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A b s t r a c t - - L e t  Y E Nn. A function f : N n --* IRk is Y-compatible, if for any Z C N '~, Z _< Y if and 
only if f(Z) < f (Y)  and is strict Y-compatible, if for any Z C R n, Z < Y if and only if f(Z) < f(Y).  
It is proved that  for any Y E R n, n >_ 2, there is no Y-compatible polynomial function f : N n --~ Nk 
1 < k < n. It is also proved that  for a differentiable strict Y-compatible map f ,  Js(Y) = 0, where 
Jr(Y) denote the Jacobian matrix of the mapping f in Y. These problems arose in studying data 
compression of analog signatures. 

K e y w o r d s - - p u n c t i o n s  of several variables, Compatible functions, Strict compatible functions, 
Jacobian matrix, Data compression. 

1. I N T R O D U C T I O N  

This work was initiated by the problems of storage and processing of measured response data of 
analog circuits normally used by the fault dictionary techniques in fault localization [1,2]. We 

explore the possibility of data compression of a series of real numbers representing given response 
data. In particular, we are looking for some data compression function that would enable us to 

determine for any two given responses Yl, Y2, . . . ,  Yn and zl, z2, . . . ,  zn whether z~ _< yi holds 

for all i merely on the basis of their compressed response data (i.e., signatures). If such data 
compression function existed, regions that characterize the response of a circuit could be simply 

described by the signatures of their margins. Besides, it would also be possible to determine from 

the signature of the response if the operation of a circuit-under-test lies in the given region or 
not. More details on the state-of-the-art and practical background on this issue are given in [3]. 

The terminology and notions used here, in general, follow [4]. Let X = (xl, x2 . . . . .  x~) and 
Y = (Yt, Y2 . . . .  , y~) be two vectors from R n. Then X < Y means that xi < y~ holds for all i, and 
X <_ Y means that  xi _< Yr- Let Y E ]R n. We call a function f : R n -~ R k Y-compatible, if for any 
Z E R n, Z < Y if and only if f ( Z )  <_ f ( Y ) .  A function f : R ~ --* R k is strict Y-compatible, if for 
any Z E R '~, Z < Y if and only if f ( Z )  < f ( Y ) .  Note that when we talk about Y-compatibility 
and strict Y-compatibility, Y is an arbitrary but fixed vector. 
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The rest of this note is organized as follows. In the next section, we consider Y-compatible 
functions and prove tha t  there are no such polynomial function when the dimension of the 
codomain is smaller than the one of the domain. In Section 3, we prove tha t  for a strict 
Y-compatible  map f ,  the Jacobian matr ix  of the mapping f in Y is equal to the zero matrix.  

2 .  C O M P A T I B L E  F U N C T I O N S  

Consider, for example, the following function g : IR n --* ~: 

( - 1 )  n + l ( x l - y l ) ( x 2 - y 2 ) ' - ' ( x n - y n ) ,  X < Y ,  
g ( x )  = 

m a x  {xl - Yl, x2 - Y2,.. •, xn - y~}, otherwise. 

I t  is easy to see tha t  g is continuous and Y-compatible.  Note tha t  the definition of g involves Y. 
Furthermore,  we would like that  a Y-compatible function is a polynomial. In the rest of the 
section, we are going to show tha t  there are no such functions for k < n. For the proof, we need 

the following simple observation. 

LEMMA 2.1. Let  p be a real polynomia l  o f  n variables. I f  there exists  a ne ighbourhood 5 / C  R n 

such tha t  p ( X )  = c on 5/, then p - c. 

PROOF. As p is a constant function on 5/, all partial derivatives of p are equal to 0 on 5/. Since 
the expansion of p into the Taylor series is finite, the result follows. 

THEOREM 2.2. For any  Y C R n, n > 2, there is no Y - c o m p a t i b l e  po lynomia l  funct ion f : 
Rn  ---, ]~k, l <_ k < n. 

PROOF. For m < n, let Ym = ( Y m , Y m + l , . . . , Y n ) ,  and let S = {Z c Rn-1;  Z < Y2}. 
Suppose on the contrary that  f : R ~ --* ~I k is Y-compatible,  f = (f l ,  f 2 , . . . ,  fk ) .  We claim 

tha t  at least one of the following holds. 

(i) There exist j E {1, 2 , . . . ,  k}, Z E S, and a neighbourhood 5 / C  S of Z in R '~-1 such tha t  

f j  (Yl, X )  - f j  (Y) -- 0, for every X E 5/. 

(ii) There exists X ~ R n - l ,  X < Y2, such that  for all i = 1, 2, . . . ,  k, 

f (yl, x )  - f (Y) < o. 

Suppose tha t  (i) is not true. Let Z E S, Z < Y2, and let 5/1 c S be a neighbourhood of Z. As (i) 

does not hold, there is X1 E 5/1, such that  f l ( Y l ,  X1)  - f l ( Y )  < 0. As f is continuous, there is a 
neighbourhood/42 of X1 such tha t  5/2 C 5/1 and fl(Yl,  W) - f l (Y)  < 0 for every W E 5/2. Then 
in 5/2, we can choose a vector X2 such tha t  f 2 ( y l , X 2 )  - f2(Y) < 0. If  we proceed in this manner,  
we obtain nested neighbourhoods 5/k C 5/k-1 C . . .  C 5/1. Finally, we choose X E/4k such tha t  

f k (Y l ,  X )  - f k ( Y )  < 0. Since/4k C 5/i for i = 1, 2 , . . . ,  k - 1, we also have f i (Y l ,  X2) - f~ (Y )  < O. 
Furthermore,  as X E 5/1 C S, it follows X < Y. Thus, (ii) holds, which proves the claim. 

Suppose tha t  (ii) holds. Then f ( Y l  + 5, X )  < f ( Y )  for 5 > 0 small enough, therefore, f is not 
Y-compatible.  Therefore, (i) must  hold. Thus, there exists j such that  f j  (yl, X)  - f j  (Y) = 0, 
for each X in some neighbourhood in S C R n-1. Consider f y ( y l , X )  - f j ( Y )  as a function of 
variables x2, x 3 , . . . ,  xn. By Lemma 2.1, we have 

f j  ( y l , X )  - f j ( Y )  = O, X E ]I~ n -1 .  (1) 

Set g~(Z) = f~(Yl, Z ) ,  for Z E R ~-1 and i : 1, 2 , . . . ,  k. Note tha t  for all i, g~(Y2) = f i ( Y ) ,  
and by (1), g j ( Z )  = gj(Y2). We next want to show that  Y-compatibil i ty of f implies Y2- 
compatibi l i ty of g : ]~n-1 __, i~k-1, g = ( g l , . . . , g j - l , g j + l , . . . , g k ) .  Let Z E Rn-1 and let 

Z < ]I2. Then (Yl, Z) < Y and f ( Y l ,  Z)  < f ( Y ) .  We conclude g(Z)  <_ g(Y2). Conversely, assume 
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tha t  9(Z)  <_ 9(!I2), i.e., f/(Yl, Z) _< f / (Y)  for i ¢ j .  Since by (1) for i = j ,  f j ( Y l ,  Z)  = f j ( Y ) ,  we 
have f ( Y l ,  Z)  <_ f ( Y )  which in tu rn  implies (Yl, Z) <_ Y, and therefore, Z _< 112. 

By the above argument ,  an existence of Y-compat ib le  function f : IR n --+ R k implies an 

existence of Y2-compatible function g : R n-1  --+ R k-1. We continue this procedure  and finally 
end up with a Yk = (Yk, Y k + l , . . . ,  yn)-compat ible  real mapping  h. Again, at least one of  (i) and (ii) 

holds for h. If  (ii) holds, then as above h is not  Yk-eompatible. And  if h(yk,  X )  - h(Yk)  = 0 holds 
for X E R n-k ,  we can easily choose X,  which violates the compatibility. This final contradict ion 

completes the proof. 

Note tha t  the theorem is clearly no longer true for k = n, as can be seen by considering the 
identi ty map.  We also point  out  t ha t  by similar, but  a little more careful argument ,  one can 

obta in  the same result also for rational functions. 

3 .  S T R I C T - C O M P A T I B L E  F U N C T I O N S  

The  function g defined in Section 2 can be made strict  Y-compat ib le  simply by changing X < Y 

to X < Y. For another  example, consider the following function h : R ~ --~ R defined by 

~ - l-[i~=l(xi - yi) 2, X < Y, 
h ( X )  = 

I-li=l(xi - yi) 2, otherwise. 

I t  is easy to  see tha t  h is continuous,  differentiable, and strict  Y-compatible .  However, h cannot  

be made  Y-compat ible .  Note also tha t  Oh F~7~, (Y) = 0 for all i. 
In the rest of  this section, we assume tha t  all functions are differentiable. Let J f  (Y )  be the 

Jacobian  matr ix  of the mapping  f in Y. 

LEMMA 3.1. Let  Y E R '~, and let f : Nn __+ Nk be strict  Y-compat ib le .  Then  for D = J f ( Y ) ,  we 

have: 

(i) tbr all H C R ~, H < 0 implies D H  <_ O; 
(ii) for all H C R '~, D H  < 0 implies H < O. 

PaOOF. As f is differentiable, for any H E R ~, we can write 

f ( Y  + H)  = f ( Y )  + D H  + IIHII G ( H ) ,  

where 

For any t > 0, we thus have 

lim G ( H )  = O. 
IIgll~0 

f ( Y  + t H )  = f ( Y )  + t ( D H  + IIHtl G( tH) ) .  (2) 

Since f is str ict  Y-compat ib le  for any H < 0, (2) gives 

0 > f ( Y  + t H )  - f ( Y )  = t ( D H  + IIHII G( tH) ) .  

Now if (i) would not  hold, say ( D H ) i  > 0 for some i, then for t small enough, the ith componen t  

of D H  + IIH[I G ( t H )  would still be positive, a contradict ion.  Thus,  (i) holds. 
Suppose next, D H  < 0. Then  by (2), f ( Y  + t H )  - f ( Y )  < 0 holds for t small enough. Since f 

is str ict  Y-compat ible ,  t H  < 0. But  this implies H < 0 and the proof  is complete.  

LEMMA 3.2. Let  D be a k x n matr ix ,  k < n, and let K E IR n be a vector such that  D K  < O. 

Then there exists  H E IR n, such that  D H  < 0 and H ~ O. 

PROOF. Let D K  = W < 0. Then,  D H  = W can be interpreted as a consistent sys tem of k 

linear equat ions  with n variables hi ,  h2,. • . ,  hn. Let m = rank(D) .  Since m < k < n, there exists 
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an m x m submatr ix  with nontrivial determinant.  We may, without loss of generality, suppose 
tha t  this is the upper  left submatrix.  Then, the system D H  = W is equivalent to the system 

hi = g i ( h m + l , h m + 2 , . . . , h n , w l , w 2 , . . . , W k ) ,  i = 1 , 2 , . . . , m .  

Thus, we can arbitrari ly choose components hm+l, hm+2 , . . . ,  hn, and then calculate components 
hi ,  h2,.  • . ,  hm. In this way, we can obtain H such tha t  D H  < 0, but H ~ 0. 

THEOREM 3.3. For a strict Y -compat ib le  map  f ,  J / ( Y )  = O. 

PROOF. By Lemma 3.1 (i), D H  < 0 for any H < 0. If for some H,  D H  < 0, then Lemma 3.2 
contradicts 3.1 (ii). Thus, D H  = 0 for all H < 0. Now let H be an arbi trary vector and define 
vectors H ~ and H ~ in the following way: 

- H i ,  H i > 0 ,  { H i ,  H i < 0 ,  

H i =  2Hi, H i < 0 ,  and H ( =  - 2 H i ,  H i > 0 ,  

- 1 ,  Hi - -0 ,  1, Hi - -0 .  

Then, H '  < 0 and H "  < 0. Note also tha t  H = H '  - H " .  Therefore, D H  = D ( H '  - H " )  = 

D ( H ' )  - D ( H " )  = 0. Hence, D H  = 0 for any H c l~ n, which is only possible if J / ( Y )  = O. 

4. C O N C L U S I O N  

The presented proof of nonexistence of Y-compatible polynomial function indicates the limits in 
da ta  compression of analog signatures. In the future, we may expect solutions which may only to 
a given (but still acceptable) degree satisfy the condition stated in the definition of Y-compatible 
polynomial function. Such is the case in digital signature analysis [5], where the probabil i ty of 
two different responses of equal length having the same signature is usually neglected in practice. 
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