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On Characterizations with Forbidden Subgraphs-

S. KLAVZAR and M. PETKOVSEK

1. Introduction

Let G denote the class of all finite, simple, undirected, and unlabelled graphs.
Throughout the paper, < will denote a well-founded partial order in G. This
means that every strictly descending chain in (G, <) is finite. Obviously, this is
equivalent to the requirement that every nonempty subclass C of G contains a
graph which is <-minimal in C.

Example 1. It is easy to see that each of the following four relations G < H is a
well-founded partial order in G:

(i) induced subgraph: G is isomorphic to an induced subgraph of H;
(i) subgraph: G is isomorphic to a subgraph of H;
(iii) topological containment: a subdivision of G is isomorphic to a subgraph of
H;

(iv) minor: G is isomorphic to a graph which can be obtained from a subgraph
of H by contracting some of its edges, and replacing any resulting multiple
edges with simple ones.

Note also that each of the first three relations is a subrelation of the next one
on this list.
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Definition 1. A class of graphs C is hereditary (with respect to <) if G < H,H €
€ C imply G € C.

Note that G is hereditary for any relation <.

Whenever G < H, we shall say that G is a <-subgraph of H. For a class of
graphs C, let min(C) denote the set of its <-minimal elements, and C the class of
complements of graphs from C.

For a class of graphs C, let F(C) be the class of all graphs which have no
<-subgraphs in C. Thus we have defined a mapping

E:25 2%
One sees easily that F(C) is hereditary for every C.

Example 2. Let C be the class of all cycles, C = {Ci : k > 3}. Then for each of
the relations from Example 1, F(C) is the class of all forests. Note that for induced
subgraphs and for subgraphs C is an antichain, while for topological containment
and for minors min(C) = {C3}.

Proposition 1.

(i) F(C1uUC3) =F(C,)NF(Cy)
(ii) F(C1)CF(Cz) <= for every G € Cs, there is an H € C; such that H < G
(iii) if < is the induced subgraph relation, then F(C) = F(C)
We omit the proof which is completely analogous to that given in [1] for the

induced subgraph relation.

Example 3. Let < be the induced subgraph relation. Define T := F({Ck : k > 4})
and S := TN T. Note that T is the class of triangulated graphs and S the class of
split graphs (for more information on these graphs, see [4]). Let us determine the
minimal forbidden induced subgraphs for S. Using Proposition 1 (i) and (iii), one
sees that S = F({C%,Cy : k > 4}). But for k > 6 the cycle Cy contains 2K, = Oy
and Cj contains Cj, therefore these graphs are not minimal. As Cs ~ Cs, we
conclude that S = F({2K>, Cy, Cs}), a result due originally to Foldes and Hammer

(3].
Proposition 2. The restricted mapping

F : {antichains in G} — { hereditary classes in G}
is one-to-one and onto.

Again, we omit the proof which can be found (for the induced subgraph
relation) in [1].
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2. Closedness under derivation rules

Definition 2. A derivation rule of length k in G is a (k + 1)-ary relation in G,
denoted by “ I ”,

Instead of “(Gy,Ga2,...,Gk,G) € F ” we shall write “G1,Ga,...,G - @7
and say that G, G, ..., Gy derive G.
Example 4. Here are some examples of derivation rules:
(i) complementation: G+ G.
(i) disjoint union: G1,Ga F G UG,.
(ii1) join: G1,G2F Gy + Ga.
(iv) substitution: G1, G + G, where G is obtained in the following way: Choose
a vertex v of G; and replace it with G5. Connect each vertex of G, with an
edge to each former neighbour of v in G;.
(v) substitution with graphs from H where H is some fixed hereditary class of
graphs: G I G, where G' is obtained in the following way: Choose a graph
H € H and perform substitution on the graphs G and H (see (iv) above).
(vi) identification of subgraphs from H where H is some fixed hereditary class
of graphs: Gy, G; G, where G is obtained in the following way: Choose
subgraphs H; < G; and H, < G3 such that H; =~ H, € H. Choose an
isomorphism between H; and H, and identify the corresponding vertices of
H; and H,.
When H = G this derivation rule is called simply subgraph identification.
Derivation rules (i) and (v) are of length 1 while all the others in this example
are of length 2. Note that disjoint union is a special case of identification of
subgraphs from H — with H containing but the empty graph.

Definition 3. A derivation rule & is consistent (with <) provided that the fol-
lowing holds: If G1,Gz,...,Gx + G and H < G, then there exist graphs
H,, H,,..., H such that H; < G; and H{,Hy ..., H - H.

Definition 4. (7] A derivation rule - is an amalgamation (with respect to <), if
G1,Ga,...,G F G implies that all G; < G.

Example 5. Let < be the induced subgraph relation. Then it is easy to see
that all the derivation rules listed in Example 4 are consistent, and all but (i) are
also amalgamations. If < is the subgraph relation, or the relation of topological
containment, or the minor relation, then only (ii) and (vi) are consistent, while
again all but (i) are amalgamations.

Let F2 be a derivation rule of length 2, and H a class of graphs. Then one can
define a derivation rule F; of length 1 in the following way: G+, G'if G, H -, @',
for some H € H. It is easy to see that | is consistent (an amalgamation), whenever
H is hereditary and +, is consistent (an amalgamation). An example: if }5 is
“substitution” then I, is “substitution with graphs from H”.
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Definition 5. A class of graphs C is closed under - if G1,Gs,...,Gx € C and
G1,Ga,...,GxF G imply G € C.

Definition 6. Let C be a class of graphs, and |- a derivation rule of length k. A
graph G is reducible over C (with respect to I-) if there are graphs Gy, Gy, ..., Gy
from C such that all G; # G and G1, Gy, ...,Gi - G. A graph G is reducible (with
respect to ) if it is reducible over G.

Theorem 1. Let - be consistent, and let A be an antichain. Then F(A) is closed
under |- if and only if no element from A is reducible over F(A).

Proof. (=) Let G € A, G1,Gy,...,Gy € F(A), and Gy, Gy, ..., Gk - G. By
definition of F,G ¢ F(A). It follows that F(A) is not closed under F.

(<=) Let G1,G,...,Gx € F(A),G1,Ga,...,Gx + G and G Z F(A). By
definition of F, there is some H € A such that H < G. By consistency of
with <, there are Hy, Ha,..., Hy such that H; < G; and H,, H,,...,H + H. By
heredity, H; € F(A), and hence H; # H, for all <. Thus H is reducible over F(A).

|

Theorem 2. Let - be a consistent amalgamation, and let A be an antichain.
Then F(A) is closed under | if and only if no element from A is reducible.

Proof. By Theorem 1, F(A) is closed under I iff graphs from A are not reducible
over F(A). Since we required that a reducible graph reduces to graphs different
from itself (cf. Def. 5), for amalgamations reducibility of graphs from A over F(A)
is equivalent to reducibility (over G). m

Example 6. [1] Let < be the induced subgraph relation, and A an antichain.
Using Theorem 1, one can easily verify that F(A) is closed under complementation
if and only if A is closed under complementation.

Definition 7. Let S be a set of vertices of the graph G. S is contractible if
vertices of S have identical neighbourhoods in G — S, and separating if G — S is
disconnected.

Corollary 1. Let A be an antichain with respect to <.

(i) If disjoint union is a consistent amalgamation, then F(A) is closed under
disjoint union if and only if all graphs from A are connected.

(ii) If join is consistent amalgamation, then F(A) is closed under join if and only
if all graphs from A have connected complements.

(iii) If substitution is a consistent amalgamation, then F(A) is closed under sub-
stitution if and only if no graph G from A contains a contractible set S with
1< |S| < |V(G).
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(iv) If substitution with graphs from H is a consistent amalgamation, then F(A)
1s closed under substitution with graphs from H if and only if no graph from
A contains a contractible set S with |S| > 1 which induces a graph from H.

(v) If identification of subgraphs from H is a consistent amalgamation, then F(A)
is closed under identification of subgraphs from H if and only if no graph from
A contains a separating set which induces a graph from H.

Proof. (i) and (ii) are proved in [7] (for the induced subgraph relation only, but
the general proof is the same).

(iii) Obviously, a graph which is reducible with respect to substitution contains a
contractible set. The condition on cardinality ensures that both “factors” to
which such a graph reduces are distinct from it. Hence the assertion follows
from Theorem 2.

(iv) This derivation rule is very similar to substitution except that it is of length
1, hence the contractible set is no more required to be a proper subset of the
vertex set. However, it must now induce a graph belonging to H.

(v) A graph is reducible with respect to identification of subgraphs from H iff it
contains a separating set which induces a graph belonging to H. Hence the
assertion follows from Theorem 2. M

Corollary 2. Let < be such that subgraph identification is a consistent amalgama-
tion, and let A be an antichain. Then F(A) is closed under subgraph identification
if and only if A contains only complete graphs.

Proof. From Corollary 1(v) it follows that F(A) is closed under subgraph identi-
fication iff no graph from A contains any separating set whatsoever. But as soon
as a graph contains two nonadjacent vertices it contains a separating set (namely,

the set consisting of the remaining vertices). Hence in this case all graphs from A
must be complete. B

Note that for the relations of Example 1 an antichain of complete graphs
contains at most one element.

These results can be used in two different ways. First, given an antichain A
and a derivation rule I, one can ask whether F(A) is closed under I.

Example 7. Triangulated graphs (cf. Example 3) are closed under disjoint union
(as all Ck, for k > 4, are connected), but not under join (as C, is not connected).
They are closed under identification of complete subgraphs (as Cy, for k > 4,
contain no clique-cutsets). They are also closed under substitution with complete
graphs (as none of Ck, for k > 4, contains a nontrivial contractible clique), but not
under substitution (as two nonconsecutive vertices of C4 form a contractible set).
And they are obviously not closed under complementation.

Second, knowing that F(A) is closed under a derivation rule F, it is possible
to infer certain properties of graphs from A.
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Example 8. It is easy to see that the class of perfect graphs (which is hereditary
for the induced subgraph relation) is closed under disjoint union, join, and identifi-
cation of complete subgraphs. It is also closed under substitution and complemen-
tation [6]. It follows that minimal imperfect graphs are connected, have connected
complements, contain no clique-cutsets, contain no contractible sets other than
singletons and the whole vertex set, and that their complements are also minimal
imperfect graphs.

3. Forbidden subgraphs for closures

Definition 8. Let C be a class of graphs, and F a derivation rule. A finite
sequence of graphs is called a construction sequence over C if every graph from the
sequence either belongs to C or is derived by - from some of its predecessors in
the sequence. The closure of C under |-, denoted by cI(C), is the class of all graphs
which appear as the final term of some construction sequence over C.

Proposition 8. If |- is a consistent derivation rule, then the closure of a hereditary
class is hereditary.

Proof. Let C be a hereditary class, G € cl(C), and H < G. We want to prove
that H € cl(C) as well. The proof is by induction on the length £ of a shortest
construction sequence for G.

Base: If £ =1, G belongs to C and so does H. Hence H € cl(C).

Induction step: Suppose that Gy, Gs,...,Gx F G where G1, Ga,...,Gy pre-
cede G in a shortest construction sequence for G. As | is consistent, there are
H,,H,,...,H; such that H; < G; and H,,H,,...,H, - H. By the induction
hypothesis all H; belong to clI(C). Hence H € cl{C) as well. B

Knowing minimal forbidden <-subgraphs for some hereditary class, how can
we find minimal forbidden <-subgraphs for its closure under some consistent deriva-
tion rule? Here is an answer for consistent amalgamations.

Theorem 3. If F is a consistent amalgamation, then
cl(F(A)) = F(min{irreducible graphs not in F(A)})

Proof. Let G € cI(F(A)). Then, by the definition of closure, either G is reducible
or it belongs to F(A). By Proposition 3, the same holds for all of its <-subgraphs.
Hence G contains no irreducible graph not in F(A) as a <-subgraph.

Conversely, assume G ¢ cl(F(A)), and let S be the set of all those <-subgraphs
of G which do not belong to cl(F(A)). As G € S, S is not empty, hence it contains
a minimal graph H, by well-foundedness of <. Suppose that H is reducible to
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“factors” Hy, Ha,...,Hx. As | is an amalgamation, H; < H < G. If all H;
belong to cl(F(A)), H itself belongs to cI(F(A)), a contradiction; otherwise H is
not minimal in 8, another contradiction. It follows that H is irreducible. H is not
in cl(F(A)), hence it is also not in F(A). Thus G contains an irreducible graph
not in F(A) as a <-subgraph. B

Let A be an antichain, and + a consistent amalgamation. According to
Theorem 3, one can find minimal forbidden <-subgraphs for cl(F(A)) by the
following procedure:

Step 1: Take all irreducible graphs from A.

Step 2: Add all minimal irreducible graphs which contain some reducible graph
from A, and no irreducible graph from A, as a <-subgraph.

Example 9. Let < be the induced subgraph relation. In [5] it is shown that
U :=F({C,, 62,,+1 :n > 1}) is the class of all finite intersection graphs of
unbounded intervals on the real line, and that cl(U), the closure of U under join,
is the class of all finite intersection graphs of halfspaces in R", for some n > 2.
Let us determine the minimal forbidden induced subgraphs for cl(U). Obviously,
being irreducible under join is equivalent to having connected complement. Thus
Step 1 of the above procedure yields the graphs Czp41,n > 1. In Step 2 we have to
consider all irreducible supergraphs of C, which contain none of Cons1,n > 1, as
an induced subgraph. Let G be such a graph, with a, b, ¢, d (in this order) inducing a
Cy. In G, these vertices induce 2K, with edges ac and bd. As G is connected, there
exists a path with one endpoint in {a, c} and another in {b,d}. Let P := viv,... v
be a shortest such path. Then k > 3. For the sake of definiteness, assume that
v1 = a and v = b (see Fig. 1). As G is bipartite it contains no triangle, hence ¢ is
not adjacent to v, and d is not adjacent to vi_;. As P is shortest, c is not adjacent
to any of vs,...v; and d is not adjacent to any of vy,...vp_5. It follows that
cv; ... vkd is an induced path on at least 5 vertices in G. Hence G contains Ps (the
house graph) as an induced subgraph. As Pj is itself an irreducible supergraph
of C4 containing none of 62n+1, for n > 1, it is the only new minimal forbidden
subgraph obtained on Step 2. Thus c(U) =F({Ps,Canyr:n> 1}).

Another example of an application of this procedure can be found in [2], where
the authors determine the minimal forbidden induced subgraphs for line graphs of
multigraphs. They use the fact that this class of graphs is exactly the closure under
substitution with complete graphs of the class of line graphs of simple graphs.
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v, Vi -1

Figure 1. G contains an induced P
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