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Abstract: The cube polynomial c(G,x) of a graph G is defined as∑
i≥0 αi (G)xi , where αi (G) denotes the number of induced i-cubes of G, in

particular, α0(G) = |V(G)| and α1(G) = |E(G)|. Let G be a median graph. It is
proved that every rational zero of c(G,x) is of the form −((t + 1)/t) for some
integer t > 0 and that c(G,x) always has a real zero in the interval [−2,−1).
Moreover, c(G,x) has a p-multiple zero if and only if G is the Cartesian prod-
uct of p trees all of the same order. Graphs of acyclic cubical complexes
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are characterized as the graphs G for which c(H, − 2) = 0 holds for every 2-
connected convex subgraph H of G. Median graphs that are Cartesian prod-
ucts are also characterized. © 2006 Wiley Periodicals, Inc. J. Graph Theory 52: 37–50, 2006

Keywords: cube polynomial; root; median graph; Cartesian product

1. INTRODUCTION

Many different graph polynomials have been introduced in the literature, cf. [11].
One of the most fundamental questions about such polynomials is what can be
said about their roots (zeros) and, moreover, can such an information be used to
better understand (classes of) graphs. The zeros of the chromatic polynomial have
probably been studied most extensively so far. The emphasis of the research is on the
location of real zeros, in particular on the determination of zero-free intervals, see
e.g. [6,16,26]. For zeros of some other important graph polynomials cf. [9,12,13].

One of the central roles in this article is reserved for median graphs. By now,
this class of graphs has been extensively investigated and a rich structure theory is
available, see the recent survey [17] and the books [14,20]. For instance, there is
an interesting connection between median graphs and (bipartite or non-bipartite)
triangle-free graphs which in particular implies that, intuitively speaking, there are
as many median graphs as there are triangle-free graphs, see [15].

The cube polynomial introduced in [8] is closely related to median graphs. It
has been basically introduced to present a general approach for obtaining the so-
called Euler-type formulas for metrically defined classes of graphs, samples of
them being presented in [7,18]. Along the way, several general properties of the
cube polynomial were obtained, cf. Theorem 2.2 below.

The cube polynomial for median graphs has already found the following ap-
plication in genetics [5]. Considering a so-called phantom mutation process, one
wishes to identify the telltale patterns of the process. For this sake frequent mu-
tations are filtered out and represented by their (quasi-)median network in order
to visualize the character conflicts. The latter can be numerically expressed by the
cube spectrum, which is an alternative name for the cube polynomial.

In this article, we study roots of the cube polynomial of median graphs. This
in particular enables us to algebraically characterize several subclasses of median
graphs: graphs of acyclic cubical complexes, median graphs that are Cartesian
products, and Cartesian products of trees of the same order. So it is relevant to add
that the original motivation for introducing median graphs arose in algebra via the
so-called median algebras. Avann [1] established the relationship between median
algebras and median graphs (called unique ternary distance graphs there) as well
as later did Nebeský [22]. For more information on median algebras (and their
relations to median graphs) see [4,20].

In the next section, we recall the notations, concepts, and results needed later.
In particular we present several basic properties of the cube polynomial. The main
result of Section 3 asserts that a rational zero of the cube polynomial of a median
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graph G is of the form −((t + 1)/t) for some t ∈ IN. We also show that c(G, x) has
no zeros in [−1, ∞). Then we characterize graphs of acyclic cubical complexes
as those graphs G for which c(H, −2) = 0 holds for every 2-connected convex
subgraph H of G. In Section 5, we prove that c(G, x) has a real zero in the interval
[−2, −1) for every non-trivial median graph G. In the following section, we first
characterize median graphs that are Cartesian products using the concept of the
cube polynomial. This result, together with several other previously proved results,
enables us to prove that for a median graph G, c(G, x) has a p-multiple zero if and
only if G is the Cartesian product of p trees all of the same order.

2. PRELIMINARIES

For u, v ∈ V (G), let dG(u, v) denote the length of a shortest path (also called
geodesic) in G from u to v. A subgraph H of a graph G is an isometric subgraph if
dH (u, v) = dG(u, v) for all u, v ∈ V (H). A subgraph H of a graph G is convex if for
any two vertices u, v of H all shortest paths between u and v in G are already in H .

A graph G is a median graph if there exists a unique vertex x to every triple
of vertices u, v, and w such that x lies simultaneously on a shortest u, v-path, a
shortest u, w-path, and a shortest w, v-path. The vertex x is called the median of
the triple u, v, w. It follows immediately from the definition that median graphs
are bipartite. LetM denotes the class of all median graphs andM∗ the class of all
graphs whose connected components are median graphs.

The Cartesian product G�H of two graphs G and H is the graph with vertex set
V (G) × V (H) and (a, x)(b, y) ∈ E(G�H) whenever either ab ∈ E(G) and x = y

or a = b and xy ∈ E(H). The n-cube Qn is the Cartesian product of n copies of
the complete graph on two vertices K2.

Edges e = xy and f = uv of a graph G are in the Djoković–Winkler relation �

[10,25] if

dG(x, u) + dG(y, v) �= dG(x, v) + dG(y, u) .

Relation � is reflexive and symmetric. If G is bipartite, then � can be defined as
follows: e = xy and f = uv are in relation � if d(x, u) = d(y, v) and d(x, v) =
d(y, u). Median graphs embed isometrically into hypercubes, see [19,20], hence
by Winkler’s result from [25] relation � is transitive on median graphs. By F(G),
denote the set of edges consisting of representatives of the � classes of a median
graph G.

A cover of a graphG is a pair of induced subgraphsG1, G2 ofG such thatV (G) =
V (G1) ∪ V (G2). We say that a cover G1, G2 is cubical, if every induced hypercube
of G is contained in at least one of the G1 and G2. A cover G1, G2 of G is called
convex if G1 ∩ G2 induces a convex subgraph of G. Note that in a cubical cover
there is no edge between a vertex of G1 \ G2 and a vertex of G2 \ G1. Moreover,
in a convex cover G1, G2 the subgraphs G1 and G2 are necessarily convex as well.
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Let G be a connected graph. The expansion G∗ of G with respect to the cubical
cover G1, G2 of G is the graph constructed as follows. Let G∗

i be an isomorphic
copy of Gi. For i = 1, 2 and for every vertex u of G0 = G1 ∩ G2, let ui be the
corresponding vertex in G∗

i . Then G∗ is constructed from the disjoint union of G∗
1

and G∗
2 so that for each u of G0 the corresponding vertices u1 and u2 are joined by

an edge. An expansion with respect to the cubical cover G1, G2 is called peripheral
if G1 ⊆ G2 or G2 ⊆ G1. Combining Mulder’s expansion theorem [19,20] with his
[21, Lemma 9], cf. also [14, Lemma 2.36], we have:

Theorem 2.1. Let G be a connected graph. Then G is a median graph if and only
if G can be obtained from the one vertex graph by a sequence of peripheral convex
expansions.

For a graph G, let αi(G), i ≥ 1, denotes the number of induced i-cubes of G. So
α1(G) is the number of edges of G. We also set α0(G) to be the number of vertices
of G. Then the cube polynomial c(G, x) of G is defined as

c(G, x) =
∑

i≥0

αi(G)xi .

For an edge e = uv of a median graph G let Ue be the subgraph of G induced by
the vertices x of G such that there is an edge f = xy with e�f and d(u, x) < d(u, y).
Let, in addition, the derivative ∂ G of a median graph G be the disjoint union of the
graphs Ue, e ∈ F(G). If G ∈M∗, then G = G1 ∪ G2 ∪ · · · ∪ Gs, where each Gi is
a median graph, so the derivative of G can be defined as ∂ G = ∂ G1 ∪ ∂ G2 ∪ · · · ∪
∂ Gs. Moreover, one also defines higher derivatives in the following way. For k ≥ 0,
set ∂k G = G, if k = 0, and ∂k G = ∂ (∂k−1 G), if k ≥ 1. As usual, by c′(G, x) we
denote the derivative of c(G, x), and by c(k)(G, x) its k-th derivative.

From [8] we recall the following properties of the cube polynomial to be used
in the sequel.

Theorem 2.2. Let c(G, x) be the cube polynomial of a graph G.

(i) Let G be the expansion with respect to the cubical cover G1, G2 and let
G0 = G1 ∩ G2. Then c(G, x) = c(G1, x) + c(G2, x) + x c(G0, x).

(ii) For every median graph G, it holds c(G, −1) = 1.
(iii) For every graphs G and H , it holds c(G�H, x) = c(G, x)c(H, x).
(iv) For every median graph G and every integer k ≥ 1, it holds c(k)(G, x) =

c(∂k G, x).
(v) For every median graph G, the value c′(G, −1) equals the number of �-

classes of G.
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We note that Theorem 2.2 (ii) follows from the fact that for every median graph G,

∑

i≥0

(−1)i αi(G) = 1 ,

a result first proved in [24, Theorem 4.2.(6)]. It was proved independently in [23],
where also Theorem 2.2 (v) was established using a different notation.

3. RATIONAL ROOTS OF THE CUBE POLYNOMIAL

We first observe that inM∗ every rational number smaller than −1 is realizable as
a zero of some cube polynomial. To see this, let s, t ∈ IN with s ≥ t + 1. Let G be
the disjoint union of a tree on t + 1 vertices (and t edges) and s − t − 1 copies of
K1. Then, c(G, − s

t
) = 0.

The situation with rational zeros of the cube polynomial is different in the class
M. Namely, they are restricted to the interval [−2, −1) as it follows from Theorem
3.3. Moreover, the cube polynomial of a median graph does not have any real zero
in the interval [−1, ∞). In fact, more is true:

Proposition 3.1. Let G ∈M∗ be a graph with at least one edge. Then c(G, x) is
a strictly increasing function on [−1, ∞).

Proof. We prove it by induction on the number of edges of G. If G has one
edge then it is the disjoint union of a K2 and r ≥ 0 copies of K1. Then c(G, x) =
(r + 2) + x, so the assertion is clearly true.

Let G be a graph fromM∗ with more than one edge and let G1, G2, . . . , Gk be
its connected components. Then

c(G, x) =
k∑

i=1

c(Gi, x),

and hence, using Theorem 2.2 (iv),

c′(G, x) =
k∑

i=1

c′(Gi, x) =
k∑

i=1

c(∂ Gi, x) =
k∑

i=1

∑

e∈Fi

c(Ue, x) ,

where Fi denotes the set of representatives of the � classes of Gi. Now, each Ue is
a median graph with fewer edges than G. If Ue = K1 then c(Ue, x) = 1. And, if Ue

has at least one edge, then c(Ue, x) ≥ 1 on [−1, ∞) by the induction assumption
and the fact that c(Ue, −1) = 1. So, we conclude that c′(G, x) > 0 on [−1, ∞). �

Proposition 3.1 quickly yields a zero-free interval for cube polynomials of graphs
from M∗. For if G has at least one edge and G1, G2, . . . , Gk are its connected



42 JOURNAL OF GRAPH THEORY

components, then

c(G, −1) =
k∑

i=1

c(Gi, −1) = k > 0.

If G has no edges, then c(G, x) = |V (G)| > 0. This implies the following conse-
quence:

Corollary 3.2. Let G be a graph fromM∗. Then c(G, x) has no zeros in [−1, ∞).

Let T be a tree on n ≥ 2 vertices, then c(T, x) = n + (n − 1)x. So the only
(rational) zero of c(T, x) is −(n/(n − 1)). However, as we show in the next result,
much more is true—all possible rational zeros are already realized on trees.

Theorem 3.3. Let G be a median graph. If c(G, a) = 0 for a rational number a,
then a = −((t + 1)/t) for some integer t > 0.

Proof. By Proposition 3.1, we may assume that a < −1. So, let a = −(s/t),
where s, t ∈ IN and s > t + 1. Suppose first that a is not an integer. Then t > 1, and
we may assume that s and t are relatively prime. Since s − t > 1 this also implies
that (s − t) and t are relatively prime. In what follows we prove:

Claim A There exists p ∈ IN such that tpc(G, a) ≡ t (mod s − t).

The proof of the claim is by induction on the number of peripheral expansion
steps. As c(K1, a) = 1, we have tc(K1, a) = t and t ≡ t (mod s − t) which shows
the basis of induction.

Let G be constructed from a median graph G′ by a peripheral expansion with
respect to G0. Then

c(G, x) = c(G′, x) + (x + 1)c(G0, x),

hence

c(G, a) = c(G′, a) + (a + 1)c(G0, a),

and so

t c(G, a) = t c(G′, a) − (s − t)c(G0, a). (1)

By induction, for a median graph G′ there exists p ∈ IN such that tpc(G′, a) ≡
t (mod s − t). Also, note that if κ is the size of the largest hypercube of G0,
then for every k ≥ κ the number tk c(G0, a) is an integer. Let φ(n) denote Euler’s
function. Set k ∈ IN large enough so that kφ(s − t) > κ, and multiply equation (1)
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by tkφ(s−t)+p−1:

tkφ(s−t)+pc(G, a) = tkφ(s−t)+pc(G′, a) − (s − t)tkφ(s−t)+p−1c(G0, a).

By the choice of k, the number u := tkφ(s−t)+p−1c(G0, a) is an integer. Hence by a
small rearrangement, we get:

tkφ(s−t)+pc(G, a) = (tpc(G′, a))tkφ(s−t) − (s − t)u .

Using tpc(G, a) ≡ t (mod s − t), there exists an integer h such that

tkφ(s−t)+pc(G, a) = (h(s − t) + t)tkφ(s−t) − (s − t)u,

and so

tkφ(s−t)+pc(G, a) = h(s − t)tkφ(s−t) + tkφ(s−t)+1 − (s − t)u .

By the well-known fact (Euler’s Theorem) that tφ(n) ≡ 1 (mod n), when t and n

are relatively prime, we have tkφ(s−t)+1 = l(s − t) + t for some integer l. Finally,

tkφ(s−t)+pc(G, a) = (s − t)(tkφ(s−t) − u + l) + t .

This settles the claim for G and hence Claim A is proved by induction.
Since (s − t) and t are relatively prime, Claim A immediately implies that

c(G, a) �= 0, where a = −(s/t), s, t ∈ IN, s > t + 1. Next, if a is an integer, then
a = −s, and one can use an analogous (but simpler) argument to prove that
c(G, a) ≡ 1 (mod s − 1). We leave the details to the reader. Hence also in this
case we conclude that c(G, −s) �= 0. It follows that a rational zero of c(G, x) can
only be of the form a = −(t + 1)/t for some t ∈ IN. �

Recall that the bipartite wheel BWk, k ≥ 3, is the graph formed by the cycle C2k

and a vertex v adjacent to every second vertex of the cycle. Add a pendant vertex to
the bipartite wheel BWk, k ≥ 4, so that the cube polynomial of the obtained graph
is kx2 + (3k + 1)x + 2k + 2. Its zeros are −2 and −(k + 1)/k, thus the possible
rational zeros are also realized by median graphs that are not trees.

4. CHARACTERIZING GRAPHS OF ACYCLIC CUBICAL

COMPLEXES

In this section, we characterize a well-known class of median graphs in terms of
the zeros of the cube polynomial.

A cubical complexK is a finite set of cubes of any dimension that is closed under
taking subcubes and non-empty intersections. The (underlying) graph of K has as
vertices the 0-dimensional cubes ofK, two vertices being adjacent if they constitute
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a 1-dimensional cube. Graphs of acyclic cubical complexes were introduced and
characterized by Bandelt and Chepoi [3, Theorem] as follows.

Theorem 4.1. A graph G is the graph of an acyclic cubical complex if and only
if G is a median graph not containing any convex bipartite wheel.

Another characterization of graphs of acyclic cubical complexes (let us call
them shortly ACC graphs) involves a certain sequence of cube contractions, cf. [3].
Using terminology as in Theorem 2.1 we could restate this result as follows: G is
an ACC graph if and only if it can be obtained by a sequence of peripheral cube
expansions from the one vertex graph (peripheral cube expansion of a graph G is
an expansion with respect to cover G, Q where Q is an arbitrary hypercube in G).

By Theorem 3.3, the only candidate for an integer zero of the cube poly-
nomial of a median graph is −2. An infinite family of such graphs was pre-
sented at the end of the previous section. For another example take Pm�Pn

and add a pendant vertex to each vertex of degree four. Then the cube polynomial
of this graph is (n − 1)(m − 1)x2 + ((n − 1)m + (m − 1)n + (n − 2)(m − 2))x +
nm + (n − 2)(m − 2) with one zero, −2. Let x2(n, m) be the other zero. Then
limm,n→∞ x2(n, m) = −1.

These examples show that the class of median graphs having the property that
−2 is a zero of their cube polynomials cannot be “nicely” characterized. However,
forcing this property to all 2-connected convex subgraphs yields a characterization
of the ACC graphs.

Theorem 4.2. Let G be a median graph. Then G is a graph of an acyclic cubical
complex if and only if for every 2-connected convex subgraph H of G it holds
c(H, −2) = 0.

Proof. Suppose that G is a median graph which is not an ACC graph. Then, by
Theorem 4.1, G contains a convex bipartite wheel BWn. Since

c(BWn, x) = (1 + 2n) + 3nx + nx2,

we conclude that c(BWn, −2) = 1.
Now, we prove the other direction. Suppose that it is false and suppose that G is

a counterexample with the smallest number of vertices. Thus, G is an ACC graph
having a 2-connected convex subgraph H with c(H, −2) �= 0. By Theorem 4.1, the
subgraph H is also an ACC graph. So, by the minimality of |V (G)|, we obtain that
G = H . Hence, G is 2-connected and c(G, −2) �= 0.

By the remark above this theorem, G can be constructed from a smaller ACC
graph G′ by a peripher cube expansion along some hypercube Qr, which is a
subgraph of G′. By the minimality of |V (G)|, it follows that c(G′, −2) = 0. Since
G is 2-connected, it follows that r ≥ 1. Now, Theorem 2.2 (i) implies

c(G, x) = c(G′, x) + (x + 1)c(Qr, x) = c(G′, x) + (x + 1)(x + 2)r.
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With x = −2 in the above expression, we obtain that c(G, −2) = 0. But this is a
contradiction to c(G, −2) = c(H, −2) �= 0. This proves the theorem. �

5. REAL ROOTS OF THE CUBE POLYNOMIAL

In this section, we prove that the cube polynomial of every non-trivial median graph
has a real zero and, moreover, its largest real zero lies in the interval [−2, −1). On
the other hand, we also observe that the absolute values of real zeros of the cube
polynomial are not bounded from above in the class of median graphs.

For a median graph G, let z(G) denotes the largest real zero of c(G, x). Then
z(G) is well defined, which in particular follows from our next result.

Theorem 5.1. Let G be a non-trivial median graph. Then c(G, x) has a real zero
in the interval [−2, −1). Moreover, for any non-trivial convex subgraph H of G, it
holds z(H) ≤ z(G).

Proof. We proceed by induction on the number k of � classes of G. If k = 1
then G = K2, and c(K2, x) = x + 2, hence z(K2) = −2. Observe that K2 contains
no non-trivial subgraphs, so the second part of the claim is trivial.

Suppose now that G is a median graph with k ≥ 2. By Theorem 2.1, we may
assume that G is constructed from a median graph G′ by a peripheral expansion
along the convex subgraph G0 of G′. It is well known that every proper convex
(and so median) subgraph of G has at most k − 1 � classes. So, the assumption
k ≥ 2 implies that G′ is non-trivial, and by the induction hypothesis z′ := z(G′)
exists and z(G′) ∈ [−2, −1). In the case of a peripheral expansion the formula of
Theorem 2.2 (i) turns into

c(G, x) = c(G′, x) + (x + 1) c(G0, x) .

Now, we consider two cases regarding whether G0 is trivial. Suppose first that G0

is the one vertex graphK1. Notice that c(G, z′) = 0 + z′ + 1 < 0. Since c(G, −1) =
1, it follows that c(G, x) has a real zero in the open interval (z′, −1).

Suppose now that G0 is a non-trivial graph. By the induction hypothesis, z(G0)
exists, and moreover −2 ≤ z(G0) ≤ z′ < 1. Since z(G0) is the largest real zero of
c(G0, x), we conclude that c(G0, z

′) ≥ 0. Hence,

c(G, z′) = c(G′, z′) + (1 + z′)c(G0, z
′) = (1 + z′)c(G0, z

′) ≤ 0.

On the other side c(G, −1) = 1. This implies that z(G) exists and z′ ≤ z(G) < 1.
This establish the first part of the theorem.

In order to prove the second part of the theorem notice that for every convex non-
trivial subgraph H of G, there exists a convex subgraph G∗ of G such that H is a
convex subgraph of G∗, and G can be obtained from G∗ by a peripheral expansion.
Thus, z(H) ≤ z(G∗) ≤ z(G), which implies the second part of the claim. �
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To see that Theorem 5.1 is the best light, consider the following example. Let
G be a (median) graph constructed from t vertex disjoint copies of the k-cube
Qk by identifying one vertex of each copy into a single vertex. Then c(G, x) =
t (x + 2)k − (t − 1). Since the number of real zeros of c(G, x) and of the polynomial
xk − 1 is the same, c(G, x) has only one real zero if k is odd, and only two real
zeros if k is even.

In contrast to Theorem 3.3, real zeros of the cube polynomial in the class M
are not restricted to a bounded interval. To see this, let A be an arbitrary integer
greater than 1. Construct a median graph G from a tree on 2A − 2 vertices by
peripherally expanding a copy of K2 (obtaining a tree or two trees attached to
the square). Then c(G, x) = x2 + 2Ax + 2A, and the smaller zero of c(G, x) is
a = −A − √

A2 − 2A. Since A > 1 is an arbitrarily large integer and a < −A, we
conclude the following:

Proposition 5.2. There exists a median graph with an arbitrarily small negative
real zero of its cube polynomial.

6. PRODUCT MEDIAN GRAPHS AND MULTIPLE ROOTS

We say that a (median) graph G is a product graph if G = H1�H2, where H1, H2

are non-trivial (median) graphs.
In this section, we first use the cube polynomial in order to characterize product

graphs among median graphs. Then we apply this result as well as Theorems 3.3
and 5.1 to show that the cube polynomial of degree p has a p-multiple zero precisely
when it is a Cartesian product of p trees of the same order. We start with a lemma
from the metric graph theory.

Lemma 6.1. Let H and K be convex, non-disjoint subgraphs of a median graph
G. Then H ∪ K is an isometric subgraph of G.

Proof. First note that H ∪ K is a connected subgraph. Suppose that H ∪ K

is not isometric. Then, let u ∈ H \ K and v ∈ K \ H be closest vertices such that
in H ∪ K there is no u, v-path of length dG(u, v). Let k = dG(u, v). Hence, by
the minimality of k, internal vertices of every shortest path between u and v lie
in G \ (H ∪ K). Let u = u0, u1, . . . , uk = v be such a shortest path, and let u =
w0, w1, . . . , wk, . . . , wk+s = v be a shortest u, v-path in H ∪ K. Again by the min-
imality of k, it follows that u = w0, w1, . . . , wk is a shortest path also in G, that is,
dG(u, wk) = k. Let z be the median of the triple u, v, wk. Since z is on a shortest path
between u and v, we infer that z ∈ G \ (H ∪ K). Since wk is a vertex of H or K (or
both), this is a contradiction to convexity of one of these (or even both) subgraphs.�

We are now ready to characterize product median graphs.

Theorem 6.2. Let G be a median graph. Then G is a product graph with G =
H�K, if and only if G contains convex subgraphs H and K such that |V (H) ∩
V (K)| = 1 and c(G, x) = c(H, x)c(K, x).
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Proof. Let G be a product graph. Then it is clear that it contains convex sub-
graphs H and K with |V (H) ∩ V (K)| = 1 and with c(G, x) = c(H, x)c(K, x), recall
Theorem 2.2 (iii).

For the converse, let G be a median graph with convex subgraphs H and K such
that |V (H) ∩ V (K)| = 1 and c(G, x) = c(H, x)c(K, x). Since

c′(G, x) = c′(H, x)c(K, x) + c(H, x)c′(K, x),

we infer that

c′(G, −1) = c′(H, −1) + c′(K, −1) .

Hence by Theorem 2.2 (v), the number of �-classes of G is the sum of the numbers
of � classes of H and K.

We claim that H and K do not contain edges of the same �-class. Let e = uv be
an edge of H and f = wz an edge of K, and let a be the unique vertex of H ∩ K.
Since G is bipartite, we may choose the notation so that d(u, a) = d(v, a) − 1 = s,
and d(w, a) = d(z, a) − 1 = t. Using Lemma 6.1 we deduce

d(u, w) + d(v, z) = 2(s + t + 1) = d(u, z) + d(v, w).

By the definition of �, the edges uv and wz are not from the same �-class of G,
and the claim is proved.

From the above two paragraphs we conclude that every edge of G is in relation
� either with an edge of H or with an edge of K (but not with both). This implies
that G is isomorphic to a subgraph of H�K. Indeed, for a vertex x ∈ V (G) set
pH (x) (resp. pK(x)) to be the closest vertex to x in H (resp. K). Then it is easy to
check that p(x) = (pH (x), pK(x)) defines the appropriate embedding p of G into
the Cartesian product H�K.

Note that the number of edges of G is c′(G, 0). Since

c′(G, 0) = c′(H, 0)c(K, 0) + c(H, 0)c′(K, 0) ,

we obtain

|E(G)| = |E(H)||V (K)| + |V (H)||E(K)| ,

which is possible only if G is isomorphic to H�K. �

Now everything is ready for an algebraic characterization of Cartesian products
of trees of the same order. Notice that Cartesian products of trees are metrically
characterized in [2].
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Theorem 6.3. LetGbe a median graph with the cube polynomial c(G, x) of degree
p. Then, c(G, x) has a p-multiple zero if and only if G is a Cartesian product of p

trees all of the same order.

Proof. If p = 0, then the claim is trivial assuming that for every graph G its
zero power is G0 = K1. And, if p = 1 then G is a tree, and so the claim is also
trivial. Now, we may assume that p ≥ 2.

If G is a product of p trees of order � + 1, then by Theorem 2.2 (iii), c(G, x) =
(� x + � + 1)p. Thus, −((� + 1)/�) is a p-multiple zero of c(G, x).

Suppose that the other direction is false and let G be a counterexample with
|V (G)| as small as possible. Then c(G, x) is a polynomial of degree p with a p-
multiple zero x0, but G is not a Cartesian product of p trees all of the same order.
By Viète rule, p · x0 = −(αp−1(G)/αp(G)), hence x0 is a rational number. There-
fore, Theorem 3.3 implies that x0 = −((� + 1)/�) for some integer � ≥ 1. Since
c(G, −1) = 1, it follows that αp(G) = �p. So, we can rewrite the cube polynomial
of G as

c(G, x) = (� x + � + 1)p.

We now distinguish two cases:

Case 1. Every component of ∂G is a product of p − 1 trees on � + 1 vertices.

Let uv be an edge of G, and Uuv the component of ∂G. Denote by T1, . . . , Tp−1

the (convex) trees of order � + 1 in Uuv for which Uuv is isomorphic to
T1�T2� · · ·�Tp−1. We may assume that u is a pendant vertex of the tree T1 (oth-
erwise one could choose another vertex with this property), and let z be the unique
neighbor of u in T1.

We claim that V (T1) ∩ V (Uuz) = {u}. Since V (T1) ∩ V (Uuz) is convex (it is the
intersection of two convex sets) we infer that it induces a subtree of T1. On the other
hand, since it lies in V (Uuz) it consists of vertices closer to u than to z. Combining
both observations we derive that the subtree T1 ∩ Uuz of T1 can only consist of the
pendant vertex u and the claim follows.

Now, since c(G, x) = c(T1, x)c(Uuz, x) and |V (T1) ∩ V (Uuz)| = 1 we derive by
Theorem 6.2 that G = T1�Uuz. In other words, G is the Cartesian product of p

trees on � + 1 vertices.

Case 2. There is a component U∗ of ∂G which is not a product of p − 1 trees of
order � + 1.

Note that for each integer r ∈ {0, . . . , p}, each component U ′ of ∂rG is isomor-
phic to a convex subgraph of G. If U ′ is trivial, then c(U ′, x0) = 1. And, if U ′

is non-trivial, then by Theorem 5.1, it follows z(U ′) ≤ x0. Hence, c(U ′, x0) ≥ 0
always holds.

By the minimality of G, it follows that x0 is not a (p − 1)-multiple zero
of U∗. So one can conclude that for some integer s ∈ {0, . . . , p − 2}, the s-th
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derivative c(s)(U∗, x) does not have x0 as a zero, i.e. c(s)(U∗, x0) �= 0. Since by
Theorem 2.2 (iv), c(s)(U∗, x) = c(∂sU∗, x), we conclude from the above paragraph
that c(s)(U∗, x0) > 0.

Using Theorem 2.2 (iv) again, we can write

c(s+1)(G, x) = c(∂s+1G, x) . (2)

Note now that ∂sU∗ ⊆ ∂s+1G. Since for each connected component U ′ of ∂s+1G,
we have c(U ′, x0) ≥ 0 and, in addition, c(s)(U∗, x0) = c(∂sU∗, x0) > 0, it follows
that the right side of (2) is positive at x0. On the other hand, since s + 1 < p and
x0 is a p-multiple zero of G, the left side of (2) at x0 is 0, a contradiction. �
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partial cubes, J Graph Theory 40 (2002), 91–103.
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[14] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition, John
Wiley & Sons, New York, 2000.
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