The Clar formulas of a benzenoid system and the resonance graph

Khaled Salem¹

The British University in Egypt El Shorouk city, Postal code 11837, Egypt ksalem@bue.edu.eg

Sandi Klavžar

Department of Mathematics, University of Ljubljana Jadranska 19, 1000 Ljubljana, Slovenia sandi.klavzar@fmf.uni-lj.si

Aleksander Vesel

Department of Mathematics and Computer Science, University of Maribor PeF, Koroška cesta 160, 2000 Maribor, Slovenia vesel@uni-mb.si

Petra Žigert

Faculty of Chemistry and Chemical Engineering, University of Maribor Smetanova 17, 2000 Maribor, Slovenia petra.zigert@uni-mb.si

Abstract

It is shown that the number of Clar formulas of a Kekuléan benzenoid system B is equal to the number of subgraphs of the resonance graph of B isomorphic to the Cl(B)-dimensional hypercube, where Cl(B) is the Clar number of B.

Key words: Benzenoid system, resonance graph, resonant set, Clar formula

 1 corresponding author

Preprint submitted to Elsevier

 $30 \ October \ 2008$

1 Introduction

Benzenoid systems are interesting graphs in chemical graph theory [1,2] since they represent the chemical compounds known as benzenoid hydrocarbons. A necessary condition for a benzenoid hydrocarbon to be (chemically) stable is that it possesses Kekulé structures, which describe the distribution of so called π -electrons i.e. double bonds in a benzenoid hydrocarbon. Consequently, Kekuléan benzenoid systems pertain to those benzenoid hydrocarbons that are of main chemical interest [3]. Replacing the three alternating double bonds in a single hexagon of a Kekulé structure with a circle such that circles are not drawn in adjacent hexagons, one obtains a generalized Clar formula of a benzenoid system. As a consequence an invariant of a Kekuléan benzenoid system called Clar number can be introduced. It was Clar [4] who noticed the significance of this number in the chemistry of benzenoid hydrocarbons.

The resonance graph [5] of a Kekuléan benzenoid system models interactions among its Kekulé structures. The vertices of the resonance graph are the Kekulé structures; two vertices are adjacent if the corresponding Kekulé structures interact, that is if one Kekulé structure is obtained from the other by rotating three double bonds in a hexagon.

This concept of resonance graphs was first put forward by Gründler [6] and was then re-invented by El-Basil [7,8] and, independently, by Randić [9,10]. In addition to this, without any reference to chemistry, Zhang, Guo and Chen introduced resonance graphs and established their basic mathematical properties [5,11,12]. For some recent developments, see the review article [13] and [14–16].

The main motivation for the present paper is the following theorem from [17].

Theorem 1.1 Let B be a Kekuléan benzenoid system and R(B) its resonance graph. Then there exists a surjective mapping from the set of subgraphs of R(B) isomorphic to hypercubes onto the family of nonempty resonant sets of B.

Here, we take a closer look to this. As a consequence, we prove our main result: the number of Clar formulas of a Kekuléan benzenoid system B is equal to the number of subgraphs of the resonance graph of B isomorphic to the Cl(B)-dimensional hypercube, where Cl(B) denotes the Clar number of B.

2 Preliminaries

A *benzenoid system* (also called a *hexagonal system*) is a 2-connected plane graph such that its each inner face is a regular hexagon of side length 1. A benzenoid system is *Kekuléan* if it has a Kekulé structure, i. e., it has a perfect matching.

Let P be a set of hexagons of a Kekuléan benzenoid system B. We call P a resonant set of B (or a generalized Clar formula of B) if the hexagons in P are pair-wise disjoint and there exists a perfect matching of B that contains a perfect matching of each hexagon in P [18,19]. The latter condition can be replaced by the subgraph B - P (obtained by deleting from B the vertices of the hexagon in P) is either empty or has a perfect matching of a hexagon of B [20]. The maximum of the cardinalities of all the resonant sets is called the Clar number [21] and denoted Cl(B). A maximum cardinality resonant set (or a Clar formula) is a resonant set whose cardinality is the Clar number. A resonant set P such that the subgraph B - P is either empty or has a unique perfect matching is called a canonical resonant set [2,22]. Fig. 1 illustrates these concepts.

Fig. 1. A Kekuléan benzenoid system, the (unique) Clar formula and the remaining two canonical resonant sets.

The resonance graph [5] of a Kekuléan benzenoid system B (also called the Ztransformation graph) is the graph whose vertices are the perfect matchings of B and where two perfect matchings are adjacent provided that their symmetric difference is the edge set of a hexagon of B. Fig. 2 presents the resonance graph of the Kekuléan benzenoid system from Fig. 1.

The k-dimensional hypercube, where k is a positive integer, is the graph whose vertex set is the set of all binary sequences of length k and where two vertices are adjacent provided that they differ in exactly one position. For graph theoretical terminology the reader is referred to [23].

Fig. 2. The resonance graph of B.

3 The number of Clar formulas of a benzenoid system

In order to prove our main theorem some preparation is needed.

Let B be a Kekuléan benzenoid system and R(B) its resonance graph. Let Q be a subgraph of R(B) isomorphic to the k-dimensional hypercube for some positive integer k. We may assume that the vertices of Q (considered as the vertices of R(B)) are labelled with the binary sequences of length k such that two vertices of Q are adjacent in Q if and only if their binary sequences differ in exactly one position. Consider the following vertices of Q:

$$u \equiv \langle 000 \dots 0 \rangle, v^1 \equiv \langle 100 \dots 0 \rangle, v^2 \equiv \langle 010 \dots 0 \rangle, \dots, v^k \equiv \langle 000 \dots 1 \rangle.$$

By the definition of the resonance graph, each of the edges uv^1, uv^2, \ldots, uv^k corresponds to a unique hexagon of B. More precisely, for each $j = 1, 2, \ldots, k$, let H_j denote the symmetric difference of u and v^j . Then it was proved in [17] that, given arbitrary vertices x and y of Q whose binary sequences differ only at the j-th place for some $j = 1, 2, \ldots, k$, then the symmetric difference of x and y is the hexagon H_j , as seen on Fig. 2. Moreover [17], the set

$$\mathcal{R}_Q = \{H_1, H_2, \dots, H_k\}$$

is a resonant set of B of cardinality k. Therefore, we call \mathcal{R}_Q the resonant set associated with a subgraph Q of R(B) isomorphic to a hypercube, see Figs. 1 and 2.

Fig. 3. A Kekuléan benzenoid system (coronene), both its Clar formulas, the remaining three canonical resonant sets and the resonant set $\{H_7\}$.

Fig. 4. The resonance graph of coronene.

Let B be a Kekuléan benzenoid system and R(B) be its resonance graph. Let P be a resonant set of B of cardinality k for some positive integer k. If the subgraph B - P is empty, let M be the empty set, otherwise, let M be a perfect matching of B - P. For each choice of M, the 2^k perfect matchings of the hexagons in P produce 2^k perfect matchings of B. It is clear that for each choice of M, the set of 2^k perfect matchings of B can be coded with integer sequences of length k + 1 where the first integer in the sequence denotes the choice of M and the remaining k integers are binary digits. Hence, the subgraph of R(B) induced by each such set of 2^k perfect matchings of B is isomorphic to the k-dimensional hypercube.

Thus, given a resonant set of B of cardinality k for some positive integer k, this procedure associates a unique subgraph of R(B) isomorphic to the k-dimensional hypercube if P is a canonical resonant set, otherwise, it associates as many (vertex-disjoint) subgraphs of R(B) isomorphic to the k-dimensional hypercube as the number of perfect matchings of B - P. This allows the definition of the set of subgraphs of R(B) isomorphic to a hypercube associated with a resonant set. For a resonant set P, let us denote the associated set of hypercubes with \mathcal{H}_P .

The above concept is illustrated with Figs. 3 and 4. The resonance graph of coronene has a unique 2-dimensional hypercube associated with the canonical resonant set $\{H_2, H_5\}$. However, it has two 1-dimensional hypercubes associated with the resonant set $\{H_7\}$ which is not a canonical resonant set. In fact, the subgraph of coronene obtained by removing the vertices of H_7 is a cycle, thus, it has two perfect matchings.

We need some more notation for our first result. Let B be a Kekuléan benzenoid system and R(B) be its resonance graph. Let $\mathcal{H}(R(B))$ be the set of subgraphs of R(B) isomorphic to hypercubes and $\mathcal{RS}(B)$ be the family of nonempty resonant sets of B.

Theorem 3.1 Let B be a Kekuléan benzenoid system and let $f : \mathcal{H}(R(B)) \to \mathcal{RS}(B)$ be a mapping defined with $f(Q) = \mathcal{R}_Q$ for $Q \in \mathcal{H}(R(B))$. Then the inverse image of a nonempty resonant set P under the mapping f is \mathcal{H}_P .

PROOF. Let P be a resonant set of B of cardinality k for some positive integer k. It is clear that \mathcal{H}_P is a subset of the inverse image of P under the mapping f. Let Q be an element of the inverse image of P under the mapping f, i.e., Q is a subgraph of R(B) isomorphic to the k-dimensional hypercube and P is the resonant set associated with Q. It follows from the remarks at the beginning of this section that for each vertex w of Q, w contains a perfect matching of each hexagon in P. Also, those remarks imply that for each two adjacent vertices of Q, their symmetric difference is a hexagon in P. Since Q is connected, the vertex set of Q is the vertex set of a subgraph in the set of subgraphs of R(B) isomorphic to a hypercube associated with the resonant set P. Hence, Q is an element of \mathcal{H}_P . \Box

Note that Theorem 3.1, in particular, asserts that the mapping f is surjective, a result first proved in [17] and here stated as Theorem 1.1.

Here is our main result.

Theorem 3.2 Let B be a Kekuléan benzenoid system. Then there exists a bijective mapping from the set of subgraphs of R(B) isomorphic to the Cl(B)-dimensional hypercube into the family of maximum cardinality resonant sets of B.

PROOF. It is clear that the image of a subgraph of R(B) isomorphic to the Cl(B)-dimensional hypercube under the mapping defined in Theorem 3.1 is a resonant set whose cardinality is Cl(B), i.e., a maximum cardinality resonant set. Also, a maximum cardinality resonant set is a canonical resonant set [24,25]. Hence, by Theorem 3.1 and the remarks preceding it, the inverse image of a maximum cardinality resonant set under the mapping defined in Theorem 3.1 is a singleton set containing a subgraph of R(B) isomorphic to the Cl(B)-dimensional hypercube. \Box

As illustrated in Fig. 3, coronene has exactly two Clar formulas (maximum cardinality resonant sets) and its Clar number is 3. Indeed its resonance graph (see Fig. 4) has exactly two 3-dimensional hypercubes.

Acknowledgment

The research was initiated during the visit of the first author in Slovenia supported by the Ministry of Science of Slovenia under the grant P1-0297. The other authors are also supported by the Ministry of Science of Slovenia under the grant P1-0297.

References

[1] I. Gutman, S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer-Verlag, Berlin, 1989.

- [2] M. Randić, Aromaticity of polycyclic conjugated hydrocarbons, Chem. Rev. 103 (2003) 3449–3605.
- [3] G. Brinkmann, C. Grothaus, I. Gutman, Fusenes and benzenoids with perfect matchings, J. Math. Chem. 42 (2007) 909–924.
- [4] E. Clar, The Aromatic Sextet, Wiley, London, 1972.
- [5] F. Zhang, X. Guo, R. Chen, Z-transformation graphs of perfect matchings of hexagonal systems, Discrete Math. 72 (1988) 405–415.
- [6] W. Gründler, Mesomerie und Quantenmechanik, Z. Chem. (Leipzig) 23 (1983) 157–167.
- [7] S. El-Basil, Kekulé structures as graph generators, J. Math. Chem. 14 (1993) 305–318.
- [8] S. El-Basil, Generation of lattice graphs. An equivalence relation on Kekulé counts of catacondensed benzenoid hydrocarbons, J. Mol. Struct. (Theochem) 288 (1993) 67–84.
- M. Randić, Resonance in catacondensed benzenoid hydrocarbons, Int. J. Quantum Chem. 63 (1996) 585–600.
- [10] M. Randić, D. J. Klein, S. El-Basil, P. Calkins, Resonance in large benzenoid hydrocarbons, Croat. Chem. Acta 69 (1996) 1639–1660.
- [11] F. Zhang, X. Guo, R. Chen, The connectivity of Z-transformation graphs of perfect matchings of hexagonal systems, Acta Math. Appl. Sinica (English Ser.) 4 (1988) 131–135.
- [12] R. Chen, F. Zhang, Hamilton paths in Z-transformation graphs of perfect matchings of hexagonal systems, Discrete Appl. Math. 74 (1997) 191–196.
- [13] H. Zhang, Z-transformation graphs of perfect matchings of plane bipartite graphs: a survey, MATCH Commun. Math. Comput. Chem. 56 (2006) 457– 476.
- [14] A. Taranenko, A. Vesel, On elementary benzenoid graphs: new characterization and structure of their resonance graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 193–216.
- [15] H. Zhang, P. C. B. Lam, W. C. Shiu, Resonance graphs and a binary coding for the 1-factors of Benzenoid systems, SIAM J. Discrete Math. 22 (2008) 971–984.
- [16] H. Zhang, H. Yao, D. Yang, A min-max result on outerplane bipartite graphs, Appl. Math. Lett. 20 (2007) 199–205.
- [17] K. Salem, S. Klavžar, I. Gutman, On the role of hypercubes in the resonance graphs of benzenoid graphs, Discrete Math. 306 (2006) 699–704.
- [18] H. Hosoya, T. Yamaguchi, Sextet polynomial. A new enumeration and proof technique for the resonance theory applied to the aromatic hydrocarbons, Tetrahedron Lett. 52 (1975) 4659–4662.

- [19] I. Gutman, Some combinatorial consequences of Clar's resonant sextet theory, MATCH Commun. Math. Comput. Chem. 11 (1981) 127–143.
- [20] I. Gutman, Covering hexagonal systems with hexagons, in: 4th Yugoslav Seminar on Graph Theory, Institute of Mathematics, University of Novi Sad, Novi Sad, 1983, pp. 151–160.
- [21] P. Hansen, M. Zheng, Upper bounds for the Clar number of a benzenoid hydrocarbon, J. Chem. Soc. Faraday Trans. 88 (1992) 1621–1625.
- [22] W. C. Herndon, H. Hosoya, Parametrized valence bond calculations for benzenoid hydrocarbons using Clar structures, Tetrahedron 40 (1984) 3987– 3995.
- [23] R. Diestel, Graph theory, 3rd Edition, Vol. 173 of Graduate Texts in Mathematics, Springer-Verlag, Berlin, 2005.
- [24] I. Gutman, Topological properties of benzenoid systems. XIX. Contributions to the aromatic sextet theory, Wiss. Z. Thechn. Hochsch. Ilmenau 29 (1983) 57–65.
- [25] M. Zheng, R. Chen, A maximal cover of hexagonal systems, Graphs Combin. 1 (1985) 295–298.