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Abstract 

Let G [XI H be the strong product of graphs G and H. We give a short proof that 
x(G [XI H) >x(G)+2w(H)-2. Kneser graphs are then used to demonstrate that this lower 
bound is sharp. We also prove that for every n > 2 there is an infinite sequence of pairs of graphs 
G and G’ such that G’ is not a retract of G while G’ IXI K, is a retract of G ixI K.. 

1. Introduction and definitions 

Finding a (prime factor) decomposition of a given graph with respect to a graph 

product is one of the basic problems in studying graph products from the algorithmic 

point of view. Among the four most interesting graph products (the lexicographic, the 

direct, the Cartesian and the strong product) the Cartesian product [ 1,2, 1 l] and the 

strong product [3] are known to have polynomial algorithms for finding prime factor 

decompositions of connected graphs. An overview of complexity results for other 

products can be found in [3]. Because of Feigenbaum and Schgffer’s polynomial 

result, it seems to be of vital interest to study those parameters of strong products of 

graphs whose determination is in general NP-complete. 

In this note we give a lower bound for the chromatic number of the strong product 

of graphs, thus answering questions of Vesztergombi [9] and Jha [S]. Kneser graphs 

are then used to demonstrate that this lower bound is sharp. In Section 3 we give some 

more insight into the structure of retracts of strong products of graphs. 

All graphs considered in this note will be undirected, simple graphs, i.e., graphs 

without loops or multiple edges. An n-coloring of a graph G is a function f from V(G) 

*This work was supported in part by the Ministry of Science and Technology of Slovenia under the grants 
Pl-0206-101 and Pl-0214-101. 
* Corresponding author. 

0012-365X/94/$07.00 RJ 1994-Elsevier Science B.V. All rights reserved 

SSDI 0012-365X(93)E0052-6 



298 S. Klavfar. U. Milutinmii/ Discrete Mathematics I33 (1994) 297-300 

to{1,2,..., n}, such that xy6E(G) implies f(x) #f(y). The smallest number n for which 

an n-coloring exists is the chromatic number x(G) of G. The size of a largest complete 

subgraph of a graph G will be denoted by w(G). A subgraph R of a graph G is a retract 
of G if there is an edge-preserving map r: V(G) ---f Y(R) with r(x) =x, for all XE V(R). 

The map r is called a retraction. 
The strong product G q H of graphs G and H is the graph with vertex set 

I’(G) x V(H) and (a,x)(b,y)~E(G NH) whenever abEE and x=y, or a=b and 

x~EE(H), or abEE and x~EE(H). The lexicographic product G[H] ofgraphs G and 

H is the graph with vertex set V(G) x Y(H) and (a,x)(b,y)~E(G[H]) whenever 

abEE( or a=b and x~EE(H). 

2. A lower bound and Kneser graphs 

Vesztergombi [9] shows that if both G and H have at least one edge then 

x(G q H) 3max {X(G), x(H)} + 2. In [S] Jha generalizes this lower bound to 

x(G EX H)>x(G)+n, where n=w(H). Both authors ask for a better lower bound. 

In [S] Stahl introduces the n-tuple coloring of a graph G as an assignment of 

n distinct colors to each vertex of G, such that no two adjacent vertices share a color. 

Further, xn(G) is the smallest number of colors needed to give G an n-tuple coloring. It 

is straightforward to verify that 

x~(G)=x(G q K). 

One can also derive this as follows. Stahl [S] observes that x”(G) = x(G [K,]). Since the 

graphs G[Kn] and G q K, are isomorphic we conclude x”(G)=x(G q K,). 

It follows from the previous remark that the case where one of the factors in the 

strong product is a complete graph has already been addressed in [S]. This is of 

special interest, because if x(H)=w(H)=n then it is not hard to see that x(G Ei H)= 
x(G &I K,). In [8] a lower bound on x”(G) is given. Here we present an alternative 

short proof of this lower bound. Our proof is a generalization of the proofs given in 

c9751. 

Theorem 2.1. Zf G has at least one edge then 

x(G txI K,)>,X(G)+2n-2. 

Proof. We may assume n > 2. Let x(G ixI K,)= n + s. Since G has at least one edge, 

s 2 n. Let f be an (n + s)-coloring of G q K,. Let V(K,) = {ui , u2,. . . , un). 

For UE V(G) set m, =min (f (u, ul), f (u, uz), . . . , f (u, II")}. Note that m, bs + 1. Define 

amappingg:G+(1,2,...,s+2-n} by 

mUdsi-l-n; 

, m,3s+2-n. 
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We claim that g is a coloring of G. Suppose that uueE(G) and g(u)=g(o). If 

g(u)=g(u) <s + 1 --n, then m, =mvr which is impossible since WEE(G). Suppose that 

g(u)=g(v)=s+2-n. As WEE(G) the vertices {u,u) x V(K,) induce a complete Kin in 

G EJ K,. Hence, these 2n vertices should be colored with different colors from the set 

{s+2-n, s+3-n,... , s + n} which contains only 2n - 1 elements. This contradiction 

proves the claim. 

It follows that ~(G)<s+2-n. Since s=x(G El K,)-n we get 

x(G)<x(G •I K,)-2n+2, 

which completes the proof. 0 

Corollary 2.2. Zf G has at least one edge then 

x(G q H)>,x(G)+20(H)-2, 

for any graph H. 

The lower bound of Theorem 2.1 is sharp in the sense that for every n there exists 

a graph for which this bound is attained. We illustrate this using Kneser graphs. The 

vertices of Kneser graph KG,,k are the n-subsets of the set { 1,2,. . . ,2n + k} and two 

vertices are adjacent if and only if they are disjoint. Lo&z proves in [7] that 

x(KG,,J= k+2, thus setting a conjecture of Kneser. Vesztegombi observes in [lo] 

that x(KG,,~ •I K,)<2n + k. On the other hand, combining Lovasz’s result with 

Theorem 2.1 we get x(KG,, k q K,) 2 k + 2 + 2n - 2 = 2n + k. Thus 

Corollary 2.3. For n > 1 and k > 0 

x(KG,,~ q K,)=2n+k. 

3. On retracts of strong products 

For the strong product G ixI H of connected graphs G and H, it is shown in [4] that 

every retract R of G q H is of the form R = G’ IXI H’, where G’ is an isometric subgraph 

of G and H’ is an isometric subgraph of H. It is also conjectured in [4] that every 

retract of strong products of a large class of graphs is a product of retracts of the 

factors. The conjecture is true for triangle-free graph. 

It is demonstrated in [6] that there exist graphs G, H, G’ and H’ such that G’ IXI H’ is 

a retract of G El H yet G’ is not a retract G. The examples are based on the Mycielski 

graphs. Using Corollary 2.3 we are able to construct another series of counter- 

examples. These examples involve arbitrary complete graphs while the examples with 

the Mycielski graphs admit only K2 as a second factor. 

Theorem 3.1. For every n 3 2 there is an injinite sequence of pairs of graphs G and G’ 

such that G’ is not a retract of G while G’ ixI K, is a retract of G [XI K,. 
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Proof. Let k B 2 and let H,, k be a graph which we get from a copy of the graph KG,, k 

and a copy of the complete graph Kk+l by joining a vertex u of KG+ with a vertex 

u of Kk+ 1. We claim that x(H,, k E4 K,) = n(k + 1). By Corollary 2.3 we have a (2n + k)- 

coloring f of KG,,k q K,. Next we color the layer {v} R K, by any n colours from 

fwhich were not used in the layer {u} q K,. Extend the coloring in the obvious way to 

get a n(k + l)-coloring of H,, k and the claim is proved. 

It follows that we have a retraction from H,,k IXI K, onto the subgraph Kk+ 1 El K,. 
Note finally that since x(H,,~) = k + 2 and retracts are isochromatic subgraphs, there is 

no retraction V(H,,,) + V(K,+ 1). 0 

We finally remark that the question of characterising graphs G, H, G’ and H’, for 

which G’ Rl H’ is a retract of G Kl H where G’ is not a retract G remains open. 
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