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Abstract. A subgraph H of a graph G is gated if for every z € V(G) there exists a vertex
u in H such that dg(z, v) = dg(zx,u) + dg(u,v) for any v € V(H). The gated amalgam
of graphs G| and G is obtained from G, and G, by identifying their isomarphic gated
subgraphs H, and H,. Two theorems on the Wiener index of gated amalgams are proved.
Several known results on the Wiener index of (chemical) graphs are corollaries of these
theorems which we demonstrate by gated amalgams of trees and benzenoid systems.

1. INTRODUCTION

The Wiener index is onc of the most studied graph invariants in mathematical chem-
istry. It was introduced in 1947 by Harold Wiener [32] and extensively studied since the
middle of the 1970s. The nowadays usual definition of the index was first given by Hosoya
in 1971 [23]. In mathematical literature the Wiener index was first considered in [15]. and
its study is in fact equivalent to the studies of the average distance, cf. [5]. For (starting)
information on results on the Wiener index, the chemical meaning of the index and its
history we refer to (6, 7, 8, 21, 22, 26, 31] and special issues of MATCH Commun. Math.

!Supported by the Ministry of Education, Science and Sport of Slovenia under the grant P1-0297.



182

Comput. Chem. [18] and Discrete Appl. Math. (19}, We wish to point out that the theory
is especially well elaborated for the Wicner index of trees [12] and hexagonal systems [13].

While studying different classes of chemical graphs, like trees or hexagonal systems,
one of the most natural approaches is to build larges graphs from smaller constituents from
the same family. For instance, a tree can be recursively build by attaching pendant vertices
and similarly, catacondensed hexagonal systems can be build by successively attaching
lexagons. Here an edge and a hexagon can be considered as a prime constituents of
these classes of graphs, respectively. Moreover, such graphs can also be decomposed into
smaller—but not prime-—components. For instance, we can glue together two trees along
a vertex to obtain a bigger tree and two hexagonal systems along an edge Lo get a bigger
hexagonal system.

Such constructions have been frequently used in the literature to obtain different
types of results on the Wiener index. As an example let us just mention investigations
of nonisomorphic graphs with the same Wiener index. The main goal of this paper is to
unify several such results into a general framework. It turns out that the concept of the
gated amalgamation is a natural concept for such a unification, applicable to any graphs,
chemical or nonchemical. Roughly speaking, the gated amalgamation is an operation that
identifies isomorphic subgraphs of two graphs to obtain a bigger graph, where the distance
function is controlled by the distance functions of the constituents.

The paper is organized as follows. In the next section we recall concepts and notions
needed, in particular gated sets and amalgamations. In Section 3 our main results are
presented and proved. In the last section we deduce three results from the literature as
corollaries to our theorems. These resulls consider the Wiener index under tree trans-
formations, under attaching a hexagon to a catacondensed hexagonal system, and under
attaching two hexagonal systems.

2. PRELIMINARIES

All graphs considered are finite, undirected, connected, and without loops and multiple
edges. The vertex and edge sets of a graph G are denoted V(G) and E(G). We will shortly
write |G| for |V(G)|.

Under distance dg(u, v) between vertices u,v € V(G) we mean the usual shortest path
distance of G. The distance of a vertez v € V(G), dg(v), is the sum of distances between
v and all other vertices of GG, that is,

de(v) = Y d(v,u).

weV(G)
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The Wiener index is denoted by W((G) and defined as the sum of distances between

all pairs of vertices in G-

1
"G = k =_ J

W(G) (u,gm) dofu,v) = 5 UE‘Z(C’(!,,(U). (1)
A subgraph H of a graph G is called isometric if dy(u,v) = dg(u,v) for all u,v €
V(I). The interval T(u,v) between vertices u,v of a connected graph G is the set of
vertices of all shortest paths between u and » in G. A subgraph H of a graph G is conver
if with any vertices 1, v € H we have I(u,v) C V(H). A subgraph H of a graph G is called
gated in G if for every z € V(G) there exists a vertex u in H such that u € I(z,v) for all
v e V(H) [14]. Note that if for some z such a vertex w in V(H) exists, it must be unique.
It is then called the gate of x in H and denoted ¢ (7}, see Fig. 1. It is well-known that
the intersection of gated subgraphs is again gated and that a gated subgraph is always
convex, cf. [1]. For several additional results on gated subgraphs we refer to [2, 3, 4, 24].

Figure 1: The gate gy(z) of z in the subgraph H

Let G and Gy be gated subgraphs of a graph G such that G UG, == G and G,NGy # 0.
If in addition there are no edges between Gy \ Gy and G2 \ G then G is a gated amalgam
of Gy and Gy, cf. {1]. Equivalent description of the gated amalgamation is the following.
Let Hy be a gated subgraph of a graph Gy and H, a gated subgraph of G, where H,
and Hj are isomorphic graphs. Then the gated amalgam of G, and G, is obtained from
G, and G by identifying their subgraphs H, and H,. It is easy to see that these two
description are indeed cquivalent, see [1, Lemma 1]). We will call G, and Gy covers of the
gated amalgam G.

A hezagonal systern is 2-connected plane graph in which all inner faces are hexagons
{and all hexagons are faces), such that two hexagons are either disjoint or have exactly
one common edge, and no three hexagons share a common edge. A hexagonal system is
catacondensed if any triple of its hexagons has empty intersection.
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Finally, the n-cube Q, (n > 1) is the graph whose vertices are all binary words of
length n, two words being adjacent whenever they differ in precisely one place. For

instance, @, is the complete graph on two vertices, @, is the 4-cycle, and @ is the usual
3-cube.

3. MAIN RESULTS

In this section we prove our main results—Theorems 1 and 3. In the first theorem we
present a formula for W of a gated amalgam G in which the covers &) and G; of G play
symmetric roles. The second result gives a shorter formula for W of a gated amalgam,
but in that case the role of the covers is no longer symmetric.

Theorem 1 Let G be the gated amalgam of G, and Gy. Let Gy = G, NGy and let
1 : G1\ Go = Go and g2 : G2\ Go — Gy be the gate maps. Then

W(G) = W(G))+ W(G,) — W(Gy) +
1G:\Gi| 3 diz,ai(2) +IGi\Gal Y. d(, 0a(w) +

7€GI\G2 YyEG2\G)

> let (-5 ()] - dolu,v) .

(u,v)E€GoxGo

Proof. We first decompose the Wiener index in the following way:

W@ = 3 delew)+ Y, delmy) - Y dola,y)

[ER (z.w}CGa {z¥)CGo

+ Y dola,y). (2)
EG1\Gy
VEGA\Gy

As Gy, Gy, and G4 are gated sets, and hence convex, we have:

Y dolan+ Y delnn) = Y dola.y) = W(G) + W(Gs) - W(G). (3)
{zy)CC {z4}CG2 {2.4}CGo

To compute the last term of the right-hand side of (2), consider a shortest z,y-path P in
G, where z € G\ G2 and y € G2 \ G;. Note first that P intersects Gy since there are no
edges between G \ G2 and G \ G;. Let w be the first vertex of P in Gy while passing
P from x to y. Then dg, (r,w) = dg,(z, 0:(2)) + dg,(01(z),w). We may thus replace
the z, w-subpath of P with a path of equal length but whose first vertex in Gy is gi(z).
Analogously we may assume that the first vertex of P in Go while passing P from y to z
is g2(y). Therefore, since Gy is convex, we get

da(z,y) = do, (2, 9:1(2)) + deo(0:(z), 02(y)) + doa(92(¥), w))
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<f. Fig.2. Since all the corresponding subgraph are convex we can further write
do(z,y) = dolz, 9:1(x)) + do(9:1(2), 02(v)) + da(g2(v), v)) -
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Figure 2: A shortest path between z € Gy \ G2 and y € G \ G,
Hence the last term of the right-hand side of (2) can be computed as follows:

Y odolwy) =3 T (dolw (o)) + dolor(2), 92(w)) + [dolealy),v)))

sehs TEG1\G2 yEGAG
= [G:\GI| Y. do(z, (@) + IG\Ga| D daly,0:(v)
T€GI\G2 yEG\Gy

+ D el ezt ()] - delu,v). {4)

{u,v)EGoxGo
Inserting (4} and {3) into (2) the result follows. O

We point out that is the last sum of Theorem 1 we sum over all ordered pairs of
vertices from Gy.

Corollary 2 Let G be the graph obiained by an identification of a vertez of a graph G,
and a verier of a graph G. Let the identified verter be w. Then

W(G) = WI(GL) +W(Ga) +(IGal — 1) - de, (1) + (1G1] = 1) - desy (1)

Proof. Clearly, G is the gated amalgam of G, and G, with the intersection w. Now the
result follows immediately from Theorem 1. u]

We continue with the sccond version of the Wiener index of a graph G that is the
gated amalgam of G, and (5. Now the covers are treated differently which enables us to
obtain a shorter expression for W(G). Clearly, in this case W(G) cannot be symmetric
with respect to G} and G.
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Theorem 3 Let G be the gated amalgam of Gy and G,. Let Gy = Gy NG, and lel
o G\ Go = Gy be the gate map from G, \ Gy to Gy. Suppose in addition that G, \ Go
is isometric in Gy. Then

W(G) = W(GI\Go)+W(G)+[Gal D dima(z)) + Y o7 (@) der).

T€GH\G2 z€Go

Proof. We now decompose the Wiener index in the following way:

WEG) = > delmy)+ Y. de(mn)+ D doluv). (5)

{£y}CGI\G2 {z¥}CGC2 ‘efgl(}:"i

Since Gy \ Gy is isometric by the theorem's assumption, and since G is gated (and hence
convex), we have

D delmw+ D do(z,y) = WG\ Go) + W(G). (6)
{zy}CGGe {zy)CG2

As to the third term of the right-hand side of (5), consider a shortest z,y-path P in G,
where z € G1\G; and y € G;. Then P intersects Gy, and let w be the first vertex of P in
Gy while passing P from z to y. Then, by similar arguments as in the proof of Theorem 1

we have
do(z,y) = dg(z,w) +dslw,y)
= dg(z, 91(x)) + de(ni(z), w) + da(w, y)
= do(z, (=) + delon (=), v).
Therefore,
Y delwr) = [Go] Y dma@)+ D dalnilz)
z€G\Gy 7€GI\Gy zeGi\G2
¥EGy
= |Gy 3 dlz (@) + Y 7' (x)] - day(x) . M
G \Gy zEGy
Inserting (6) and (7) into (5) the result follows. o

Note that in Theorem 3 we have in addition assumed that G, \ Gy is isometric in
Gy. This condition is used of aesthetic reasons only. Namely, if G} \ Gy would not be an
isometric subgraph, then E(x,y}CG;'\G? de(x,y) cannot be replaced with W(G; \ Gy). In

this case, however, the result can be reformulated as

WEG) = 3 do(z.y)+ W(Gy) +Gal Y dz.qu(x) + 3 lg7"(2)] - dey(2).

{z.y}CCI\G2 1£GI\G2 z€Ge
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To illustrate Theorems 1 and 3 we consider two examples, a chemical one and a
nonchemical one.

Example 1. Consider the hexagonal system from Fig. 3. Theorem 1 will be applied
on the left amalgamation, while Theorem 3 on the right one. Note that in both cases
Gg = [(2

Figure 3: Two gated amalgamations of the phenanthrene

First consider the left amalgamation. Then we have W(G,) = 109, W(G,) = 27,
|G2\ G\| = 4, and |G \ Gz| = 8. In addition, for the sum of distances of vertices from
G1\ Gy to their gates we have 3= ¢\, d(z, 1(z)) = 18, while 3= ;. 6, d(y, 2(y)) = 6.
Hence,

W(G) =109 +27—1+4-18+8-6+6-2+2-2=271.

Next to the right amalgamation and Theorem 3. Then W(G, \ Go) = 10, W(G,) = 109,
G2l =10, 3, cova, 4@ g1(x)) = 1+ 24 2+ 1, while for both vertices  of Gy we have
lo7'(x)] = 2 and dg,(u) = 21, dg,(v) = 25. Hence we have:

W(G)=10+109+10-6+2-21 +2-25 = 271

Example 2. Let G,, n > 1, be the graph obtained from two copies @' and Q" of the
n-cube @, by identifying an (n — 1)-subcube of Q" with an (n — 1)-subcube of Q" cf.
Fig. 4, where G, G, and G5 are drawn.

Clearly, G, is a gated amalgam of two n-cubes with two (n — 1)-cubes as covers. It is
well-known, cf. [16, 25], that W (Q,) = n 22*~1). Therefore, applying Theorem 1 we casily
obtain:

H"(Gn) - 2n22(n—1) = (" - 1)2’2(n-2) e, gn=1 gn-1 +2 (n 2 1)22(n—2)
(9n + 7222
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Figure 4: First three graphs G, n > 1

4. THREE SPECIAL CASES

In this section we present three typical examples how Theorems 1 and 3 can be applied.
All these examples appeared before in the literature and the list of such examples could

well have been extended.

4.1. Wiener index under tree transformations

Rada [30] considered certain tree transformations in order to construct nonisomorphic
trees with the same Wiener index. The main idea is to attach a given tree to different
vertices of another tree and to consider the corresponding Wiener indices. More precisely,
let u and v be vertices of a tree T' and let w be a vertex of a tree S. Let T, be the tree
obtained from T and S by identifying u with w, and let T, be the tree obtained from T
and S by identifying v with w, see Fig. 5.

|

e w. A

/
) / ‘
\\J\’ f\'\-/‘ \\.-) l" \\(}—/ //S'\

Figure 5: Trees Ty, and T, constructed from trees T and S
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We now present the central result of [30] and its short proof.
Theorem 4 Let u, v, T, T}, T, and S be as above. Then
W(T.) - W(T,) = (IS[ = 1) - (dr(u) — dr(v)) .

Proof. Clearly, T, and T, are gated amalgams of T and S. Then Corollary 2, applied on
T, and T, with G, = T and G, = S, gives:

W(T) = W(T)+W(S)+(IS|— 1) dr(u) + (IT| - 1) - ds(w),
W(T,) = W(T)+W(S)+(ISI-1)-dr(v) + (IT| = 1) - ds(w),

and the result follows. o

It is of interest to closely examine the expression dr(u) — dp(v) from the previous
theorem. It can be, more generally, computed as follows.

Proposition 5 Let H be a gated subgraph of a connected graph G with the gate map
gn:G\H = H. Let u,v € H, then

do() = do(v) = 3" (lg W) - [y, u) - dly, v))) + (dufw) ~ du(v)).-

yeH

Proof. Consider a vertex = € G\ H. Then d(z,u) = d(z,gy(z)) + d(gx(z),v) and
d(z,v) = d(z, gu(x)) + d(gn(z),v), hence

d(z,u) —d(z,v) = d(gu(z) u) - d(gu(r),v).
We can therefore compute as follows:

> " (d(u, z) - d(v,z))

da(u) — de(v)

TG

= Y (du,z)-dv,z))+)_(d(u,z) - d(v,z))
reG\H zEH

= 3 (dlgulx),u) — dlgn(z), v)) + (du () — dy(v))
TEG\H

= > (195" @ - @, w) = d(y,v))) + (W) — du o).
yEH

0

In the particular case of Theorem 4 we can select the unique u, v-path in T as a gated
subgraph. Then Proposition 5 easily implies the expression for d(u) —dp(v) given in [30}.
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4.2. Attaching a hexagon to a catacondensed hexagonal system

In our second application we consider catacondensed hexagonal systems. Clearly, any
such graph can be obtained by a recursive procedure of joining a hexagon to the previously
canstructed system. Therefore, the following theorem is relevant.

Theorem 6 Let G be a catacondensed hezagonal system and let e = wv be a join edge
of G. Let H be the catacondensed hezagonal system obtained from G by removing the
pendant hezagon containing e. Then

W(G) = W(H) +2(du(u) + dg(u)) + 6|H|+ 10.

Proof. Let G be the pendant hexagon of G containing the edge e and set Gy = H.
Then G is the gated amalgam of G; and G2. Moreover, W(G, \ G¢) = 10, W(G,) =
W), Xreain, 4@, 91(z)) = 6, and |g7' (w)} = |97 '(w)] = 2. Now the result follows
immediately from Theorem 3. =]

Theorem 6 goes back to Gutman and Polansky [20] and has been applied many times,
for instance in [17, 29]. For more related references see [13].

This example is a special case of the following observation. Let G, and G be bipartite
graphs and let G be a graph obtained from G, and G; by identifying en edge of G, with
and edge of G;. (Note that G is bipartite as well.) Then G is a gated amalgam of G,
and G,. Indeed, let uv be the edge of G where G, and G, have been identified. Then for
any vertex w of G we have either d(w, u) < d(w,v) or d(w,u) > d(w, v), for otherwise G
would not be bipartite. But then the vertex closer to w is its gate.

4.3. Attaching two hexagonal systems
In the previous example we have attached a hexagon to a catacondensed hexagonal
system. A more general situation is when two hexagonal systems are glued together along

an edge. For this case Polansky and Bonchev [27, 28] obtained the following result, which
we prove here using Theorem 1.

Theorem 7 Let Gy, G, be arbitrary hezagonal systems and e; = (v, 1) € E(Gy), e; =
(ve, up) € E(G»). If the system G s construcied from Gy and G by identifying the edges
ey and ey so that the verter v, is identified with the verter vy, then

W(G) W(G)) + W(G2)
Gl = 2) (de (1) + s, () + 5 (161~ 2) (s o0) + dis ()

(c
(o (02) = d, (1)) (doy(v2) = da))) = 51Gal Gl + 1.

B =S| =
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Proof. First, G is the gated amalgam of G, and G,. We next observe that

Y dz,ail2) Yo dama)+ Y dzalx)

€GI\Ga 2697 (m) ¢y ' (v)
= 3 dmw)+ Y d=zun)-1. ®)
z€g; " (n1) z¢9; ! (1)

Analogously we infer that

> dmafz)) = Y dmuw)+ Y dzuw)-1. (9)
2€G1\C2 zeg;  (w) oy (w)
Combining (8) and (9) we obtain
2 Y dz, (@) = do () +de,(w) - |Gl (10)

2eGI\G2
and by the symmetry also

2 Y diz,e(z)

TEGH\G)

dg,(ve) + dg, (u2) — |G, (11)

Set now |g7" (m)] = @, lg" (w)] = b, |97 '(m)| = ¢, and |97 (wa)| = d, 50 that

Yl gt ()] - delu,v) = ad+be. (12)
(2 2)EGoxGo

Hence, inserting (10), (11), and (12) into Theorem I, we get:

Il

W(G) n (G1) + W(Ga)

+ 5 (1621~ 2)(da, () + do, () + 5 (1611 = 2)(d (v2) + e ()
+ ac[+bc+ |G\ + |G| = |G| |Gal = 1-

Clearly, |G| =a+ b+ 2 and |G»| = ¢ + d + 2. Moreover,
dg,(n) —dg,(m) =b-a

and

dgy(v2) — dg,(uz) =d — ¢,

from which the resuit easily follows. a}

The formula of Theorem 7 has been further elaborated by Dobrynin in (9, 10, 11].
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