n−1}
}

(n ≥ 2, p ≥ 4),
(1.1)

S(1, p) = 1 (p ≥ 3), (1.2)

S(n, 3) = 2n −1 (n ≥ 1). (1.3)

In [11] it is proved that seven different approaches to the multi-peg Tower of Hanoi
problem are equivalent, including Stewart’s and Frame’s approaches. We thus call the
numbers defined by the recursion scheme (1.1)–(1.3) Frame-Stewart numbers. Our
main result, stated and proved in Section 3, gives a simple explicit expression for these
numbers. More precisely, let p ≥ 3 and let 0 ≤ m ≤

(p−3+k
p−3

)

. Then

S

((

p−3+ k
p−2

)

+m, p

)

= (Pp(k)+m)2k +(−1)p,

where Pp(k) is the following polynomial of degree p−3:

Pp(k) = (−1)p−1
p−3

∑
i=0

(−1)i
(

i−1+ k
i

)

.

We believe that this could be a step towards the solution of the Multi-peg Tower of
Hanoi problem because the simpler representation of S(n, p) can make the study more
accessible. Another result which may lead to the solution of the problem is a short
direct proof of the domain theorem of the recursion scheme (1.1)–(1.3), which explicitly
describes the set of values n1 for which the minimum in (1.1) is attained (see Theorem
2.7). In particular, understanding the fact that n1 is uniquely determined for certain
values of n, may give a necessary insight into the problem. The problem of when n1 is
uniquely determined has been treated by Cull and Ecklund in [3].

In the next section we give basic definitions and recall results needed for the proof
of the above identity given in Section 3. The paper is concluded with the proof of the
domain theorem.

2. Basic Definitions and Results

Definition 2.1. For p ≥ 3, let

hp(x) =

(

p−3+ x
p−2

)

, x ∈ R, x ≥ 0.

On nonnegative reals these functions are strictly increasing and therefore they have
inverses, which are strictly increasing on nonnegative reals as well.
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Definition 2.2. For p ≥ 3, let gp = h−1
p , and let

fp(x) = dgp(x)e.

Remark 2.3. We shall use h2(x) = 1 — this definition coincides with
(2−3+x

2−2

)

. There
are no g2 or f2.

Proposition 2.4. For any p ≥ 3, k ≥ 1,

hp(k)−hp(k−1) = hp−1(k).

Proof. This property is just the basic property of binomial coefficients.

The next theorem will be crucial for our present work, see [11] for the proof. In
fact, the formula appeared already in [7], but has been treated rather heuristically, and
has been presented as a statement about the smallest number of moves in the Multi-peg
Tower of Hanoi problem.

Theorem 2.5. Let n ≥ 1 and p ≥ 3. Then

S(n, p) =
n

∑
k=1

2 fp(k)−1.

From Theorem 2.5 it follows that for n ≥ 2 and p ≥ 3

S(n, p) = S(n−1, p)+2 fp(n)−1. (2.1)

This formula will be the main ingredient of the proof given in Section 4, where we shall
simultaneously prove the following two results.

Theorem 2.6. Let p ≥ 4 and k ≥ 2. Then n1 = hp(k− 1) is the only value of n1 for
which

S(hp(k), p) = 2S(n1, p)+S(hp(k)−n1, p−1)

holds true.

Theorem 2.6 has been implicitly proved in [11] (within the proof of Theorem 5.1),
but to make this paper independent of [11] and since we can prove it along the way
while proving Theorem 2.7, we have included the argument. Note that the claim of
Theorem 2.6 holds for p = 3 as well, if one defines S(1, 2) = 1 and S(k, 2) = 0, for
k 6= 1, since obviously S(k, 3) = 2S(k−1, 3)+S(1, 2).

Theorem 2.7. Let p ≥ 4, k ≥ 1. Let Σk be the set of all integer pairs (n, n1), for which
S(n, p) = 2S(n1, p) + S(n− n1, p− 1) and hp(k) ≤ n ≤ hp(k + 1), and let Πk be the
set of all integer pairs in the parallelogram in the (n, n1)-plane, bounded by the lines
n1 = hp(k− 1), n1 = hp(k), n1 = n + hp(k− 1)− hp(k), n1 = n + hp(k)− hp(k + 1) =
n−hp−1(k +1). Then Σk = Πk.

Theorem 2.7 is illustrated for p = 4 and p = 5 in Figures 1 and 2, respectively. It was
proved by a (double) induction on p and n in [12,13]. In [12] Majumdar established the
truth of the induction basis, that is, for p = 4, while in [13] he followed with a general
argument. In fact, only one half of the proof is written down — for the “left” and the
“bottom” part of the parallelogram. Thus, the whole argument along these lines would
contain quite several pages. In Section 4 we give an alternative, complete, and short
proof of Theorem 2.7. Along the way we also prove Theorem 2.6.
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Figure 1: Sets Σ1, Σ2, Σ3, Σ4, Σ5 for p = 4.
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Figure 2: Sets Σ1, Σ2, Σ3 for p = 5.

3. Explicit Formulas

Here is the main result of this paper.

Theorem 3.1. Let p ≥ 3, k ≥ 1, and 0 ≤ m ≤ hp−1(k +1). Then

S(hp(k)+m, p) = (Pp(k)+m)2k +(−1)p, (3.1)

where Pp is the following polynomial of degree p−3:

Pp(k) = (−1)p−1
p−3

∑
i=0

(−1)ihi+2(k). (3.2)

Formula (3.2) is in a way the most natural explicit presentation of the polynomials
Pp, since the polynomials h2, h3, . . . ,hp−1 form a standard basis for the space of all
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integer-valued polynomials of degree ≤ p−3 in the following sense: They are integer-
valued and any integer-valued polynomial of degree≤ p−3 can be written in the unique
way as a linear combination of h2, h3, . . . ,hp−1, and the linear combination has integer
coefficients only. An analogous result is given by Pólya and Szegő in [14, p. 129] for
(x

0

)

,
(x

1

)

, . . . ,
( x

p−3

)

. Our claim may be proved analogously, or deduced from the Pólya-

Szegő’s by noting that
( x

i−2

)

−hi(x) is an integer-valued polynomial of degree i−3.
In the rest of the section we prove Theorem 3.1. Since the points (hp(k+1), hp(k))

show special behavior — the uniqueness of the choice of n1 — we first concentrate on
them. Let us introduce a shorthand notation for S(hp(k), p).

Definition 3.2. For p ≥ 3, k ≥ 1, let N(k, p) = S(hp(k), p).

For p = 3, k ≥ 1, N(k, p) = S(k, p), since h3(k) = k. Therefore, in this case no
condensation occurs, but it is reasonable to treat it this way, since all the results obtained
in this section remain valid for p = 3 (with the above interpretation), too.

The recursive formula of Theorem 2.6 for n1 = hp(k−1) (recall that by Proposition
2.4 we have hp(k)−hp(k−1) = hp−1(k)), written as

S(hp(k +1), p) = 2S(hp(k), p)+S(hp−1(k +1), p−1),

now becomes

N(k +1, p) = 2N(k, p)+N(k +1, p−1).

It holds for k ≥ 1, p ≥ 3.
Taking into account N(1, p) = S(1, p) = 1 and N(k, 3) = S(k, 3) = 2k−1, and using

standard methods of solving linear difference equations (obtained by fixing p = 4, 5),
one easily gets the following explicit formulas, for k ≥ 1:

N(k, 3) = 2k −1,

N(k, 4) = (k−1)2k +1,

N(k, 5) = (k(k−1)+2)2k−1−1.

More generally:

Lemma 3.3. For any p ≥ 3 and any k ≥ 1,

N(k, p) = Pp(k) ·2k +(−1)p, (3.3)

where Pp is a polynomial of degree p−3.

Proof. We shall prove the claim by induction on p. As P3(k) = 1, it is obviously true
for p = 3. By the inductive assumption, the recursive formula

N(k, p+1) = 2N(k−1, p+1)+N(k, p)

becomes

N(k, p+1) = 2N(k−1, p+1)+Pp(k) ·2k +(−1)p,
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for any k ≥ 2. Multiplying

N(k +1− i, p+1) = 2N(k− i, p+1)+Pp(k +1− i) ·2k−i+1 +(−1)p,

by 2i−1, and summing up the resulting identities for i = 1, 2, . . . ,k−1, one gets

N(k, p+1) = 2k−1N(1, p+1)+2k(Pp(2)+Pp(3)+ · · ·+Pp(k))+(−1)p(2k−1 −1)

= 2k((1+(−1)p)/2+Pp(2)+Pp(3)+ · · ·+Pp(k))+(−1)p+1.

Hence, the statement of the theorem holds true for

Pp+1(k) = (1+(−1)p)/2+Pp(2)+Pp(3)+ · · ·+Pp(k).

Using Euler-Maclaurin summation formula for Σmi for 0 ≤ i ≤ p−3, we see that there
is such a polynomial and that its degree is p−2.

Combining Lemma 3.3 with Theorem 2.5 we can directly calculate all the values of
S(n, p), as follows.

S(hp(k), p) = Pp(k)2
k +(−1)p,

S(hp(k)+1, p) = S(hp(k), p)+2 fp(hp(k)+1)−1 = (Pp(k)+1)2k +(−1)p,

...

S(hp(k)+m, p) = S(hp(k)+m−1, p)+2 fp(hp(k)+m)−1 = (Pp(k)+m)2k +(−1)p,

...

S(hp(k +1), p) = Pp(k)2k−1 +(−1)p +(hp(k +1)−hp(k))2k

= (Pp(k)+hp−1(k +1))2k +(−1)p.

By this we have (in particular) proved statement (3.1) of Theorem 3.1.
Since S(hp(k + 1), p) = Pp(k + 1)2k+1 +(−1)p, the last line of the above calcula-

tions gives the following recursive formula:

2Pp(k +1) = Pp(k)+hp−1(k +1), p ≥ 3, k ≥ 1. (3.4)

Summing up the identities (3.4) 2Pp(i) = Pp(i−1)+hp−1(i), multiplied by 2i−k−1, for
i = 2, 3, . . . ,k, we get

Pp(k) =
Pp(1)

2k−1 +
hp−1(2)

2k−1 +
hp−1(3)

2k−2 + · · ·+
hp−1(k−1)

22 +
hp−1(k)

2
. (3.5)

Using hp−1(`) = hp(`)−hp(`−1) this identity can be rewritten as

Pp(k) =
Pp(1)

2k−1 −
hp(1)

2k−1 −
hp(2)

2k−1 −·· ·−
hp(k−1)

22 +
hp(k)

2
.

Equation (3.5) for subscript p+1 reads as

Pp+1(k) =
Pp+1(1)

2k−1 +
hp(2)

2k−1 +
hp(3)

2k−2 + · · ·+
hp(k−1)

22 +
hp(k)

2
.
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Summing the last two equations and taking into account Pp(1) = (1 − (−1)p)/2,
Pp+1(1) = (1 + (−1)p)/2 (obtained from (3.3)), and hp(1) = 1, we get the following
recursion — this time in p:

Pp+1(k)+Pp(k) = hp(k), p ≥ 3, k ≥ 1. (3.6)

Summation of the above identities (3.6) Pj(k) = −Pj−1(k) + h j−1(k), multiplied by
(−1)p− j, for j = 4, . . . , p, yields

Pp(k) = (−1)p−1
p−3

∑
i=1

(−1)ihi+2(k)− (−1)p−2P3(k).

Taking into account P3(k) = 1 and h2(k) = 1 we finally obtain

Pp(k) = (−1)p−1
p−3

∑
i=0

(−1)ihi+2(k),

and the proof of Theorem 3.1 is complete.
We conclude the section with the following consequence of Theorem 3.1.

Corollary 3.4. Let p ≥ 3 and k ≥ 1. Then

S(hp(k +1), p) = (Pp(k)+hp−1(k +1))2k +(−1)p.

4. Proof of Theorems 2.6 and 2.7

Recall that Σk denotes the set of all pairs (n, n1), for which S(n, p) = 2S(n1, p) +
S(n− n1, p− 1) and hp(k) ≤ n ≤ hp(k + 1), k ≥ 1, and that Πk is the parallelogram
in the (n, n1)-plane, cf. Figures 1 and 2.

First note that n1 = 0 means S(n, p) = S(n, p−1) (using the convention S(0, p) =
0), and from Theorem 2.5 we see that it is equivalent to 1 = hp−1(1) ≤ n ≤ hp−1(2) =
p − 2. Note that this exactly corresponds to the bottom side of the parallelogram
Π1. Therefore in the rest of the proof we shall deal either with this side, or with
n1 ∈ {1, 2, . . . ,n−1}.

We proceed by induction on k.
We shall prove Σk ⊆ Πk by induction on n (from the above range). We shall treat

the basis of the induction (when k = 1) and the inductive step (when we deduce that
our claims are true for certain k > 1 from the assumption that it is true for k− 1) in a
uniform manner.

Clearly, (1, 0) is the only point belonging to Σ1 having the first coordinate equal
1. Using this observation if k = 1, or by the inductive assumption, we infer that
(hp(k), hp(k− 1)) is the only point of Σk for which the first coordinate equals hp(k).
It obviously belongs to Πk, being one of its vertices.

Let S(n, p) = 2S(n1, p)+S(n−n1, p−1), hp(k) < n ≤ hp(k +1), and assume that
all points from Σk with the first coordinate less than n belong to Πk.

First note that hp(k) < n ≤ hp(k +1) is equivalent to k < gp(n) ≤ k +1, and this is
equivalent to fp(n) = k +1.
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If n1 > hp(k), then gp(n1) > k, and finally fp(n1) > k. Hence, using (2.1), we obtain

2S(n1, p)+S(n−n1, p−1) = 2(S(n1−1, p)+2 fp(n1)−1)+S(n−n1, p−1)

> 2S(n1−1, p)+S(n−n1, p−1)+2k

≥ S(n−1, p)+2k

= S(n−1, p)+2 fp(n)−1

= S(n, p).

By this, it is proved that n1 ≤ hp(k).
We claim next that n1 ≥ hp(k−1). If n1 < hp(k−1), then n−n1 > n−hp(k−1) >

hp(k)−hp(k−1) = hp−1(k). It follows that gp−1(n−n1) > k, and hence fp−1(n−n1)≥
k +1. Therefore, applying (2.1),

2S(n1, p)+S(n−n1, p−1) = 2S(n1, p)+S(n−n1−1, p−1)+2 fp−1(n−n1)−1

≥ S(n−1, p)+2k

= S(n−1, p)+2 fp(n)−1

= S(n, p).

From S(n, p) = 2S(n1, p)+S(n−n1, p−1) it follows

S(n−1, p) = 2S(n1, p)+S(n−1−n1, p−1) .

Since hp(k) ≤ n− 1 < hp(k + 1), by the choice of n we get n1 ≥ hp(k− 1). This con-
tradiction proves the claim.

Now, we know that hp(k) < n ≤ hp(k +1), hp(k−1) ≤ n1 ≤ hp(k), and S(n, p) =
2S(n1, p) + S(n− n1, p− 1). Denote by T1 the triangle consisting of all pairs (n, n1)
satisfying n > hp(k), n1 ≤ hp(k), and n1 > n + hp(k − 1)− hp(k); also denote by T2

the triangle consisting of all pairs (n, n1) satisfying n ≤ hp(k +1), hp(k−1) ≤ n1, and
n1 < n+hp(k)−hp(k +1), cf. Figure 3.

If n1 > hp(k−1), i.e., fp(n1) = k (while fp(n) = k+1), then S(n, p) = 2S(n1, p)+
S(n−n1, p−1) implies

S(n−1, p)+2 fp(n)−1 = 2S(n1−1, p)+2 ·2 fp(n1)−1 +S(n−n1, p−1).

It follows that S(n− 1, p) = 2S(n1 − 1, p) + S(n− n1, p − 1); it means that (n − 1,
n1 −1) ∈ Σk. Since by finitely many repetitions of this transformation, any point from
T1 is transformed to a point strictly above (hp(k), hp(k − 1)), not belonging to Σk, it
follows that T1 ∩Σk = /0.

If n1 < hp(k) (hence fp(n1 +1) = k) and n < hp(k +1) (hence fp(n+1) = k +1),
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Figure 3: Sets T1 and T2.

then we can compute, using (2.1) again:

S(n+1, p) = S(n, p)+2 fp(n+1)−1

= 2S(n1, p)+S(n−n1, p−1)+2k+1−1

= 2(S(n1, p)+2k−1)+S(n−n1, p−1)

= 2(S(n1, p)+2 fp(n1+1)−1)+S(n−n1, p−1)

= 2S(n1 +1, p)+S(n−n1, p−1).

This means that (n+1, n1 +1)∈ Σk. By finitely many repetitions of this transformation,
any point from T2 is transformed to a point (hp(k + 1), m) strictly below (hp(k + 1),
hp(k)) and belonging to Σk, see Figure 3. From m < hp(k) it follows hp(k + 1)−m >
hp(k + 1)− hp(k) = hp−1(k + 1). Hence gp−1(hp(k + 1)−m) > k + 1 and therefore
fp−1(hp(k + 1)−m) ≥ k + 2. Since hp(k − 1) < m + 1 ≤ hp(k), it follows k − 1 <
gp(m+1)≤ k, and fp(m+1)≤ k. From these inequalities it follows that

S(hp(k +1), p) = 2S(m, p)+S(hp(k +1)−m, p−1)

= 2S(m, p)+S(hp(k +1)−m−1, p−1)+2 fp−1(hp(k+1)−m)−1

≥ 2S(m, p)+2 ·2 fp(m+1)−1 +S(hp(k +1)−m−1, p−1)

= 2S(m+1, p)+S(hp(k +1)−m−1, p−1),

which contradicts the minimality of S(hp(k), p) and the definition of Σk. It follows that
T2 ∩Σk = /0.

By all these we have proved that Σk is a subset of the parallelogram Πk. Note
that this also proves that hp(k) is the only value of n1 for which S(hp(k + 1), p) =
2S(n1, p)+S(hp(k +1)−n1, p−1). Thus the inductive proof of Theorem 2.6 is com-
pleted.

To complete the proof we must show Πk ⊆ Σk.
First, note that n1 = hp(k−1) and n = hp(k) satisfy n1 < hp(k) and n < hp(k +1).

Therefore, since (hp(k), hp(k−1)) ∈ Σk, it follows (as in the proof of T2 ∩Σk = /0) that
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(hp(k)+1, hp(k−1)+1), (hp(k)+2, hp(k−1)+2), . . . ∈ Σk, until we get that all the
points of the parallelogram, lying on the line n1 = n+hp(k−1)−hp(k), belong to Σk.

Next, note that all points of the parallelogram, except those from the line n1 = n+
hp(k)−hp(k+1), satisfy n1 > n+hp(k)−hp(k+1), i.e., n−n1 > hp(k+1)−hp(k) =
hp−1(k + 1), as well as n1 ≤ n + hp(k− 1)− hp(k), i.e., n− n1 ≤ hp(k)− hp(k− 1) =
hp−1(k). That means that fp−1(n−n1 +1) = k +1. If hp(k) ≤ n < hp(k +1), then also
fp(n+1) = k +1.

Therefore, for such an (n, n1) ∈ Σk, for which n and n1 satisfy these additional
conditions, S(n, p) = 2S(n1, p)+S(n−n1, p−1) implies

S(n+1, p) = 2S(n1, p)+S(n−n1, p−1)+2 fp(n+1)−1

= 2S(n1, p)+S(n−n1, p−1)+2 fp−1(n−n1+1)−1

= 2S(n1, p)+S(n+1−n1, p−1),

i.e., it follows that (n+1, n1) ∈ Σk.
Thus, we are able to complete our proof, by repeatedly translating points from the

left side of the parallelogram Πk, for which we already know that they belong to Σk, to
the right for vector (1, 0), keeping them in Σk, until we cover all integral points from
the parallelogram Πk.

Acknowledgment. We wish to thank Ciril Petr for several inspiring discussions and a referee for
a very careful reading of the paper and several useful remarks.
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