
July 9, 2019 19:11 WSPC/INSTRUCTION FILE letter2DMAA

Discrete Mathematics, Algorithms and Applications
c© World Scientific Publishing Company

A note on Frame-Stewart Conjecture∗

The article [2] by Roberto Demontis deals with the so-called Frame-Stewart Con-

jecture which has been open since 1941 and makes a statement about the number

of moves necessary (and sufficient) to solve the Tower of Hanoi problem in the

presence of k ≥ 4 pegs; see [3, Chapter 5] for a comprehensive description of the

problem. The conjecture was confirmed for the special case k = 4 by T. Bousch in

[1], but the general case remained open. In [2] Demontis now claims to have solved

this almost 80 years old question. Unfortunately, his article contains fatal flaws that

negate his main result. In order to keep research on the Frame-Stewart Conjecture

alive, the authors of the present letter feel obliged to point out some of the most

serious deficiencies of [2].

Our main concern is with the set X, defined in Definition 5 of [2], that plays

a vital role in the paper. It consists of all costs of discs, i.e. the numbers of moves

made by them, that occur in an ideal sequence of moves for n discs, labelled 1 to n

from small to large, and k pegs. In particular, any minimal demolishing sequence,

leading from the start configuration with all n discs united on one peg up to and

including the only move made by the largest disc n, is ideal according to Definition 4,

part (1) of [2]. Demontis summarizes his allegations at the top of the last page with

the claim (his point (1)) that X is made up of all powers of 2, a “fact” on which

the argument for his Theorem 1 heavily depends. The following observation shows

that this claim, and consequently Demontis’ proof, are false.

Proposition 1. There is a symmetric (with respect to the central move of the

largest disc) minimal solution for the Tower of Hanoi problem with 4 pegs and

11 discs where the number of moves made by disc 1 is not a power of 2.

Proof. For moves we will use the notation of [2], but instead of writing ∞ when a

disc is put on some empty peg, we will be more specific and denote (the bottoms

of) the pegs by A, B, C, and D and assume that we start with all discs on peg A.

So (1, 2, D) means that disc 1, lying on disc 2 (on peg A) is moved to the empty

peg D. We define the sequence of moves

S1 = (1, 2, D)(2, 3, B)(3, 4, C)(2, B, 3)(4, 5, B)

(2, 3, 5)(3, C, 4)(2, 5, 3)(1, D, 2)(5, 6, D)(6, 7, C)(5, D, 6)(7, 8, D) .
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This is a demolishing sequence for discs 1 to 7 ending with discs 1 to 4 on peg B,

5 and 6 on C, and 7 on D; all larger discs are still on their starting peg A. We

continue with the following sequence obtained by reflection from the previous one:

S2 = (5, 6, 8)(6, C, 7)(5, 8, 6)(1, 2, 8)(2, 3, 5)(3, 4, C)(2, 5, 3)

(4, B, 5)(2, 3, B)(3, C, 4)(2, B, 3)(1, 8, 2) .

All discs from 1 to 7 are united on peg D. The so far untouched discs larger than

7 are now transferred, avoiding peg D, according to the sequence

S3 = (8, 9, C)(9, 10, B)(8, C, 9)(10, 11, C)(8, 9, 11)(9, B, 10)(8, 11, 9)(11, A,B) .

This results in disc 11 on peg B, discs 8 to 10 on C and the smaller ones on D.

So the sequence S = S1S2S3 is a demolishing sequence and known to be minimal

according to [1] because the total length is 33. The number of moves made by discs 1

through 11 in this sequence is 4, 8, 4, 2, 4, 2, 1, 4, 2, 1, and 1, respectively.

Similarly, if we replace S2 with

S′2 = (5, 6, 8)(6, C, 7)(5, 8, 6)(1, 2, 5)(2, 3, C)(3, 4, 8)(1, 5, 3)

(4, B, 5)(1, 3, B)(3, 8, 4)(2, C, 3)(1, B, 2) ,

we find that S′ = S1S
′
2S3 is a minimal demolishing sequence where the number of

moves made by discs 1 through 11 is 6, 6, 4, 2, 4, 2, 1, 4, 2, 1, and 1, respectively. If

we extend this sequence symmetrically with the 32 moves obtained from the first 32

moves performed in inverse order and with pegs A and B interchanged, we obtain a

minimal solution to transfer all discs from peg A to peg B with the number of moves

made by discs 1 through 11 being 12, 12, 8, 4, 8, 4, 2, 8, 4, 2, and 1, respectively.

Remark. The proof shows that {1, 2, 4, 6, 8} ⊂ X and if we write M for the M4 of

[2, Definition 6], we see from our sequences S and S′ that M(1) ≥ 3, M(2) ≥ 3,

M(4) ≥ 4, M(6) ≥ 2, and M(8) ≥ 1.

Let us assume for the moment that x1 = 1, x2 = 2, x3 = 4, and x4 = 6 (i.e. that

3 and 5 are not in X), and that M(x1) = 3 = M(x2), M(x3) = 4, and M(x4) = 2.

Considering Lemma 2 of [2] for n = 11, we have M(x1) + M(x2) + M(x3) = 10, so

i = 4 and T = 1. The lower bound then becomes

H4(11) ≥ 1 + (2× 2) + (3× 2× 2) + (4× 2× 4) + (1× 2× 6) = 61 .

But the Frame-Stewart methods make 65 moves for the 4-peg, 11-disc problem, so

this is not a sharp bound on the Frame-Stewart cost! If any of the assumptions

made earlier in this paragraph are false, the bound becomes still lower because then

the cost of a disc of low cost will replace the cost of a disc of higher cost in the

estimate in Lemma 2, yielding a decreased lower bound. The problem here is that

while there exist ideal sequences, e.g. S, in which 4 discs each move 4 times, and

there exist ideal sequences, e.g. S′, in which 2 discs each move 6 times, Lemma 2

comes up short of the Frame-Stewart cost by allowing for the possible existence of

an ideal sequence with both properties.
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In fact, Lemma 2 cannot be used to prove that the 4-peg Frame-Stewart se-

quences are minimal for any n ≥ 11. It is well known that the Frame-Stewart

methods can generate demolishing sequences in which i + 1 discs each make 2i−1

moves for all i ≥ 2. If these demolishing sequences are in fact minimal, they are

ideal sequences, and we have M(2i−1) ≥ i+1 for i ≥ 2. Under the assumptions that

xi = 2i−1 and M(xi) = i+ 1, the bound in Lemma 2 is equal to the Frame-Stewart

cost. The existence of 6 in set X lowers this bound by replacing the cost of the most

costly disc with a cost of 6.

The proof of Theorem 1 in [2] depends on Lemma 4, which depends in turn

on Lemma 2; any attempt to prove the minimality of the Frame-Stewart sequences

along this route is doomed to failure.

There are other fatal flaws in [2]. Corollary 3 can not be proved as easily as

Demontis wants to make us believe: it is true that disc x can be put on a peg

which is never visited by larger discs, but the smaller ones may be, after the (first)

move of x, in a distribution disadvantageous for the moves of the larger discs. So

Demontis’ Corollary 3 still has the status of a conjecture only which is probably,

if at all, not easy to verify. Moreover, a logical blunder occurs immediately after

the proof of Lemma 3: Ik(xi) ≤ Lk(xi−1) does not imply that mk(xi) ≤Mk(xi−1).

The hypothesis of Lemma 4 has not been verified, so the conclusion is not valid.

A serious logical mishap is following Lemma 5: the claims that Ik(xi) ≤
(
k−3+i
k−2

)
and Ik(xi−1) ≤

(
k−4+i
k−2

)
imply almost nothing about Ik(xi)− Ik(xi−1). In fact, the

data strongly suggest that x3 = 4, x4 = 6, and I3(x3) = 6 = I3(x4), which would

make m3(x4) = 0, contradicting the claim just before Lemma 6. With m3(x4) = 0,

the hypothesis of Lemma 6 (whose meaning has to be guessed because i is used

simultaneously as a free and as a bound variable) is false, making its conclusion

invalid; in fact, we have seen that the conclusion is false.

Demontis definitely hasn’t answered the question he posed in the title of his

note. What P. K. Stockmeyer wrote in 1994 [4, p. 4] is valid today, in 2019:

“But the optimality of the Frame-Stewart algorithm remains a conjecture.”
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