ELSEVIER

Information Processing Letters 63 (1997) 91-95

lnforme!tion
Processing
Letters

Recognizing Hamming graphs in linear time and space

Wilfried Imrich?, Sandi KlavZarb*

* Department of Mathematics and Applied Geometry, Montanuniversitit Leoben, A-8700 Leoben, Austria
> Department of Mathematics, PEF, University of Maribor, Koroka cesta 160, 2000 Maribor, Slovenia

Received 10 March 1995; revised 5 March 1997
Communicated by S. Zaks

Abstract

Hamming graphs are, by definition, the Cartesian product of complete graphs. In the bipartite case these graphs are
hypercubes. We present an algorithm recognizing Hamming graphs in Hnear time and space. This improves a previous
algorithm which was linear in time but not in space. This also favorably compares to the general decomposition algorithms
of graphs with respect to the Cartesian product, none of which is linear. © 1997 Elsevier Science B.V.

Keywords: Hamming graphs; Design of algorithms; Analysis of algorithms

1. Introduction

Hamming graphs are a relevant class of graphs
in Computer Science. By definition they are the
Cartesian product of complete graphs and the prob-
lem of effectively recognizing whether a graph is
a Hamming graph could be solved by prime fac-
torization algorithms with respect to the Cartesian
product. The fastest known algorithm for such a de-
composition is due to Aurenhammer, Hagauer and
Imrich [1] and is of time complexity O(mlogn),
where m is the number of edges and n the num-
ber of vertices of the graph considered. In [4] it
was demonstrated how to reduce this complexity to
O(m) for the special case of hypercubes and in [8]
this was generalized to all Hamming graphs. How-
ever, the space complexity of the latter algorithm is

* Corresponding author. This work was supported in part by the
Ministry of Science and Technology of Slovenia under the grant
J1-7036.

O(n?). In this paper we present an algorithm for
recognizing Hamming graphs which is linear in both,
time and space. We hope that this algorithm will
help to further improve the general decomposition
algorithms of graphs with respect to the Cartesian
product.

All graphs considered in this note are finite
undirected graphs without loops or multiple edges.
Throughout the paper, for a given graph G, let n and
m stand for the number of its vertices and edges, re-
spectively. For a graph G and a vertex set X C V(G)
let (X) denote the subgraph of G induced by X.

The Cartesian product GU1H of graphs G and
H is the graph with vertex set V(G) x V(H) and
(a,x)(b,y) € E(GUOH) whenever ab € E(G) and
x =y, 0ra=>band xy € E(H). The Cartesian
product is commutative and associative in an obvious
way and has the one-vertex graph K as a unit. We
also recall that, up to isomorphism, each connected
graph can be uniquely written as a Cartesian product
of prime graphs [11,12].

0020-0190/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved.

PII S0020-0190(97)00095-1

92 W. Imrich, §. KlavZar/Information Processing Letters 63 (1997) 91-95

As already mentioned, a Hamming graph is the
Cartesian product of complete graphs. In the spe-
cial case when all the factors are isomorphic to the
graph K, we obtain hypercubes. Many character-
izations of Hamming graphs are known, we refer
to [2,3] and references there. In addition, several
other classes of graphs closely related to Hamming
graphs were also studied, cf. [13-15] and references
therein.

As we work with graphs on n vertices and m
edges our input consists of n + m integers and to
encode them in the binary representation we need
O(nlogn) + O(mlogm) = O((n + m)logn) bits.
In addition, all operations will be performed on such
integers, i.e. on words of length O(logn). Following
the customary scheme for graph algorithms we will
henceforth omit the factor logn, cf. [9]. In other
words, we analyse algorithms in the arithmetic model,
cf. [7]. We will return to the binary representation
in the last section where it will be observed that in
the case of hypercubes the so-called compression
procedure is not essential for the space complex-

ity.

2. The algorithm

For our purposes the following alternative definition
of Hamming graphs will be convenient.

Let ry,72,...,7, be given integers > 2 and let V
be the set of t-tuples ajap ... a, with 0 < a; <
r; — 1. These t-tuples will be the set of vertices of our
Hamming graph. We note that there are n = H;:l ri
such -tuples. We connect any two t-tuples ajas . .. a;
and b1b,...b; by an edge if they differ in exactly
one place, ie. if there is a j such that a; # b
but q; = b; for i # j. Let E be the set of such
edges. It is straightforward to see that the graph H =
(VE) is a Hamming graph. The corresponding la-
belling of the vertices of H is called a Hamming la-
belling.

The algorithm we are going to present consists of
three parts. First, we check some basic properties of a
given graph G to be a Hamming graph and prepare data
structures for the next parts. Then, in the procedure
Labelling, we label vertices of G with strings of length
t, where 1 is the expected number of factors. Finally, in
the procedure Compression we shorten these labels to

only two coordinates and verify whether G is indeed
a Hamming graph.

Clearly, H = K,,0K,,00- - .OK,, isan (r{+ry+- - -+
r;—t)-regular graph onr,ry - - - r; vertices. Thus H has
%rlrz coor (rp o4 - -, —1) edges. Note also that
the neighborhood of a vertex of H induces a disjoint
union of complete graphs. With these observations we
can define the following procedure. We assume that the
input graph G is connected and given in its adjacency
list representation.

Procedure Initialization

1. Choose an arbitrary vertex vg of G.

2. Rename the vertices of G and adjust the adjacency
list according to the BFS order with respect to vg.

3. Arrange the vertices in levels Lo, Ly, ..., Ly such
that L; contains all vertices of distance i from vg.

4. Find the connected components of the subgraph of
G spanned by the vertices of L; and sort them by
their sizes. Let these components be C, Cy, ..., C,
withry—1,r—2,...,r,— 1 vertices, respectively.

5. If any of the subgraphs induced by the C; is not
complete then reject.

6. It n # [[i, r: then reject.

7. Ifm + % 25:1 (ri(r;—1) H;:I,j*i r;) then reject.

Suppose for a moment that G is a Hamming graph.
Then we can say that L consists of all those ¢-tuples
aja; . ..a, in which exactly &k of the g; are # 0. In
particular, Ly consists only of vp and L; of all neigh-
bors of vg.

For the labelling procedure we state the next three
straightforward lemmas, cf. [8].

Lemma 1. Let 7 be a permutation of {0, 1,...,r; —
1} If

h:v—aay...a;...a;

is a Hamming labelling of H, then

Th v—aqay...7ma;...q

is also a Hamming labelling.

Lemma 2. Let | < i< j < tandhbe given as in
Lemma 1. Then

/’l,'j B e N/ S V2 R < PR N T R 7 B R4S RS R/ 7

is also a Hamming labelling.

W. Imrich, S. Klavzar/Information Processing Letters 63 (1997) 91-95 93

Lemma3. Letu =ajar...a, € Ly, k 2 1. Then
every neighbor v of u in Ly_; has exactly one more
vanishing component than u.
Also, ifk = 2 the vertex u has at least two neighbors
v,win Li_y and they differ in exactly two coordinates.
Moreover, ifv =b\b,...b,andw =cicy...c, then
a;=max{b;, ¢;} fori=1,...,¢

According to the above lemmas, we can assign
labels to the vertices of G by the following proce-
dure.

Procedure Labelling

1. Label vg with a vector of length t containing only
ZEToS.

2. Label the vertices of C; with vectors of the form
0...0a,0...0, ie. vectors of length ¢ in which
only the i-th coordinate ¢; is different from zero,
but where a; assumes all values between 1 and
Fi— 1.

3. For each vertex u in levels L;, 2 < [< k, select
any two vertices adjacent to u, say u' and 2, in
level L;_,. If there are no such vertices then reject.

4. Suppose all vertices in L;, 1 < j < k, have already
been labelled. Choose an unlabelled vertex u in
Lj,y. Let the labels of u! and u® be byby ... b, and
cicz . .. ¢y, respectively. Setting a; = max{b;,¢;}
we obtain a label aja,. .. a; for u.

It follows immediately from Lemmas 1-3 that the
labelling algorithm, applied to a Hamming graph G,
yields a Hamming labelling of G.

We next describe how to compress the labels ob-
tained in the previous procedure to only two coordi-
nates. Consider the graph

H=K,UOK,UO- - 0K,
and set

H =K,U0K,0O--
and
Hy=K,0OK,[1---.

In other words, H; and H, are the subproducts of H
with odd indexed and even indexed factors, respec-
tively. As the Cartesian product is associative and com-
mutative we have H = H; [H,.

Procedure Compression

1. Let G; be the subgraph of G induced by the vertices
with all even coordinates equal to zero and let G,
be the subgraph of G induced by the vertices with
all odd coordinates equal to zero.

2. If Gy is not isomorphic to Hy, or G, is not isomor-
phic to H», then reject.

3. Label the vertices of Gy with {1,2,...,]G1|}, the
vertices of G, with {1,2,...,|Gz|} and represent
G, and G, by their adjacency matrices.

4. Label each vertex v of G be two coordinates as
follows. If v labelled aya; - - - a,, let its first coor-
dinate be the vertex of Gy corresponding to label
a10a30 ... and let its second coordinate be the ver-
tex of G, corresponding to the label 0a,0ay. . ..

5. For each edge uv of G check whether it is in prod-
uct. More precisely, if the label of u is ij and the
label of v is i’j’, then check if either i = i’ and j is
adjacent (in G;) to j', or j = j' and i is adjacent
(in Gy) to 7.

We can thus summarize our algorithm as follows.

The Hamming Graph Algorithm

Input: A connected graph G in its adjacency list rep-
resentation.

Output: A Hamming labelling of G if it exists, rejec-
tion otherwise.

1. Initialization
2. Labelling
3. Compression

Correctness of the algorithm follows from the above
discussion.

We next consider the time and the space complexity
of the algorithm. Clearly all the steps of the procedure
Initialization as well as Steps 1 and 2 of the procedure
Labelling can be done in O(m) time and space.

For Step 3 of Labelling we first remember for each
vertex its level and then we go through adjacency list
and find two appropriate vertices. Therefore the label
for a vertex u in Step 4 can be computed in time O(¢).
It follows that the complexity of this step is O(nt).
Since every vertex of G has at least ¢ neighbors we
infer nt < 2m. Hence, O(nt) = O(m). We conclude
that the procedure Labelling can also be performed in
O(m) time and space.

94 W. Imrich, S. KlavZar/Information Processing Letters 63 (1997) 91-95

Finally to the compression procedure. The selection
of vertices for G| and G, takes O(nt) = O(m) time.
Suppose now that f = 2s. Then since r; <7y < -+ <
ro, we have

2 2 2 2

SR C TR T e
Kryrpryc e Py T2
< 2m

and similarly

R RO NP
<rp-r3-r4c ... sl
crag(ry 4 A s — 28)
< 2m.

Analogously we proceed if 7 is odd. Thus, in all cases
we have |V(G))| = O(y/m) and |V(Gy)| = O(/m).
For the adjacency matrices of Gy and G, we thus need
O(m) space. This means that for Step 2 of the pro-
cedure Compression we can use the recognition algo-
rithm for Hamming graphs from [8] which is linear
in time but uses an adjacency matrix as an input.

Next, projections from Step 4 can clearly be com-
puted in O(nt) time. Finally, since we have only two
coordinates and G; and G, are represented by their
adjacency matrices, checking for an edge in Step 5
can be done in O(1) time. We have thus proved:

Theorem 4. For a given graph G on n vertices and m
edges one can decide in O(m) time and O(m) space
whether G is a Hamming graph. Both complexities are
optimal.

3. Concluding remarks

In this paper we have given a linear time and space
algorithm for recognizing Hamming graphs. A sim-
pler linear time algorithm is given in [8], but its
space complexity is O(n?). This space is needed if
we wish to find out in constant time whether two ver-
tices labelled with strings of length ¢ are connected
by an edge. Without the adjacency matrix this would
yield to time complexity O(mt) which is in general
O(mlogn) - the complexity of the algorithm from
[1] for the prime factor decomposition with respect
to the Cartesian product. Thus the main insight of the

present algorithm is the compression procedure, which
reduces the number of coordinates.

In the case of hypercubes, though, the compres-
sion procedure is not needed, as pointed by one of the
referees. Indeed, by our assumption comparing two
O(logn) bit integers takes constant time. But then we
can also test in constant time whether two labels ob-
tained in the labelling procedure differ in exactly one
bit. (We first transform the logn bit labels to logn
bit integers and then use the XOR and AND boolean
operations.) We cannot simplify our algorithm in the
general case, because we need to compare strings con-
sisting of O(logn) integers, each of size O(logn).
The above approach would then add a factor logn to
the time complexity.

Finally, we wish to add that there is a general re-
lated result which asserts that if a given graph algo-
rithm runs in linear time and uses O(n?) space, (i.e.
the matrix representation), then the algorithm can be
simulated in linear space and expected linear time. The
expected linear time follows from reference [5], while
reference [6] gives the same result but also ensures
high probability. The main insight of this note is thus
that in the case of Hamming graphs we are able to find
an algorithm which runs in deterministic linear time.

Acknowledgement

We wish to thank the referees for helpful remarks.

References

[1] E Aurenhammer, J. Hagauer and W. Imrich, Cartesian
graph factorization at logarithmic cost per edge, Comput.
Complexity 2 (1992) 331-349.

[2] H-]. Bandelt, Characterization of Hamming graphs,
Manuscript, 1992.

[3] H.-J. Bandelt, HM. Mulder and E. Wilkeit, Quasi-median
graphs and algebras, J. Graph Theory 18 (1994) 681-703.

{4] K.V.S. Bhat, On the complexity of testing a graph for n-
cube, Inform. Process. Lett. 11 (1980) 16-19.

[5] J. Carter and M. Wegman, Universal classes of hash
functions, J. Comput. System Sci. 18 (1979) 143-154.

[6]1 M. Dietzfelbinger, A. Karlin, K. Melhorn, F. Meyer auf der
Heide, H. Rohnert and R.E. Tarjan, Dynamic perfect hashing:
Upper and lower bounds, SIAM J. Comput. 23 (1994) 738-
761.

[7] M. Grotschel, L. Lovdsz and A. Schrijver, Geometric
Algorithms and Combinatorial Optimization, Algorithms and
Combinatorics, Vol. 2 (Springer, Berlin, 2nd corr. ed., 1994).

W. Imrich, S. KlavZar/Information Processing Letters 63 (1997) 91-95

[8] W. Imrich and S. KlavZar, On the complexity of recognizing
Hamming graphs and related classes of graphs, European J.
Combin. 17 (1996) 209-221.

[9] J. van Leeuwen, Graph Algorithms, in: Handbook of

Theoretical Computer Science (Elsevier, Amsterdam, 1990)
Chapter 10, 525-631.

{10} H.M. Mulder, The interval function of a graph, Math. Centre
Tracts (Amsterdam) 132 (1980).

[11] G. Sabidussi, Graph multiplication, Marh. Z. 72 (1960) 446—
457.

95

[12] V.G. Vizing, The Cartesian product of graphs, Comp. El
Syst. 2 (1966) 352-365.

[13] E. Wilkeit, Isometric embeddings in Hamming graphs, J.
Combin. Theory Ser. B 50 (1990) 179-197.

{14] E. Wilkeit, The retracts of Hamming graphs, Discrete Math.
102 (1992) 197-218.

[15] P. Winkler, Isometric embeddings in products of complete
graphs, Discrete Appl. Math. 7 (1984) 221-225.

