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Abstract

LetQn be then-cube and letQkn be the subgraph ofQn induced by the vertices at distance6 k from a given vertex.Qkn-
like graphs are introduced as graphs in which for any vertexu the set of vertices at distance6 k from u induces aQkn. Two
characterizations ofQkn-like graphs are given and an O(d|V (G)|2) recognition algorithm is presented, whered is the degree of
a givend-regular graphG. Several examples ofQkn-like graphs are also listed. 1999 Published by Elsevier Science B.V. All
rights reserved.
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1. Introduction

Hypercubes form a class of graphs with amazingly
much structure and have been studied extensively.
However, not many graphs are hypercubes. It is there-
fore not surprising that they have been generalized in
several directions. One can consider a class of graphs
which contains hypercubes as a (very) special case.
Median graphs and partial cubes form well-known
bipartite generalizations of hypercubes, while Ham-
ming graphs,(0, λ)-graphs and distance monotone
graphs present some of the non-bipartite generaliza-
tions, see [2,3,8,10,11,13,14].

In interconnection network design theory, a hyper-
cube is taken as a starting topology and then by some
modification one tries to improve the topological prop-
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erties of the network. Here we mention generalized hy-
percubes [4], incomplete hypercubes [12], and super-
cubes [16]. In this note we propose a class of graphs
which contains hypercubes as a special case yet locally
these graphs are hypercube like. Such graphs could be
useful, for instance, when we plan an interconnection
network in which a typical message is expected to be
sent not far away because then a simple hypercube-
like local routing using the Hamming distance could
be used.

In the rest of this section we give necessary defin-
itions. In the next section we introduce these graphs,
characterize them in two ways and give an O(d ·
|V (G)|2) recognition algorithm, whered is the degree
of a given graph. We conclude with several examples.

All graphs considered are connected and simple.
The distanced(u, v) between verticesu and v of a
graphG will be the usual shortest path distance. For
a vertexu of a graphG, let
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Nk(u)=
{
w | d(u,w)= k} and

N6k(u)=
{
w | d(u,w)6 k}.

The intervalI (u, v) between verticesu and v of a
graphG contains the vertices ofG that lie on shortest
paths betweenu andv. LetNi(u, x) = I (u, x)∩Ni(u).

The hypercubeQn of dimensionn (n-cube for
short) is a graph whose vertices are elements of the
power set of ann-set, and two vertices are adjacent
if the symmetric difference of the corresponding sets
has exactly one element. Alternatively, the vertices of
Qn are all sequences of lengthn over {0,1} and two
vertices are adjacent if the corresponding sequences
differ in precisely one coordinate. For anyk, we
denote byQkn the subgraph ofQn induced by the
vertices represented by subsets of size at mostk.

A connected graphG is a (0,2)-graph if any
two distinct vertices inG have exactly 2 common
neighbors or none at all. It was proved in [13] that
(0,2)-graphs are regular.

Finally, for a graphG, let theodd girthofG, og(G),
be the length of a shortest odd cycle ofG, if there is
one; otherwise the odd girth is defined to be infinite.

2. Characterizing and recognizingQkn-like graphs

Let k > 2. ThenG is aQkn-like graph if, for any
vertex u of G the setN6k(u) induces aQkn. Thus,
looking around from any vertexu to distance6 k, the
structure is the same as in then-cubeQn. Clearly,Qn
is aQkn-like graph for everyk > 2. Note also thatQkn-
like graphs aren-regular.

If G is a Qkn-like graph, then, for each vertexu,
we can provide all vertices inN6k(u) with thesubset
representationwith respect tou. More precisely, we
representu by ∅, and x ∈ Ni(u) (1 6 i 6 k) we
represent byN1(u, x), which is a uniquely determined
i-subset ofN(u).

In the next theorem we characterizeQkn-like graphs
in two different ways. These characterizations could
be deduced from results 4.3.6 and 4.3.7 of [6]. How-
ever, as our direct proof is quite short, we include it to
make this note self-contained.

Theorem 2.1. For any k > 2 and any connected
graphG, the following statements are equivalent.
(i) G is aQkn-like graph,

(ii) for any two verticesu andv ofG with d(u, v)6
k, the interval I (u, v) induces the hypercube
Qd(u,v) and og(G)> 2k + 3,

(iii) |I (u, v) ∩N(v)| = d(u, v), for anyu andv with
d(u, v)6 k, and og(G)> 2k+ 3.

Proof. (i) ⇒ (ii) ⇒ (iii) These implications follow
because intervals in hypercubes induce hypercubes.

(iii) ⇒ (i) First note thatG is a (0,2)-graph, thus
G is regular of degreen, say. Letu be an arbitrary
vertex ofG. We will prove by induction ont that
N6t (u) induces aQtn, for t 6 k. The statement is
clearly true fort = 2, sinceG is a (0,2)-graph with
og(G)> 2k+ 3.

Suppose now that for somet , with 26 t < k, the set
N6t (u) induces a hypercubeQtn. In particular, each
vertexx in Nt(u) hast neighbors inNt−1(u). Since
og(G) > 2k + 3> 2t + 3, the othern − t neighbors
of x lie in Nt+1(u). Let w be an arbitrary vertex in
Nt+1(u). By the assumption,w has t + 1 neighbors
in Nt(u), sayv1, v2, . . . , vt+1. We claim that for each
i andj , i 6= j , vi andvj have their second common
neighborx in Nt−1(u). Consider thet neighbors of
vi in Nt−1(u). Each of them has a unique second
common neighbor withw in Nt(u) ∩ (N(w) \ {vi}).
Hencevi andvj have a common neighbor inNt−1(u).

Set {1,2, . . . , ˆ̀, . . . , k} = {1,2, . . . , k} \ {`}. With-
out loss of generality letv1 be represented by{1̂,2, . . . ,
t + 1} and letv2 be represented by{1, 2̂,3, . . . , t + 1}.
Consider the representation ofv`, for ` 6= 1,2. With-
out loss of generality let the common neighbor ofv1
andv` in Nt−1(u) be represented byA = {1̂,2, . . . ,
ˆ̀, . . . , t + 1}. Let the common neighbor ofv2 andv`
in Nt−1(u) be represented byB = {1, 2̂, . . . , ˆ̀1, . . . ,
t + 1}. Thenv` is represented by at-subset which is
contained inA∪B. Hencè = `1 andv` is represented
by {1,2, . . . , ˆ̀, . . . , t + 1}. Thus the neighbors ofw
in Nt(u) are represented by{1,2, . . . , ˆ̀, . . . , t + 1},
` = 1,2, . . . , t + 1. It follows that we can represent
w by {1,2, . . . , t +1}. Furthermore, verticesw andw′
from Nt+1(u) have at most one common neighbor in
Nt(u), otherwise the interval between any two com-
mon neighbors would containw andw′ and some ver-
tex fromNt−1(u) which is impossible. This implies
thatw andw′ are represented by different(t +1)-sets.

To complete the proof we must show that all(t+1)-
sets occur inNt+1(u). By the induction hypothesis,
there are

(
n
t

)
vertices inNt(u), each havingn − t



S. Klavžar et al. / Information Processing Letters 71 (1999) 87–90 89

neighbors inNt+1(u). Since a vertex fromNt+1(u) is
adjacent tot + 1 vertices inNt(u) there are

n− t
t + 1

(
n

t

)
=
(

n

t + 1

)
vertices inNt+1(u). Hence every(t+1)-subset is used
to represent a vertex inNt+1(u). 2

For k = 2, Theorem 2.1 gives us:

Corollary 2.2. Let G be a connected graph with
og(G)> 7. ThenG is a (0,2)-graph if and only ifG
is aQ2

n-like graph for somen.

Proposition 2.3. For a given graphG one can decide
in O(n|V (G)|2) time and|V (G)|2 space whetherG is
aQkn-like graph.

Proof. Consider the following procedure.
(1) If G is not ann-regular connected graph then

reject.
(2) Compute the distance matrix ofG.
(3) For each pair of verticesu,v ∈ V (G) with d(u, v)
6 k, do the following:
(a) if |{w|vw ∈ E(G),d(w,u)= d(v,u)− 1}| 6=

d(u, v), then reject;
(b) if |{w|vw ∈E(G),d(w,u)= d(v,u)+ 1}| 6=

n− d(u, v), then reject.
(4) If G was not rejected, thenG is aQkn-like graph.

Clearly, the first condition of Theorem 2.1(iii) is
verified in step (3a). Since in step 1G was tested
for n-regularity, step (3b) then ensures thatog(G) >
2k + 3. Thus the procedure correctly recognizesQkn-
like graphs.

Step 1 can clearly be performed within the given
time and space bounds.

Using Dijkstra’s algorithm, step 2 can be computed
in O(|V (G)| |E(G)|) time and O(|V (G)|2) space.
SinceG is an-regular graph and∑
v∈V (G)

d(v)= 2
∣∣E(G)∣∣,

it follows that

O
(|E(G)|)=O

(
n|V (G)|).

For step 3 we must compare at most O(|V (G)|2)
pairs of vertices. Letu,v be such a pair. Then we go
through the adjacency list ofv and count the number

of verticesw with d(w,u) = d(v,u) − 1 and with
d(w,u) = d(v,u) + 1. Because each distance can be
accessed in O(1) time, the time needed for one such
pair is O(n). Thus the time complexity of step 3 is
O(n|V (G)|2). 2

3. Examples ofQkn-like graphs

The Cartesian productG2H of graphsG and
H is the graph with vertex setV (G) × V (H) and
(u,u′)(v, v′) is an edge ofG2H wheneveruv ∈
E(G) andu′ = v′, or u= v andu′v′ ∈E(H).

The Cartesian product of graphs is a natural con-
struction, in particular it is quite frequent in the inter-
connection network design theory. Let us give some
examples. First of all,Qn is the Cartesian product ofn
copies ofK2. In addition, the so-calledk-ary n-cube,
cf. [1,5], is just the Cartesian product ofn copies of the
k-cycle. For one more example we point out that the
cube-connected cycles, cf. [9,15], are spanning sub-
graphs of the Cartesian product of a cycle with a hy-
percube.

For our graphs the Cartesian product is important
for the following reason.

Proposition 3.1. LetG be aQkn-like graph and letH

be aQk
′
n′ -like graph. ThenG2H is aQmin{k,k′}

n+n′ -like
graph.

Proof. If (u,u′) and (v, v′) are vertices ofG2H ,
then

IG2H ((u,u′), (v, v′))= IG(u,u′)× IH (v, v′).
Then for any verticesu,v in G with d(u, v) = s 6 k
and any verticesu′, v′ in H with d(u′, v′) = s′ 6
k′, the subgraph induced byIG2H((u,u′), (v, v′))
is Qss ′ . Without loss of generality letk′ 6 k. Then
it follows that for any two vertices ofG2H with
distance at mostk′ the interval between them induces
a hypercube. Clearly,og(G2G′) is at least 2k′ + 3.
Thus, from Theorem 2.1(ii) the result follows.2
Corollary 3.2. Let G be aQkn-like graph. Then for
anym> 1,G2Qm is aQkn+m-like graph.

A folded n-cube FQn is obtained fromQn by
identifying antipodal vertices. There is a distinction
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between the even and the odd case. Forn = 2k, the
graphFQ2k can be described as follows. It is obtained
from Qk2k by identifying vertices corresponding to
disjoint k-sets. It is denoted by12Q2k . Note that
1
2Q2k is a bipartite graph. Forn = 2k + 1, FQ2k+1

can be obtained fromQk2k+1 by connecting vertices
corresponding to disjointk-sets. The graphFQ2k+1
was namedextended odd graphin [14] and denoted
byEk+1.

The graph1
2Q2k+2 is aQk2k+2-like graph, andEk+2

is aQk2k+3-like graph. These two facts can be most
easily observed using the definition by identifying
antipodal vertices.

Finally, we wish to add that it was recently proved
[7] that the connectivity of an(0,2)-graph equals its
degree. Thus aQkn-like graph has connectivityn, an
important property for interconnecting networks.
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