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Abstract

Graphene, an allotrope of carbon, has gained tremendous importance due to its novel, chemi-

cal, structural, optical and reactivity properties. A class of graphene allotropes with both sp2 and

sp carbons named α-types of graphyne and graphdiyne have been synthesized recently and have

received considerable attention due to their novel structural and optical properties with multiple

wide ranging applications in developing sensors, catalysis, chemisorption and nanomedicine. In

the present study we have considered mathematical techniques for the topological characteriza-

tion of these novel materials. We have extended full subdivisions of partial cubes in which tran-

sitive closure of Djoković-Winkler relation is used to compute analytical expressions for various

distance-based topological indices for their deployment in chemical and medicinal applications

via QSAR and QSPR studies.
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1 Introduction

Graphyne and graphdiyne materials have received significant recent attention [1–15] due to their

novel material properties, optical properties and chemical properties. The existence of a conjugated

network of both carbon-carbon double and triple bonds in these materials that exist in sheet forms,

nanosheet forms, nanowires, arrays of nanotubes and other forms have provided a new vista and

opportunity to explore interesting chemistry in yet another dimension of carbon allotropes. These

materials are also expected to exhibit very interesting chemical and optical properties due to their

excitonic nature of a network of sp and sp2 hybrid orbitals analogous to polycyclic aromatic com-

pounds [16, 17]. Furthermore, the unsaturated network of multiple bonds in these materials are

likely to provide an effective platform to investigate chemical phenomena such as chemisorption,

reactivities with clusters, catalysis, hydrogenation, complexation with heavy metals and ions, study

of relativistic effects in such complexes, and so on [17–21]. It is anticipated that functionalization

of these graphyne and graphdiyne materials would provide novel avenues for developing sensors,

sequestration and complexation of inorganic metal ions, toxic heavy metal ions such as cadmium,

mercury, thallium, lanthanide and actinide ions similar to the engineered functionalized mesoporous

silica that have been employed for actinide sequestration [22,23]. As medicinal chemistry has made

quantum leaps into nanomedicines, these materials could find novel applications in drug discovery,

efficient drug delivery and protein-protein and protein-drug interactions [24]. Such carbonaceous

species with sp carbons both in chains and other forms appear to occur in circumstellar shells and

carbon-rich stars [25]. The existence of conjugated networks of multiple bondings comprised of

both sp and sp2 carbons make these species interesting candidates for exploration of aromaticity

and super aromaticity- a topic of considerable interest over the years [26–28]. As a result of such

increasingly important and novel applications of these materials, it is both useful and necessary

to provide efficient mathematical and topological characterization for the structural properties of

these materials. Moreover, high-level quantum computations may not always be feasible for larger

networks of arrays of nanotubes comprised of graphynes and graphdiynes. Therefore topological

characterization of these materials could provide alternative promising approaches for quantitative

characterizations of structures and reactivities of these species. Consequently, in this study we

consider mathematical techniques for obtaining exact analytical expressions for several topological

descriptors of these emerging novel materials.

In chemical graph theory, the structure of a molecule or a chemical compound is considered as a
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graph with atoms as its vertices and the covalent bonds between them as edges of the graph. A num-

ber of practical applications such as computer-aided drug discovery, relies on efficient correlations

of physico-chemical properties with molecular structures and the biological activities of molecules.

These relations of molecular structures to their properties are often characterized as quantitative

structure-activity, structure-property and structure-toxicity relationships (QSAR/QSPR/QSTR).

Determining structural-relationships of molecules require multiple topological molecular descriptors

that would correlate to different properties such as dermal penetrations, drug activities, optical

properties, reactivities and physico-chemical properties.

Many topological indices have been introduced and applied in QSAR/QSPR/QSTR studies to

determine the properties and biological activities of compounds for their potential applicability in

several areas such as chemical reactivity studies, spectroscopy, computer-assisted structure elucida-

tion and computer-aided drug discovery [24, 29]. The topological indices of a chemical compound

depends primarily on the molecular structure and hence the underlying connectivity. Our motiva-

tion for the current study comes from the fact that the implementation of full subdivisions of partial

cubes is restricted to only few classes of graphs [30, 31] and these techniques are not applicable to

emerging novel materials such as graphynes and graphdiynes. In the present study we extend the

previous techniques to encompass computation of topological indices for such extended molecular

materials that are comprised of multiple acetylenic linkages, thus in effect large structures that

contain both sp and sp2 carbons. We accomplish this by a graph theoretical expansion wherein

an edge is subdivided multiple times. Consequently, we extend full subdivisions of partial cubes

to full k-subdivision graphs which facilitate computations of exact analytical expressions for the

distance-based topological indices of graphynes and graphdiynes.

1.1 Background

Throughout the paper, a graph G is considered as a simple and finite connected graph with the

cardinality of its vertex and edge set being denoted as |V (G)| and |E(G)| respectively. The usual

shortest path distance between any two vertices u, v ∈ V (G) is denoted as dG(u, v) and the degree

of any vertex v is denoted as dG(v). Furthermore, for an edge e = ab of G, a vertex-edge-shortest

path distance dG(u, e) is defined as min{dG(u, a), dG(u, b)}, as a consequence of which, for any

two edges e = ab and f = cd of G, an edge-edge shortest path distance DG(e, f) is defined as

min{dG(e, c), dG(e, d)} [32]. Let S ⊆ E(G), the quotient graph G/S is obtained by removing S

from G such that V (G/S) = {X : X is a connected component of G − S} and E(G/S) = {XY :
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there exists a vertex x of X and a vertex y of Y such that xy ∈ S}

An n-dimensional cube or an n-cube is defined as a recursive Cartesian product of K2, Q1 =

K2, Qn = K2 � Q(n−1) where two vertices represented as an n-dimensional boolean vectors (vec-

tors contianing binary coordiantes {0, 1}n) are adjacent iff they differ by exactly one position. A

subgraph H of G is said to be isometric if dH(u, v) preserves distance equality with G for all

u, v ∈ V (H). Moreover, the isometric embedding of H into G is a mapping f : V (H) → V (G)

such that f(H) is an isometric subgraph of G. An isometric embedding of an n-cube is a partial

cube or a binary Hamming graph which is an undirected graph whose vertices can be labeled by

binary vectors in such a way that the distance between any two vertices in the graph is equal to

the Hamming distance between the corresponding labels [33]. It was first introduced by Graham

and Pollak [34] while they were working on communication networks and since then the variants of

cubes have been a topic of discussion for an extensive variety of mathematical systems.

Partial cubes have several applications in computational biology [35, 36], media theory [37],

psychology [38] and most particularly in mathematical chemistry [39]. These classes of graphs were

well understood and characterized in [40–42]. Djoković [42] and Winkler [40] characterized them in

terms of equivalence relation to edges with the relation that for any two edges e = ab and f = cd,

dG(a, c) + dG(b, d) ̸= dG(a, d) + dG(b, c). This relation is known as Θ and has become an effective

tool in the cut method [39, 43] for partitioning the edges as it eases the computation process of

topological indices.

The concept of strength-weighted graph was initially introduced in [44] as a triple Gsw =

(G,SWV , SWE) where G is a simple graph and SWV is the pair (wv, sv) where wv is the vertex-

weight and sv is the vertex-strength such that (wv, sv) : V (Gsw) → R+
0 , and SWE is the pair (we, se)

where we is the edge-weight and se is the edge-strength such that (we, se) : E(Gsw) → R+
0 . For our

context of study we consider we = 1 for every edge e ∈ Gsw and henceforth Gsw = (G, (wv, sv), se).

We now compare certain terminologies of a simple graph G and a strength-weighted graph Gsw

which is required for our further study.

1. The distance between vertex-vertex, vertex-edge and edge-edge in Gsw is the same as in G.

2. For a vertex u, its neighborhood in G and Gsw are equal and defined as NG(u) = NGsw(u) =

{v ∈ V (G) : dG(u, v) = 1}.

3. The degree of a vertex u in G is defined as dG(u) = |NG(u)| while in Gsw as dGsw(u) =

2sv(u) +
∑

x∈NGsw (u)

se(ux).
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4. The closeness sets for an edge e = uv,

• Nu(e|G) = {x ∈ V (G) : dG(u, x) < dG(v, x)} = Nu(e|Gsw) with its cardinality for G as

nu(e|G) = |Nu(e|G)| and for Gsw as nu(e|Gsw) =
∑

x∈Nu(e|Gsw)

wv(x).

• Mu(e|G) = {f ∈ E(G) : dG(u, f) < dG(v, f)} = Mu(e|Gsw) with its cardinality for G as

mu(e|G) = |Mu(e|G)| and for Gsw as mu(e|Gsw) =
∑

x∈Nu(e|Gsw)

sv(x) +
∑

f∈Mu(e|Gsw)

se(f).

• The other quantities nv(e|G), nv(e|Gsw),mv(e|G) andmv(e|Gsw) are defined analogously.

1.2 Topological indices

The computation process of topological indices is closely related to graph theoretical methods be-

cause the structural formula of a compound is equivalent to a molecular graph. Since the advent

of the well-known Wiener index [45], there are many other distance-based topological indices intro-

duced to determine the structural properties of compounds.

In this section, we define the topological indices (TI) such as Wiener (W ), edge-Wiener (We),

vertex-edge-Wiener (Wve), vertex-Szeged (Szv), edge-Szeged (Sze), edge-vertex-Szeged (Szev), total

Szeged (Szt), Padmakar-Ivan (PI), Schultz (S) and Gutman (Gut) of the strength-weighted graph

Gsw. Moreover, it is easy to notice that if wv = se = 1 and sv = 0, then TI(Gsw) = TI(G).

Table 1: Topological indices of a strength-weighted graph Gsw

TI TI(Gsw)

W
∑

{u,v}⊆V (Gsw)

wv(u) wv(v) dGsw(u, v)

We
∑

{u,v}⊆V (Gsw)

sv(u) sv(v) dGsw(u, v) +
∑

{e,f}⊆E(Gsw)

se(e) se(f) DGsw(e, f)

+
∑

u∈V (Gsw)

∑
f∈E(Gsw)

sv(u) se(f) dGsw(u, f)

Wve
1
2

( ∑
{u,v}⊆V (Gsw)

{
wv(u) sv(v) + wv(v) sv(u)

}
dGsw(u, v)

+
∑

u∈V (Gsw)

∑
f∈E(Gsw)

wv(u) se(f) dGsw(u, f)

)
Szv

∑
e=uv∈E(Gsw)

se(e) nu(e|Gsw) nv(e|Gsw)

Sze
∑

e=uv∈E(Gsw)

se(e) mu(e|Gsw) mv(e|Gsw)

Szev
1
2

∑
e=uv∈E(Gsw)

se(e)
[
nu(e|Gsw) mv(e|Gsw) + nv(e|Gsw) mu(e|Gsw)

]
Szt Szv(Gsw) + Sze(Gsw) + 2 Szev(Gsw)
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PI
∑

e=uv∈E(Gsw)

se(e)
[
mu(e|Gsw) +mv(e|Gsw)

]
S

∑
{u,v}⊆V (Gsw)

[
wv(v)dGsw(u) + wv(u)dGsw(v)

]
dGsw(u, v)

Gut
∑

{u,v}⊆V (Gsw)

dGsw(u) dGsw(v) dGsw(u, v)

2 Computational tools

The cut method serves as an efficient tool in the investigation of topological indices. If G is a partial

cube then the cut method states that the Djoković-Winkler relation Θ partitions the edge set of G

into equivalence classes {F1, . . . , Fr} such that the graph G− Fi, 1 ≤ i ≤ r consists of exactly two

connected components {C1
i , C

2
i } and for each pair of vertices u, v ∈ V (Cj

i ), j = 1, 2, the shortest

path between them lies within Cj
i .

Theorem 1. Let F(G) = {F1, . . . , Fr} be the Θ-partition of a partial cube G. Let n1(Fi), n2(Fi) be

the orders and m1(Fi), m2(Fi) the sizes of the two components of G− Fi, respectively. Then

(i) [39] W (G) =
r∑

i=1
n1(Fi) n2(Fi).

(ii) [32] We(G) =
r∑

i=1
m1(Fi) m2(Fi).

(iii) [46] Wve(G) = 1
2

r∑
i=1

[n1(Fi) m2(Fi) + n2(Fi) m1(Fi)].

(iv) [47] Szv(G) =
r∑

i=1
|Fi| n1(Fi) n2(Fi).

(v) [32] Sze(G) =
r∑

i=1
|Fi| m1(Fi) m2(Fi).

(vi) [48] Szev(G) = 1
2

r∑
i=1

|Fi| {n1(Fi) m2(Fi) + n2(Fi) m1(Fi)}.

(vii) [49] PI(G) = |E(G)|2 −
r∑

i=1
|Fi|2.

(viii) [50] S(G) = |E(G)||V (G)|+ 2
r∑

i=1
[n1(Fi) m2(Fi) + n2(Fi) m1(Fi)].

(ix ) [50] Gut(G) = 2|E(G)|2 +
r∑

i=1
[4m1(Fi) m2(Fi)− |Fi|2].
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However, Θ is an equivalence relation on partial cubes but in general graphs it might not satisfy

the transitive property of the equivalence relation. The transitive closure Θ∗ forms an equivalence

relation on E(G) and partitions the edge set into Θ∗-classes that disconnect the graph into multiple

components. If F(G) = {F1, . . . , Fk} denotes the Θ∗-partition of E(G), then E(G) = {E1, . . . , Ep},

where each Ei is the union of one or more Θ∗-classes, is a partition coarser than the partition

F(G) and denoted by Θc∗-partition. We now conclude this section by stating general theorem for a

strength-weighted graph.

Theorem 2. [31, 44] Let Gsw =
(
G, (wv, sv), se

)
be a strength-weighted graph. Let E(G) =

{E1, . . . , Ep} be a Θc∗-partition of E(G), and let TI ∈ {W,We,Wve, Szv, Sze, Szev, P I, S,Gut}.

Then,

TI(Gsw) =

p∑
i=1

TI(G/Ei, (w
i
v, s

i
v), s

i
e) ,

where

• wi
v : V (Gsw/Ei) → R+, wi

v(X) =
∑

x∈V (X)

wv(x), ∀ X ∈ V (Gsw/Ei),

• siv : V (Gsw/Ei) → R+
0 , s

i
v(X) =

∑
xy∈E(X)

se(xy) +
∑

x∈V (X)

sv(x), ∀ X ∈ V (Gsw/Ei),

• sie : E(Gsw/Ei) → R+, sie(XY ) =
∑

xy∈Ei
x∈V (X), y∈V (Y )

se(xy), ∀ XY ∈ E(Gsw/Ei).

3 Full k-subdivision of partial cubes

In this section, we apply Theorem 2 to full k-subdivision of partial cubes and thereby derive the

closed formulae for the indices {W,We,Wve, Szv, Sze, Szev, P I, S,Gut} based on the Θ-partition of

partial cubes, but some preparation is necessary.

For k ≥ 1, and l ≥ 3, a uniform theta graph θ(l; k) is constructed from a pair of end vertices,

called North pole (N) and South pole (S), by joining l internal disjoint paths of equal length with k

internal vertices. Suppose we allow l ≥ 1, then the uniform theta graph can be treated as parallel

composition of paths [51] and denoted by P (l; k), see Figure 1.
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N S

(a)

SN

(b)

SN

(c)

Figure 1: Parallel composition of paths (a) P (1; 5) (b) P (2; 5) (c) P (3; 5)

We now study the number of Θ∗-classes of P (l; k) and intrestingly, it is based on k. For 1 ≤

i ≤ ⌈k2⌉, let Fi = {e ∈ E(P (l; k)) : dP (l;k)(N, e) = i − 1} ∪ {f ∈ E(P (l; k)) : dP (l;k)(S, f) = i − 1}.

When k is even, set in addition F k
2
+1 = {e ∈ E(P (l; k)) : dP (l;k)(N, e) = dP (l;k)(S, e) =

k
2}. Clearly,

{Fi : 1 ≤ i ≤ ⌈k2⌉} and {Fi : 1 ≤ i ≤ k
2 + 1} are the Θ∗-partitions of P (l; k) respectively when k is

odd and even, see Figure 2. Moreover, P (l; k)− Fi, 1 ≤ i ≤ ⌈k2⌉, results a quotient graph, which is

a complete bipartite graph K2,l, and in addition, P (l; k) − F k
2
+1, k even, results a quotient graph

K2.

SN

F
1

F
2

Figure 2: Θ∗-partition of P (l; k)

If G is a graph, then the full k-subdivision (k ≥ 1) graph Sk(G) of G is the graph obtained

from G by replacing every edge uv of G with k new vertices x1uv, x
2
uv, . . . , x

k
uv which are connected

to each other by a path along with the first vertex x1uv and the kth vertex xkuv being connected to

u and v respectively. Therefore, the cardinality of the vertex set and edge set in Sk(G) becomes

|V (G)|+ k|E(G)| and (k + 1)|E(G)| respectively.

With respect to the property of being a partial cube, the investigation of S1(G) was initiated
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in [52] where it was proved that if G is a connected graph, then S1(G) is a partial cube if and only if

every block of G is either a cycle or a complete graph. So not many graphs S1(G) are partial cubes

and consequently one is interested in the structure of the Θ∗-classes of S1(G). These classes have

been explicitly described in [30] for partial cubes G. Afterwards, the problem of determining the Θ∗-

classes of S1(G) for an arbitrary graph G has been investigated in [53]. To describe these classes in

general appears a very difficult problem, nevertheless some general properties have been developed

and applied to describe the Θ∗-classes of S1(G) when G is a fullerene, a plane triangulation, or a

chordal graph. In this paper we are interested in Sk(G) for an arbitrary k, and for our purposes

the following fact is very important.

Lemma 3. Let G be a partial cube and let k ≥ 1. If the edges uv and wz of G are not in

relation Θ, then for an arbitrary edge e ∈ E(Sk(G)) ∩ {ux1uv, x1uvx2uv, . . . , xkuvv} and an arbitrary

edge f ∈ E(Sk(G)) ∩ {wx1wz, x
1
wzx

2
wz, . . . , x

k
wzz}, the edge e is not in relation Θ with the edge f .

Proof. Since uv is not in relation Θ with wz, we may assume without loss of generality that

dG(w, u) < dG(w, v) and dG(z, u) < dG(z, v). As partial cubes are bipartite graphs, we thus infer

that there exists a shortest v, z path P in G which is of the form v → u → P ′ → w → z, where

P ′ is a shortest u,w-path. But then, by the structure of Sk(G), there exists a shortest v, z-path in

Sk(G) that contains all the edges from {ux1uv, x1uvx2uv, . . . , xkuvv} ∪ {wx1wz, x
1
wzx

2
wz, . . . , x

k
wzz}. Since

no two edges of a shortest path are in relation Θ, the assertion follows.

The key message of Lemma 3 is that if G is a partial cube and F ′ is a Θ∗-class of the graph

Sk(G), then there exists a Θ-class F of G such that F ′ is a subset of the set of edges that are

obtained by replacing the edges of F with paths of length k + 1.

Theorem 4. Let F(G) = {F1, . . . , Fr} be the Θ-partition of a partial cube G. If Fi = {u1v1, . . . , usvs},

1 ≤ i ≤ r, and let F ′
i =

∪s
j=1{ujx1ujvj , x

1
ujvjx

2
ujvj , . . . , x

k
ujvjvj}, then F′(Sk(G)) = {F ′

1, . . . , F
′
r} is

the Θc∗-partition of Sk(G). If TI ∈ {W,We,Wve, Szv, Sze, Szev, P I, S,Gut}, then

TI
(
Sk(G)

)
=

r∑
i=1

[ ⌈ k
2
⌉∑

j=1

TI
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
+

1 + (−1)k

2
TI

(
K2, (w

i
v, s

i
v), s

i
e

)]
.

Furthermore,

(i) W
(
Sk(G)

)
= (k + 1)

{
W (G) + 2kWve(G) + k2We(G) + k|E(G)|

(
1
2 |V (G)| + (2k+1)

6 |E(G)| −

(k+2)
6

)
+ k(k−1)

6 PI(G)

}
.
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(ii) We

(
Sk(G)

)
= (k + 1)

{
(k + 1)2We(G) + k(k+2)

6 PI(G) + k|E(G)|
(

2k+1
6 |E(G)| − k+2

6

)}
.

(iii) Wve

(
Sk(G)

)
= (k+1)

{
(k+1)Wve(G)+ k(k+1)We(G)+ k|E(G)|

(
(2k+1)

6 |E(G)|+ 1
4 |V (G)| −

k+2
6

)
+ k(2k+1)

12 PI(G)

}
.

(iv) Szv
(
Sk(G)

)
= (k+ 1)

{
Szv(G) + 2kSzev(G) + k2Sze(G) + k(|E(G)|2 − PI(G))

(
k+1
2 |V (G)|+

k(k+1)
2 |E(G)|

+ (k+2)
3

)
− k(k+2)

3 |E(G)| − k(2k+1)
6

r∑
i=1

|Fi|3
}
.

(v) Sze
(
Sk(G)

)
= (k + 1)

{
(k + 1)2Sze(G)− k(k+2)

3 |E(G)|+ k(|E(G)|2 − PI(G))

(
(k+1)

2 |E(G)|+

(k+2)
3

)
− k(k+2)

3

r∑
i=1

|Fi|3
}
.

(vi) Szev
(
Sk(G)

)
= (k + 1)

{
(k + 1)Szev(G) + k(k + 1)Sze(G) − k(k+2)

3 |E(G)| +
(

k
4 |V (G)| +

k(2k+1)
4 |E(G)|

+ k(k+2)
3

)
(|E(G)|2 − PI(G))− k(4k+5)

12

k∑
i=1

|Fi|3
}
.

(vii) PI
(
Sk(G)

)
= (k + 1)

{
k|E(G)|2 + PI(G)

}
.

(viii) S
(
Sk(G)

)
= (k+1)

{
4(k+1)Wve(G)+ 4k(k+1)We(G)+ |E(G)|

(
(k+1)|V (G)| − 2k(k+2)

3

)
+

k(4k+5)
3 |E(G)|2 + k(2k+1)

3 PI(G)

}
.

(ix) Gut
(
Sk(G)

)
= (k+1)

{
4(k+1)2We(G)+

(
(2k+1)(2k+3)

3

)
|E(G)|2−2k(k+2)

3 |E(G)|+2k2+4k+3
3 PI(G)

}
.

Proof. It is well-known that removing a Θ-class Fi of a partial cube G dissects the original graph into

exactly two components, resulting in a quotient graph K2 with edge-strength value |Fi| and vertex-

strength-weighted values (n1(Fi),m1(Fi)) and (n2(Fi),m2(Fi)). If Fi = {ujvj : 1 ≤ j ≤ s}, then it

follows from Lemma 3 (see also the remark after its proof) that F ′
i is a union of some Θ∗-classes of

Sk(G). Moreover, a removal of F ′
i from Sk(G) dissects Sk(G) into k|Fi| + 2 components resulting

in a quotient graph of parallel composition of paths P (|Fi|; k) with vertex-strength-weighted values

of North and South poles respectively (ai(F
′
i ), bi(F

′
i )) and (ci(F

′
i ), di(F

′
i )) where ai(F

′
i ) = n1(Fi) +

km1(Fi), bi(F
′
i ) = (k + 1)m1(Fi), ci(F

′
i ) = n2(Fi) + km2(Fi), and di(F

′
i ) = (k + 1)m2(Fi), and all

the internal vertices with (1,0) and edge strength for all the edges to 1. As we have mentioned
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Fi
S (G)

bi( )Fiai ,

1

1

1

1

1

( )Fi di( )Fici , ( )Fi( ( ))

1

K2 , Fi

( )Fiai ,( )

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

+ j 1( ) | |Fi ( )Fibi( + j 1( ) | |Fi ( )Fici ,( )+ j 1( ) | |Fi ( )Fidi( + j 1( ) | |Fi

( )k

(1 0, ) (1 0, ) (1 0, ) (1 0, )

(1 0, ) (1 0, ) (1 0, ) (1 0, )

(1 0, ) (1 0, ) (1 0, ) (1 0, )

(1 0, ) (1 0, ) (1 0, ) (1 0, )

(1 0, ) (1 0, ) (1 0, ) (1 0, )

j

1 k1 1,

( )k1 k1 1,

( )k1 k1 1,

( )k1 k1 1,

( )k1 k1 1,

k1= j 1( )2k

1

1

1

1

1

1

1

1

1

1

k

FiG

m1( )Fin1
( )Fi,( ) ( m2( )Fin2

( )Fi ),

K2

( )Fiai ,( )+
k ( )Fibi +
2
| |Fi

k
2
| |Fi

( )Fici ,( )+ | |Fi ( )Fidi( + | |Fi
k
2

k
2

k odd-

k even-

1 j k

2
< <

1 j k

2
< <

+1

P )( Fi ;k

Fi

Figure 3: Construction of quotient graphs from full k-subdivision of partial cubes
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earlier, we apply the Θ∗-partition of P (|Fi|; k) to obtain a quotient graph Kj
2,|Fi| with the edge-

strength 1 for all the edges and the vertex-strength-weighted values for first partite vertices as

(ai(F
′
i )+ (j−1)|Fi|, bi(F ′

i )+ (j−1)|Fi|) and (ci(F
′
i )+ (j−1)|Fi|, di(F ′

i )+ (j−1)|Fi|), and the other

each partite vertex as (k − 2(j − 1), k − 2j + 1), where 1 ≤ j ≤ k+1
2 and k is odd. When k is even,

we have quotient graphs as above Kj
2,|Fi|, 1 ≤ j ≤ k

2 , and in addition, there is a unique Θ∗-class

producing a quotient graph K2 with edge-strenght value |Fi| and vertex-strength-weighted values

as (ai(F
′
i ) +

k
2 |Fi|, bi(F ′

i ) +
k
2 |Fi|) and (ci(F

′
i ) +

k
2 |Fi|, di(F ′

i ) +
k
2 |Fi|), see Figure 3. Hence the main

formula of the theorem follows from Theorem 2. Applying the same theorem we obtain the closed

formulae as follows:

(i) W
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
= 2(ai(F

′
i ) + (j − 1)|Fi|)(ci(F ′

i ) + (j − 1)|Fi|) + (k − 2(j − 1))|Fi|(
ai(F

′
i ) + (j − 1)|Fi|+ ci(F

′
i ) + (j − 1)|Fi|

)
+ (k − 2(j − 1))2|Fi|(|Fi| − 1)

= 2(n1(Fi) + km1(Fi) + (j − 1)|Fi|)(n2(Fi) + km2(Fi) + (j − 1)|Fi|)

+ (k − 2(j − 1))|Fi|
(
n1(Fi) + km1(Fi) + (j − 1)|Fi|+ n2(Fi) + km2(Fi)

+ (j − 1)|Fi|
)
+ (k − 2(j − 1))2|Fi|(|Fi| − 1)

= 8|Fi|j − 4|Fi| − 4|Fi|k + 2n1(Fi)n2(Fi)− 4|Fi|j2 − 4|Fi|2j − |Fi|k2

+ 2|Fi|2k + 2|Fi|2 + 2|Fi|2j2 + |Fi|2k2 + 2k2m1(Fi)m2(Fi)

+ 4|Fi|jk + |Fi|kn1(Fi) + |Fi|kn2(Fi) + 2km1(Fi)n2(Fi)

+ 2km2(Fi)n1(Fi)− 2|Fi|2jk + |Fi|k2m1(Fi) + |Fi|k2m2(Fi).

W
(
K2, (w

i
v, s

i
v), s

i
e

)
= (ai(F

′
i ) +

k

2
|Fi|)(ci(F ′

i ) +
k

2
|Fi|)

= (n1(Fi) + km1(Fi) +
k

2
|Fi|)(n2(Fi) + km2(Fi) +

k

2
|Fi|).

W (Sk(G)) =
r∑

i=1

[ ⌈ k
2
⌉∑

j=1

W
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
+

1 + (−1)k

2
W

(
K2, (w

i
v, s

i
v), s

i
e

)]

= (k + 1)

{
W (G) + 2kWve(G) + k2We(G) + k|E(G)|

(
1

2
|V (G)|

+
(2k + 1)

6
|E(G)| − (k + 2)

6

)
+

k(k − 1)

6
PI(G)

}
.

(ii) We

(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
= 2(bi(F

′
i ) + (j − 1)|Fi|)(di(F ′

i ) + (j − 1)|Fi|) + ((k − 2j + 1) + 1)

|Fi|
[
(bi(F

′
i ) + (j − 1)|Fi|) + (di(F

′
i ) + (j − 1)|Fi|)

]
+

((k − 2j + 1) + 1)2|Fi|(|Fi| − 1)
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= 2((k + 1)m1(Fi) + (j − 1)|Fi|)((k + 1)m2 + (j − 1)|Fi|)+

(k − 2(j − 1))|Fi|
(
(k + 1)m1(Fi) + (j − 1)|Fi|+ (k + 1)m2(Fi)

+ (j − 1)|Fi|
)
+ (k − 2(j − 1))2|Fi|(|Fi| − 1)

= 8|Fi|j − 4|Fi| − 4|Fi|k + 2m1(Fi)m2(Fi)

− 4|Fi|j2 − 4|Fi|2j − |Fi|k2 + 2|Fi|2k + 2|Fi|2 + 2|Fi|2j2

+ |Fi|2k2 + 2k2m1(Fi)m2(Fi) + 4|Fi|jk + |Fi|km1(Fi)

+ |Fi|km2(Fi) + 4km1(Fi)m2(Fi)− 2|Fi|2jk

+ |Fi|k2m1(Fi) + |Fi|k2m2(Fi).

We

(
K2, (w

i
v, s

i
v), s

i
e

)
= (bi(F

′
i ) +

k

2
|Fi|)(di(F ′

i ) +
k

2
|Fi|)

= ((k + 1)m1(Fi) +
k

2
|Fi|)((k + 1)m2(Fi) +

k

2
|Fi|).

We(S
k(G)) =

r∑
i=1

[ ⌈ k
2
⌉∑

j=1

We

(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
+

1 + (−1)k

2
We

(
K2, (w

i
v, s

i
v), s

i
e

)]

= (k + 1)

{
(k + 1)2We(G) +

k(k + 2)

6
PI(G)

+ k|E(G)|
(
2k + 1

6
|E(G)| − (k + 2)

6

)}
.

(iii) Wve

(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
= 2

(
(ai(F

′
i ) + (j − 1)|Fi|)(di(F ′

i ) + (j − 1)|Fi|) + (bi(F
′
i ) + (j − 1)|Fi|)

(ci(F
′
i ) + (j − 1)|Fi|)

)
+ (k − 2(j − 1))|Fi|

(
(bi(F

′
i ) + (j − 1)|Fi|)

+ (di(F
′
i ) + (j − 1)|Fi|)

)
+ (k − 2j + 1)|Fi|

(
ai + (j − 1)|Fi|+ ci(F

′
i )

+ (j − 1)|Fi|
)
+ |Fi|

(
ai(F

′
i ) + (j − 1)|Fi|+ ci(F

′
i ) + (j − 1)|Fi|

+ 2(k − 2(j − 1))(F − 1)
)
+ 2(k − 2j + 1)(k − 2(j − 1))|Fi|(|Fi| − 1)

= 2
(
(n1(Fi) + km1(Fi) + (j − 1)|Fi|)((k + 1)m1(Fi) + (j − 1)|Fi|)

+ (n2(Fi) + km2(Fi) + (j − 1)|Fi|)((k + 1)m2(Fi) + (j − 1)|Fi|)
)

+ (k − 2(j − 1))|Fi|
(
((k + 1)m1(Fi) + (j − 1)|Fi|) + ((k + 1)m2(Fi)

+ (j − 1)|Fi|)
)
+ (k − 2j + 1)|Fi|

(
n1(Fi) + km1(Fi) + (j − 1)|Fi|

+ n2(Fi) + km2(Fi) + (j − 1)|Fi|
)
+ |Fi|

(
n1(Fi) + km1(Fi)

+ (j − 1)|Fi|+ n2(Fi) + km2(Fi) + (j − 1)|Fi|+ 2(k − 2(j − 1))

(|Fi| − 1)
)
+ 2(k − 2j + 1)(k − 2(j − 1))|Fi|(|Fi| − 1)

13



= 16|Fi|j − 8|Fi| − 8|Fi|k + 2m1(Fi)n2(Fi) + 2m2(Fi)n1(Fi)− 8|Fi|j2

− 8|Fi|2j − 2|Fi|k2 + 4|Fi|2k + 4|Fi|2 + 4|Fi|2j2 + 2|Fi|2k2+

4k2m1(Fi)m2(Fi) + 8|Fi|jk + |Fi|km1(Fi) + |Fi|km2(Fi)

+ |Fi|kn1(Fi) + |Fi|kn2(Fi) + 4km1(Fi)m2(Fi) + 2km1(Fi)n2(Fi)

+ 2km2(Fi)n1(Fi)− 4|Fi|2jk + 2|Fi|k2m1(Fi) + 2|Fi|k2m2(Fi).

Wve

(
K2, (w

i
v, s

i
v), s

i
e

)
= (bi(F

′
i ) +

k

2
|Fi|)(di(F ′

i ) +
k

2
|Fi|)

= ((k + 1)m1(Fi) +
k

2
|Fi|)((k + 1)m2(Fi) +

k

2
|Fi|).

Wve(S
k(G)) =

r∑
i=1

[ ⌈ k
2
⌉∑

j=1

Wve

(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
+

1 + (−1)k

2
Wve

(
K2, (w

i
v, s

i
v), s

i
e

)]

= (k + 1)

{
(k + 1)Wve(G) + k(k + 1)We(G) + k|E(G)|

(
(2k + 1)

6
|E(G)|

+
1

4
|V (G)| − k + 2

6

)
+

k(2k + 1)

12
PI(G)

}
.

(iv) Szv
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
= |Fi|

(
(ai(F

′
i ) + (j − 1)|Fi|+ (k − 2(j − 1))(|Fi| − 1) + ci(F

′
i ) + (j − 1)|Fi|

+ k − 2(j − 1)) + (ci(F
′
i ) + (j − 1)|Fi|+ (k − 2(j − 1))(|Fi| − 1) + ai(F

′
i )

+ (j − 1)|Fi|+ k − 2(j − 1))

)
= |Fi|

(
(n1(Fi) + km1(Fi) + (j − 1)|Fi|+ (k − 2(j − 1))(|Fi| − 1) + n2(Fi)+

km2(Fi) + (j − 1)|Fi|+ k − 2(j − 1)) + (n2(Fi) + km2(Fi) + (j − 1)|Fi|+

(k − 2(j − 1))(|Fi| − 1) + n1(Fi) + km1(Fi) + (j − 1)|Fi|+ k − 2(j − 1))

)
=− |Fi|(8k − 16j − 8|Fi|+ 16|Fi|j − 8|Fi|k − 8jk − 2n1(Fi)n2(Fi)

− 8|Fi|j2 − 4|Fi|2j − 2|Fi|k2 + 2|Fi|2k + 2|Fi|2 + 8j2 + 2k2 + 2|Fi|2j2

− 2k2m1(Fi)m2(Fi) + 8|Fi|jk − |Fi|kn1(Fi)− |Fi|kn2(Fi)

− 2km1(Fi)n2(Fi)− 2km2(Fi)n1(Fi)− 2|Fi|2jk − |Fi|k2m1(Fi)

− |Fi|k2m2(Fi) + 8).

Szv
(
K2, (w

i
v, s

i
v), s

i
e

)
= (ai(F

′
i ) +

k

2
|Fi|)(ci(F ′

i ) +
k

2
|Fi|)

= (n1(Fi) + km1(Fi) +
k

2
|Fi|)(n2(Fi) + km2(Fi) +

k

2
|Fi|).
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Szv(S
k(G)) =

r∑
i=1

[ ⌈ k
2
⌉∑

j=1

Szv
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
+

1 + (−1)k

2
Szv

(
K2, (w

i
v, s

i
v), s

i
e

)]

= (k + 1)

{
Szv(G) + 2kSzev(G) + k2Sze(G) + k(|E(G)|2 − PI(G))(

k + 1

2
|V (G)|+ k(k + 1)

2
|E(G)|+ (k + 2)

3

)
− k(k + 2)

3
|E(G)|

− k(2k + 1)

6

r∑
i=1

|Fi|3
}
.

(v) Sze
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
= |Fi|

(
(bi(F

′
i ) + (j − 1)|Fi|+ (k − 2j + 1)(|Fi| − 1) + |Fi| − 1)

(di(F
′
i ) + (j − 1)|Fi|+ k − 2j + 2) + (di(F

′
i ) + (j − 1)|Fi|+

(k − 2j + 1)(|Fi| − 1) + |Fi| − 1)(bi(F
′
i ) + (j − 1)|Fi|+ k − 2j + 2)

)
= |Fi|

(
((k + 1)m1 + (j − 1)|Fi|+ (k − 2j + 1))(|Fi| − 1) + |Fi| − 1)

((k + 1)m2 + (j − 1)|Fi|+ k − 2j + 2) + ((k + 1)m2 + (j − 1)|Fi|+

(k − 2j + 1)(|Fi| − 1)((k + 1)m1 + (j − 1)|Fi|+ k − 2(j − 1) + 2)

)
= − |Fi|(8k − 16j − 8|Fi|+ 16|Fi|j − 8|Fi|k − 8jk − 2m1(Fi)m2(Fi)

− 8|Fi|j2 − 4|Fi|2j − 2|Fi|k2 + 2|Fi|2k + 2|Fi|2 + 8j2 + 2k2 + 2|Fi|2j2

− 2k2m1(Fi)m2(Fi) + 8|Fi|jk − |Fi|km1(Fi)− |Fi|km2(Fi)

− 4km1(Fi)m2(Fi)− 2|Fi|2jk − |Fi|k2m1(Fi)− |Fi|k2m2(Fi) + 8).

Sze
(
K2, (w

i
v, s

i
v), s

i
e

)
= (bi(F

′
i ) +

k

2
|Fi|)(di(F ′

i ) +
k

2
|Fi|)

= ((k + 1)m1(Fi) +
k

2
|Fi|)((k + 1)m2(Fi) +

k

2
|Fi|).

Sze(S
k(G)) =

r∑
i=1

[ ⌈ k
2
⌉∑

j=1

Sze
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
+

1 + (−1)k

2
Sze

(
K2, (w

i
v, s

i
v), s

i
e

)]

= (k + 1)

{
(k + 1)2Sze(G)− k(k + 2)

3
|E(G)|+ k(|E(G)|2 − PI(G))(

(k + 1)

2
|E(G)|+ (k + 2)

3

)
− k(k + 2)

3

r∑
i=1

|Fi|3
}
.

(vi) Szev
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
= |Fi|

(
(ai(F

′
i ) + (j − 1)|Fi|+ (k − 2(j − 1))(|Fi| − 1))(di(F

′
i )
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+ (j − 1)|Fi|+ k − 2j + 2)) + ((ci(F
′
i ) + (j − 1)|Fi|+ (k − 2(j − 1)))

(bi(F
′
i ) + (j − 1)|Fi|+ (k − 2j + 1)(|Fi| − 1) + |Fi| − 1))(ci(F

′
i )

+ (j − 1)|Fi|+ (k − 2(j − 1))(|Fi| − 1))(bi(F
′
i ) + (j − 1)|Fi|

+ k − 2j + 2)) + ((ai(F
′
i ) + (j − 1)|Fi|+ (k − 2(j − 1)))(di(F

′
i )

+ (j − 1)|Fi|+ (k − 2j + 1)(|Fi| − 1) + |Fi| − 1))

)
= |Fi|

(
(n1(Fi) + km1(Fi) + (j − 1)|Fi|+ (k − 2(j − 1))(|Fi| − 1))

((k + 1)m2(Fi) + (j − 1)|Fi|+ k − 2j + 2)) + ((n2(Fi) + km2(Fi)

+ (k − 2(j − 1)))((k + 1)m1(Fi) + (j − 1)|Fi|+ (k − 2j + 1)(|Fi| − 1)

+ |Fi| − 1))(n2(Fi) + km2(Fi) + (j − 1)|Fi|+ (k − 2(j − 1))(|Fi| − 1))

((k + 1)m1(Fi) + (j − 1)|Fi|+ k − 2j + 2)) + ((n1(Fi) + km1(Fi)

+ (j − 1)|Fi|+ (k − 2(j − 1)))((k + 1)m2(Fi) + (j − 1)|Fi|

+ (k − 2j + 1)(|Fi| − 1) + |Fi| − 1))

)
= − |Fi|(16k − 32j − 16|Fi|+ 32|Fi|j − 16|Fi|k − 16jk − 2m1(Fi)n2(Fi)

− 2m2(Fi)n1(Fi)− 16|Fi|j2 − 8|Fi|2j − 4|Fi|k2 + 4F 2k + 4|Fi|2 + 16j2

+ 4k2 + 4|Fi|2j2 − 4k2m1(Fi)m2(Fi) + 16|Fi|jk − |Fi|km1(Fi)

− |Fi|km2(Fi)− |Fi|kn1(Fi)− |Fi|kn2(Fi)− 4km1(Fi)m2(Fi)

− 2km1(Fi)n2(Fi)− 2km2(Fi)n1(Fi)− 4|Fi|2jk − 2|Fi|k2m1(Fi)

− 2|Fi|k2m2(Fi) + 16).

Szev
(
K2, (w

i
v, s

i
v), s

i
e

)
= (ai(F

′
i ) +

k

2
|Fi|)(di(F ′

i ) +
k

2
|Fi|) + (ci(F

′
i ) +

k

2
|Fi|)(bi(F ′

i ) +
k

2
|Fi|)

= (n1(Fi) + km1(Fi) +
k

2
|Fi|)((k + 1)m2(Fi) +

k

2
|Fi|) + (n2(Fi)

+ km2(Fi) +
k

2
|Fi|)((k + 1)m1(Fi) +

k

2
|Fi|).

Szev(S
k(G)) =

r∑
i=1

[ ⌈ k
2
⌉∑

j=1

Szev
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
+

1 + (−1)k

2
Szev

(
K2, (w

i
v, s

i
v), s

i
e

)]

=(k + 1)

{
(k + 1)Szev(G) + k(k + 1)Sze(G)− k(k + 2)

3
|E(G)|+

(
k

4
|V (G)|

+
k(2k + 1)

4
|E(G)|+ k(k + 2)

3

)
(|E(G)|2 − PI(G))− k(4k + 5)

12

k∑
i=1

|Fi|3
}
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(vii) PI
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
= |Fi|

(
(bi(F

′
i ) + (j − 1)|Fi|+ (k − 2j + 1)(|Fi| − 1) + |Fi| − 1)

+ (di(F
′
i ) + (j − 1)|Fi|+ k − 2j + 2) + (di(F

′
i ) + (j − 1)|Fi|

+ (k − 2j + 1)(|Fi| − 1) + |Fi| − 1) + (bi(F
′
i ) + (j − 1)|Fi|+ k − 2j + 2)

)
= |Fi|

(
((k + 1)m1 + (j − 1)|Fi|+ (k − 2j + 1))(|Fi| − 1) + |Fi| − 1)

+ ((k + 1)m2 + (j − 1)|Fi|+ k − 2j + 2) + ((k + 1)m2 + (j − 1)|Fi|

+ (k − 2j + 1)(|Fi| − 1) + ((k + 1)m1 + (j − 1)|Fi|+ k − 2(j − 1) + 2)

)
.

= |Fi|(k + 1)(m1(Fi) +m2(Fi) + |Fi|k + km1(Fi) + km2(Fi))

PI
(
K2, (w

i
v, s

i
v), s

i
e

)
= (bi(F

′
i ) +

k

2
|Fi|) + (di(F

′
i ) +

k

2
|Fi|)

= ((k + 1)m1(Fi) +
k

2
|Fi|) + ((k + 1)m2(Fi) +

k

2
|Fi|).

P I(Sk(G)) =

r∑
i=1

[ ⌈ k
2
⌉∑

j=1

PI
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
+

1 + (−1)k

2
PI

(
K2, (w

i
v, s

i
v), s

i
e

)]

=(k + 1)

{
k|E(G)|2 + PI(G)

}
.

(viii) S
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
= 2

(
(ai(F

′
i ) + (j − 1)|Fi|)((2di(F ′

i ) + (j − 1)|Fi|) + |Fi|)+

(ci(F
′
i ) + (j − 1)|Fi|)(2(bi(F ′

i ) + (j − 1)|Fi|) + |Fi|)
)
+

|Fi|(k − 2(j − 1))
(
2(ai(F

′
i ) + (j − 1)|Fi|) + 2(ci(F

′
i ) + (j − 1)|Fi|)

+ (2(bi(F
′
i ) + (j − 1)|Fi|) + |Fi|) + (2(di(F

′
i ) + (j − 1)|Fi|) + |Fi|)

)
+ 2

(
((k − 2(j − 1))2)|Fi|(|Fi| − 1)

)
= 2

(
(n1(Fi) + km1(Fi) + (j − 1)|Fi|)((2(k + 1)m2 + (j − 1)|Fi|) + |Fi|)+

(n2(Fi) + km2(Fi) + (j − 1)|Fi|)(2((k + 1)m1 + (j − 1)|Fi|) + |Fi|)
)
+

|Fi|(k − 2(j − 1))
(
2(n1(Fi) + km1(Fi) + (j − 1)|Fi|) + 2(n2(Fi) + km2(Fi)

+ (j − 1)|Fi|) + (2((k + 1)m1 + (j − 1)|Fi|) + |Fi|) + (2((k + 1)m2

+ (j − 1)|Fi|) + |Fi|)
)
+ 2

(
((k − 2(j − 1))2)|Fi|(|Fi| − 1)

)
= 2(16|Fi|j − 8|Fi| − 8|Fi|k + |Fi|n1(Fi) + |Fi|n2(Fi) + 2m1(Fi)n2(Fi)

+ 2m2(Fi)n1(Fi)− 8|Fi|j2 − 8|Fi|2j − 2|Fi|k2 + 5|Fi|2k + 4|Fi|2+

4|Fi|2j2 + 2|Fi|2k2 + 4k2m1(Fi)m2(Fi) + 8|Fi|jk + 2|Fi|km1(Fi)
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+ 2|Fi|km2(Fi) + |Fi|kn1(Fi) + |Fi|kn2(Fi) + 4km1(Fi)m2(Fi)

+ 2km1(Fi)n2(Fi) + 2km2(Fi)n1(Fi)− 4|Fi|2jk + 2|Fi|k2m1(Fi)

+ 2|Fi|k2m2(Fi)).

S
(
K2, (w

i
v, s

i
v), s

i
e

)
= ((2(di(F

′
i ) +

k

2
|Fi|) + |Fi|)(ai(F ′

i ) +
k

2
|Fi|))

+ ((2(bi(F
′
i ) +

k

2
|Fi|) + |Fi|)(ci(F ′

i ) +
k

2
|Fi|))

= ((2((k + 1)m2(Fi) +
k

2
|Fi|) + |Fi|)(n1(Fi) + km1(Fi) +

k

2
|Fi|))

+ ((2((k + 1)m1(Fi) +
k

2
|Fi|) + |Fi|)(n2(Fi) + km2(Fi) +

k

2
|Fi|)).

S(Sk(G)) =

r∑
i=1

[ ⌈ k
2
⌉∑

j=1

S
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
+

1 + (−1)k

2
S
(
K2, (w

i
v, s

i
v), s

i
e

)]

= (k + 1)

{
4(k + 1)Wve(G) + 4k(k + 1)We(G) + |E(G)|

(
(k + 1)|V (G)|−

2k(k + 2)

3

)
+

k(4k + 5)

3
|E(G)|2 + k(2k + 1)

3
PI(G)

}
.

(ix) Gut
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
= 2

(
(2(bi(F

′
i ) + (j − 1)|Fi|) + |Fi|)(2(di(F ′

i ) + (j − 1)|Fi|) + |Fi|)
)

+ |Fi|2(k − 2(j − 1))
(
(2(bi(F

′
i ) + (j − 1)|Fi|) + |Fi|) + (2(bi(F

′
i )

+ (j − 1)|Fi|) + |Fi|)
)
+ 4(k − 2(j − 1))2|Fi|(|Fi| − 1)

= 2
(
(2((k + 1)m1(Fi) + (j − 1)|Fi|) + |Fi|)(2((k + 1)m2(Fi)

+ (j − 1)|Fi|) + |Fi|)
)
+ |Fi|2(k − 2(j − 1))

(
(2((k + 1)m1(Fi)

+ (j − 1)|Fi|) + |Fi|) + (2((k + 1)m2(Fi) + (j − 1)|Fi|) + |Fi|)
)

+ 4(k − 2(j − 1))2|Fi|(|Fi| − 1)

= 2(16|Fi|j − 8|Fi| − 8|Fi|k + 2|Fi|m1(Fi) + 2|Fi|m2(Fi) + 4m1(Fi)m2(Fi)

− 8|Fi|j2 − 8|Fi|2j − 2|Fi|k2 + 6|Fi|2k + 5|Fi|2 + 4|Fi|2j2 + 2|Fi|2k2

+ 4k2m1(Fi)m2(Fi) + 8|Fi|jk + 4|Fi|km1(Fi) + 4|Fi|km2(Fi)+

8|Fi|m1(Fi)m2(Fi)− 4|Fi|2jk + 2|Fi|k2m1(Fi) + 2|Fi|k2m2(Fi)).

Gut
(
K2, (w

i
v, s

i
v), s

i
e

)
= ((2(di(F

′
i ) +

k

2
|Fi|) + |Fi|)(2(bi(F ′

i ) +
k

2
|Fi|) + |Fi|))

= ((2((k + 1)m1(Fi) +
k

2
|Fi|) + |Fi|)(2((k + 1)m2(Fi) +

k

2
|Fi|).

Gut(Sk(G)) =
r∑

i=1

[ ⌈ k
2
⌉∑

j=1

Gut
(
Kj

2,|Fi|, (w
i
v, s

i
v), s

i
e

)
+

1 + (−1)k

2
Gut

(
K2, (w

i
v, s

i
v), s

i
e

)]
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=(k + 1)

{
4(k + 1)2We(G) +

(
(2k + 1)(2k + 3)

3

)
|E(G)|2

− 2k(k + 2)

3
|E(G)|+ 2k2 + 4k + 3

3
PI(G)

}
.

4 Implementation of full k-subdivision on graphene

In this section, we implement Theorem 4 on full k-subdivision of graphene to obtain the indices of

the variants of graphene.

4.1 Graphene

m

n

1 2

2

Figure 4: Structure of graphene nanoribbon GN(m,n)

Carbon has various hybridized states (sp, sp2, sp3) and can form diverse bonding, with the ability

to bind to itself and to nearly all elements [9]. Since the advent of fullerenes [54], an allotrope of

carbon, many carbon nanomaterials have been extracted such as carbon nanotube [4] in 1991 and

graphene which was proposed in [15] and broadly studied in [7]. Graphene is arranged as a two-

dimensional layer of carbon atoms with sp2 hybridization that are packed in a honeycomb lattice

structure as shown in the Figure 4 of dimension (m,n). It has attracted considerable attention with

its peculiar properties in fundamental and applied research as it is the thinnest and strongest known

material due to its excellent electrical, thermal, mechanical, electronic, and optical properties. It

has a high specific surface area, high chemical stability, high optical transmittance, high elasticity,
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high porosity, biocompatibility, tunable band gap, and ease of chemical functionalization which

actually helps in tuning its properties [10, 55]. Due to its unique properties and nontoxic nature,

graphene sheets are extensively studied and applied as drug carriers by chemists in the field of

nanobiomedicine, and thus QSAR, QSPR and QSTR studies of such structures have become very

vital to determine their structural properties and biological activities. Various degree and distance-

based topological indices for graphene nanoribbon have been computed in [46]. We now state

the distance-based topological indices of graphene nanoribbon which are essential for our further

theorems.

Theorem 5. Let G be a graphene nanoriboon GN(m,n), 1 ≤ n ≤ m.

1. [46] W (G) = n
15(−8n4+40n3m+20n3+80n2m2+80n2m+30n2+80nm3+120nm2+30nm−

20n− 20m2 − 20m− 7).

2. [46] We(G) = −1
30 (36n

5−180n4m−60n4−360n3m2+20n3−360n2m3+540n2m2+120n2m+

75n2 + 120nm3 − 180nm2 − 90nm− 71n− 10m3 + 30m2 + 10m).

3. [46] Wev(G) = −n
30 (24n

4 − 120n3m− 50n3 − 240n2m2 − 120n2m− 20n2 − 240nm3 +120nm+

65n+ 40m3 + 30m2 − 10m− 19).

4. [46] Szv(G) = n
15(24n

4 − 80n3m− 50n3 + 240n2m3 + 360n2m2 + 200n2m− 30n2 + 80nm+

50n− 20m3 + 15m+ 21).

5. [46] Sze(G) = 1
6(12n

5 + 12n4m − 44n4 + 216n3m3 − 12n3m2 + 90n3m − 11n3 − 120n2m3 −

54n2m2 − 63n2m+ 41n2 + 34nm3 + 30nm2 + 17nm+ 2n− 6m3).

6. [46] Szev(G) = n
30(56n

4−100n3m−100n3+720n2m3+520n2m2+300n2m−70n2−200nm3−

210nm2 − 15nm+ 85n+ 50m2 + 15m+ 29).

7. [46] SZt(G) = 1
6(44m

5−60m4n−104m4+600m3n3+340m3n2+290m3n−51m3−200m2n3−

138m2n2 − 37m2n+ 95m2 + 26mn3 + 50mn2 + 29mn+ 22m− 6n3).

8. [56] PI(G) = 1
3(8n

3 + 108n2m2 + 12n2m+ 3n2 − 42nm2 − 12nm− 11n+ 6m2).

9. [46] S(G) = 2n(2m+ 1)(n−m+ 6nm) + 4Wev(G).

10. [46] Gut(G) = (n−m+ 6nm)2 + 4We(G) + PI(G).
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4.2 α-graphyne

Gaphyne was first proposed in [14], is an allotrope of carbon arranged in a crystal lattice as depicted

in the Figure 5. It is a variation of graphene which is built by inserting an acetylenic linkage -C≡C-

between two bonded carbon atoms in the hexagonal lattice of graphene. In mathematical terms,

graphyne nanoribbon is formed from graphene nanoribbon by full 2-subdivision on each edge. The

topological indices of α-graphyne are derived in the following as a consequence of Theorems 4 and

5 along with a minor computation that if {F1, F2, . . . , Fr} is the Θ-partition [46] of graphene, then
r∑

i=1
|Fi|3 = 2m3n+ 16mn3 − 8n4 −m3 + 3m2n+ 3mn+ 8n2 + n.

m

n

1 2

2

Figure 5: Structure of α-graphyne nanoribbon α-GyN(m,n)

Theorem 6. If G is an α-graphyne nanoribbon α-GyN(m,n), 1 ≤ n ≤ m, then

1. W (G) = 1
15(3840m

3n2−960m3n+60m3+3840m2n3+1440m2n2−450m2n−75m2+1920mn4+

960mn3 + 330mn2 − 120mn− 384n5 + 720n4 + 130n3 − 720n2 + 404n),

2. We(G) = 1
30(9720m

3n2 − 3240m3n+ 270m3 + 9720m2n3 − 4860m2n2 + 1380m2n− 420m2 +

4860mn4 − 960mn2 + 930mn− 150m− 972n5 + 1620n4 − 220n3 − 1755n2 + 1357n),

3. Wve(G) = 1
15(4320m

3n2 − 1260m3n + 90m3 + 4320m2n3 − 270m2n2 − 30m2n − 120m2 +

2160mn4 + 540mn3 − 210mn2 + 150mn− 30m− 432n5 + 765n4 + 10n3 − 810n2 + 527n),

4. Szv(G) = 1
15(11520m

3n3 − 3360m3n2 − 90m3n− 15m3 + 9600m2n3 − 1800m2n2 + 855m2n−

120m2−2400mn4+5580mn3+2220mn2−390mn+120m+768n5−1950n4−1160n3+1950n2+

542n),
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5. Sze(G) = 1
6(5832m

3n3 − 2592m3n2 + 390m3n − 60m3 + 2268m2n3 − 1134m2n2 + 600m2n −

48m2− 540mn4+2238mn3− 21mn2− 75mn+48m+324n5− 948n4− 425n3+921n2+134n),

6. Szev(G) = 1
30(25920m

3n3−9540m3n2+690m3n−120m3+15840m2n3−4860m2n2+2280m2n−

240m2 − 3900mn4 + 10800mn3 + 2355mn2 − 705mn + 240m + 1584n5 − 4140n4 − 2260n3 +

4050n2 + 886n),

7. Szt(G) = 1
30(104040m

3n3 − 38760m3n2 + 3150m3n − 570m3 + 62220m2n3 − 18990m2n2 +

9270m2n−960m2−15300mn4+43950mn3+9045mn2−2565mn+960m+6324n5−16920n4−

8965n3 + 16605n2 + 3526n),

8. PI(G) = 324m2n2 − 114m2n+ 12m2 + 84mn2 − 24mn+ 8n3 + 9n2 − 11n,

9. S(G) = −2
15 (8640m

3n2 − 2520m3n + 180m3 + 8640m2n3 + 1620m2n2 − 690m2n − 195m2 +

4320mn4 + 1080mn3 + 480mn2 + 165mn− 60m− 864n5 + 1530n4 + 20n3 − 1530n2 + 1054n),

10. Gut(G) = 1
15(19440m

3n2 − 6480m3n+ 540m3 + 19440m2n3 − 570m2n− 525m2 + 9720mn4 +

960mn2 + 1230mn− 300m− 1944n5 + 3240n4 − 320n3 − 3240n2 + 2549n).

4.3 α-graphdiyne

m

n

1 2

2

Figure 6: Structure of α-graphdiyne nanoribbon α-GdN(m,n)

Graphdiyne initially synthesized and proposed in [3], is a variant of graphene with two acetylenic

linkage rather than one as given in the Figure 6. The two acetylenic linkages double the length of

the carbon chains connecting the hexagonal rings. In the following theorem, we have determined
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the distance-based topological indices for α-graphdiyne nanoribbon to be applied in the study of

QSAR/QSPR/QSTR studies.

Theorem 7. If G is an α-graphdiyne nanoribbon α-GdN(m,n), 1 ≤ n ≤ m, then

1. W (G) = 1
3(3920m

3n2−1120m3n+80m3+3920m2n3+840m2n2−320m2n−90m2+1960mn4+

560mn3 + 270mn2 + 20mn− 20m− 392n5 + 700n4 + 30n3 − 700n2 + 467n),

2. We(G) = 5
6(1800m

3n2−600m3n+50m3+1800m2n3−540m2n2+132m2n−66m2+900mn4−

72mn2 + 138mn− 26m− 180n5 + 300n4 − 36n3 − 315n2 + 243n),

3. Wve(G) = 5
6(1680m

3n2− 520m3n+40m3+1680m2n3− 72m2n2− 18m2n− 48m2+840mn4+

120mn3 + 70mn− 16m− 168n5 + 290n4 − 12n3 − 299n2 + 213n),

4. Szv(G) = 1
3(11760m

3n3 − 3920m3n2 + 80m3n − 30m3 + 8680m2n3 − 1920m2n2 + 950m2n −

120m2−2240mn4+5320mn3+1900mn2−435mn+120m+728n5−1970n4−1070n3+1970n2+

447n),

5. Sze(G) = 5
6(5400m

3n3 − 2280m3n2 + 274m3n − 42m3 + 2580m2n3 − 990m2n2 + 522m2n −

48m2−660mn4+2122mn3+249mn2−131mn+48m+300n5−876n4−403n3+861n2+130n),

6. Szev(G) = 5
6(5040m

3n3 − 1904m3n2 + 140m3n − 24m3 + 3064m2n3 − 894m2n2 + 446m2n −

48m2−788mn4+2100mn3+517mn2−161mn+48m+296n5−820n4−418n3+811n2+155n),

7. Szt(G) = 1
6(100920m

3n3 − 38280m3n2 + 2930m3n − 510m3 + 60900m2n3 − 17730m2n2 +

8970m2n−960m2−15660mn4+42250mn3+10215mn2−3135mn+960m+5916n5−16520n4−

8335n3 + 16355n2 + 3094n),

8. PI(G) = 5
3(540m

2n2 − 186m2n+ 18m2 + 156mn2 − 36mn+ 8n3 + 15n2 − 11n)

9. S(G) = 10
3 (1680m

3n2− 520m3n+40m3+1680m2n3+180m2n2− 96m2n− 42m2+840mn4+

120mn3 + 96mn2 + 55mn− 16m− 168n5 + 290n4 − 12n3 − 290n2 + 213n),

10. Gut(G) = 5
3(3600m

3n2 − 1200m3n + 100m3 + 3600m2n3 − 102m2n − 99m2 + 1800mn4 +

192mn2 + 210mn− 52m− 360n5 + 600n4 − 64n3 − 600n2 + 475n).

We conclude this section with a graphical comparative analysis of topological indices for graphene,

α-graphyne and α-graphdiyne.
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Figure 7: Comparative analysis of (a)GN(25, n) (b)GN(m, 25) (c) α-GyN(25, n) (d) α-GyN(m, 25)
(e) α-GdN(25, n) (f) α-GdN(m, 25)
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5 Applications

In this section we outline several potential applications of the derived topological indices for the pre-

diction of physicochemical properties and drug/biological activities of these novel materials. This is

especially important and useful for derivative compounds of graphdiyne as these are emerging novel

materials [57]. Among several observable physicochemical properties, a combination of edge-based

topological indices such as the vertex-Szeged, edge-Szeged, total Szeged and edge-Wiener indices,

have been quite useful in the statistical correlation of the observable properties such as proton-ligand

binding affinities, vapor pressures, molar volumes, chromatographic retention indices, dermal pene-

tration, etc. Other properties such as melting points and boiling points have been correlated quite

well with both vertex or distance-degree based indices such as the Wiener Index, Schultz index, etc.

Szeged indices have had reasonable success in predicting drug activities and toxicity parameters,

for example, anti-inflammatory, anti-HIV, anti-tuberculotic activities, anti-malarial activities for

phenyl-analogs, etc., most of which on the derivatives of polycyclic aromatic compounds [29]. Thus

it is anticipated that the Szeged indices should have reasonable predictive power in correlating with

various activity parameters of related graphene and graphdiyne for properties such as pK, pIC50

and other toxicity parameters such as NOAEL, LOAEL, LD50, etc., of various related compounds.

In the case of graphdiynes, it has been shown [14] that the fragment based approach similar to

the ones generated from the cut methods have had reasonable success in predicting enthalpies of

formation for a number of layered structures of varied complexities derived from the graphdiyne

structures. That is, the heats of formations of large structures have been correlated with a linear

combination of the heats of formations of various fragments generated from the cleavage of parent

structures. This is especially important as ab initio based quantum chemical techniques such as

the Gaussian-2 based theory for heats of formations are extremely cumbersome, for a series of

layered compounds and nanoribbons such as the ones considered here containing a large number of

carbon atoms. We believe that for such systems fragment based techniques such as the cut method

considered here would have greater predictive power and efficacy.

Next we demonstrate the types of numerical correlations of physical properties that are feasible

with our computed topological indices. Table 2 shows the numerical values of some of the indices

that we have computed for the special cases of the structures considered here with appropriate

substitutions. Typically, the Szeged index Sz correlates with the negative logarithms of observed

equilibrium constants for first and second protonation, which we denote by pKH
1 and pKH

2 . Proto-
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nation has been attributed as one of the key mechanisms for the graphdiyne containing molecules

as an efficient drug delivery vehicles for Pentasa and Hyoscyamine drugs [58]. Due to the existence

of sp2 and sp carbon atoms in the graphdiyne and graphene structures, we anticipate these com-

pounds to exhibit favorable proton affinities. Consequently, using the numbers shown in Table 2

simple statistical correlations of the type shown below can be obtained:

pKH
1 = aSz + b

and

pKH
2 = cSz + d

where a, b, c, d are numerical constants obtained by fitting the results with the observed pKH
1 and

pKH
2 values for known compounds.

Table 2: Indices for specific values of GyN(m,n) and GdN(m,n)

TI GyN(3, 2) GyN(6, 4) GdN(3, 2) GdN(6, 4)

W 53379 1679996 259600 8361860

We 54668 1912664 262420 9016500

Wve 54126 1793432 261685 8688150

Szv 186483 11191232 908290 55777820

Sze 192507 12812864 925470 60389760

Szev 189597 11977040 917050 58042110

Szt 758184 47958176 3667860 232251800

S 226794 7339016 1076140 35229720

Once such an equation is obtained for QSAR, one can make predictions for the unknown struc-

tures. However at present experimental data are not yet available for the protonation equilibrium

constants for the relatively newer structures that we have considered. Moreover a better correlation

can also be obtained using the linear regression methods, and principal component analysis using

several of the indices that have been computed and shown in Table 2. The PCA method would

show which of the indices shown in Table 2 would have better correlation and predictive power.
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Another important property pertinent to these species of biological relevance is the epoxidation

potential and hydrolysis propensity following epoxide formation at unsaturated sp2 and sp carbons,

as these properties measure the carcinogenic propensities of these species [59]. Again more sophisti-

cated higher level ab initio quantum chemical studies of the energetics of various metabolic products

formed and the rate constants of metabolic reactions would be quite cumbersome, especially for a

series of larger compounds of the kinds studied here. Once there are experimental results avail-

able for a few of the smaller compounds studied here, one can seek statistical correlations for the

larger compounds where the computed indices would have predictive powers within reasonable ac-

curacies. Likewise hydrophobicites and lipophilicites (logP , octanol-water partition coefficients) of

these compounds can be correlated with good accuracy using Szeged indices. For example, previous

studies [29] have shown that these properties can be correlated quite well with Sz with the following

expressions for polyacenes which are structurally related to the structures considered here:

logP (Lh) = 1.0875× 10−4Sz + 9.210, with an R value of 0.9258.

We note that the ratios of Szv in Table 2 are 60 and 61 for graphene and graphdiyne respec-

tively. Likewise for the two structures the ratios of Sze are 63 and 65, respectively whereas the

ratios for Szev and Szt are all close to 63, where we have rounded up the ratios to the nearest

integers. Evidently, the nearly constant ratios suggest that any of the Szeged indices should work

well with linear regression expression for logP and other properties. Similar expressions should

work reasonably well for the structure-property correlations for the various compounds derived

from these structures such as oxides, fluoro-graphdiynes, chloro-graphdiynes and so on [57]. At the

present time, available experimental data are some what limited, especially for the larger structures

considered in the present study. Once more data is available one should be able to use the math-

ematical expressions obtained here to compute the numerical values for the various indices which

can be effectively used to obtain QSAR correlation relations from the observed results for smaller

structures. Subsequently, such QSAR relation can be used for the larger homologs in the series

considered here. Hence our derived mathematical expressions can be of considerable use in future

computations and experiments on obtaining physicochemical properties and biological activities of

the compounds considered here.
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6 Conclusion

The rise of graphene with unique properties has given way to other allotropes such as graphyne and

graphdiyne which have been studied in recent years to determine their properties. In this paper, we

have presented a technique to compute topological indices of molecular structures that have both sp

and sp2 hybridization, wherein one or more acetelynic linkage is added to each bond in the molecular

structure. Mathematically, the technique involves the extension to full k-subdivisions of partial

cube and thereby compute their distance, degree-distance and bond-additive topological indices.

The results obtained can be applied to any number of subdivision of edges when the indices of their

associated partial cubes with Θ-classes are known. We have implemented the results obtained on α-

graphyne and α-graphdiyne and presented a comparative analysis to examine the behaviors of their

topological indices. The computed expressions provide a promising avenue for further exploration

and correlation of structure-activity properties of these novel materials of considerable interest from

the standpoint of interesting chemical, medicinal and spectroscopic applications.
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