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Abstract

In chemical graph theory, distance-degree-based topological indices are expressions of
the form

∑
u �=v F (deg(u), deg(v), d(u, v)), where F is a function, deg(u) the degree of

u, and d(u, v) the distance between u and v. Setting F to be (deg(u) + deg(v))d(u, v),
deg(u)deg(v)d(u, v), (deg(u) + deg(v))d(u, v)−1, and deg(u)deg(v)d(u, v)−1, we get the
degree distance index DD, the Gutman index Gut, the additively weighted Harary index
HA, and the multiplicatively weighted Harary index HM , respectively.

Let Gn,m be the set of connected graphs of order n and size m. It is proved that if
G ∈ Gn,m, where 4 ≤ n ≤ m ≤ 2n− 4, then HA(G) ≤ (m(m+5)+2(n− 1)(n− 3))/2 and
DD(G) ≥ (4m−n)(n−1)−(m−n+1)(m−n+6). The extremal graphs are characterized
in both cases and are the same. Similarly, the graphs from Gn,m with m = n +

(
k
2

)
− k,

2 ≤ k ≤ n − 1, maximizing the multiplicatively weighted Harary index and minimizing
the Gutman index are obtained.
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1 Introduction

In chemical graph theory different graphical invariants are used for establishing corre-

lations of chemical structures with various physical properties, chemical reactivity, or

biological activity. Many of these topological indices, as they are called in the area, are

based on the graph distance, see [31] and references therein. Another large group of topo-

logical indices is based on the vertex degree, cf. [13] and references therein. Moreover,

several of the indices are based on both, the vertex degree and the graph distance. In

this paper we are interested in such indices, specifically the degree distance index [8, 14],

Gutman index [14, 25], and a couple of recently introduced weighted Harary indices: the

additively weighted Harary index and the multiplicatively weighted Harary index [2, 17].

(The latter two indices form weighted versions of the ordinary Harary index [19, 23].)

These four indices are, respectively, defined for connected graphs G as follows:

DD(G) =
∑
u �=v

(deg(u) + deg(v))d(u, v) ,

Gut(G) =
∑
u�=v

deg(u)deg(v)d(u, v) ,

HA(G) =
∑
u�=v

deg(u) + deg(v)

d(u, v)
,

HM(G) =
∑
u�=v

deg(u)deg(v)

d(u, v)
.

In the seminal paper [17], the additively weighted Harary index HA was called reciprocal

degree distance because it can be viewed as a reciprocal analogue of the degree distance

DD.

Characterizing the extremal graphs from a given class of graphs with respect to some

graph invariant is an important direction in extremal graph theory, especially in (extremal)

chemical graph theory. For some related (extremality) results on the degree distance index

see [1,9,18,26,28], on the Gutman index see [3,10–12,20,22], and for the weighted Harary

indices see [7, 24, 32].

Recall that an (n,m)-graph is a connected graph of order n and sizem. Let Gn,m denote

the set of (n,m)-graphs. In particular, Gn,n−1 is the set of trees, Gn,n the set of unicyclic

graphs, and Gn,n+1 the set of bicyclic graphs (all of order n). Many papers that study

the extremality of topological indices concentrate on trees, progress to unicyclic graphs,

further progress to bicyclic graphs, and sometimes also to tricyclic graphs. In this paper
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we make a more general approach and consider the extremality problem for the above

four distance-degree-based indices for all graph from Gn,m, where n − 1 ≤ m ≤ 2n − 4.

We proceed as follows. In the next section definitions needed in the paper are listed

and several lemmas to be used later proved. In Section 3 we characterize the extremal

graphs from Gn,m, n ≤ m ≤ 2n−4, maximizing the additively weighted Harary index and

minimizing the degree distance, respectively. In Section 4 we consider the maximal graphs

with respect to the multiplicatively Harary index and the minimal graphs with respect to

the Gutman in the classes Gn,m, n−1 ≤ m ≤ n+1, while in the final section we characterize

the extremal graphs for these two indices for all classes Gn,m where m = n+
(
k
2

)
−k, k ≥ 2.

2 Preliminaries

All graphs considered in this paper are finite, undirected and simple. Let G be a graph

with vertex set V (G) and edge set E(G). For a vertex v ∈ V (G), we denote by NG(v)

the set of neighbors of v in G, degG(v) = |NG(v)| is the degree of v in G. For vertices u

and v of G, we denote by dG(u, v) the distance between u and v, that is, the number of

edges on a shortest u, v-path. Notations NG(v), degG(v), and dG(u, v) will be simplified

to N(v), deg(v), and d(u, v), respectively, if G will be clear from the context. If G and H

are graphs, then their join G⊕H is the graph obtained from the disjoint union of G and

H by adding all edges between V (G) and V (H).

The first Zagreb index M1(G) and the second Zagreb index M2(G) of G are, respec-

tively, defined as follows [15,16]:

M1(G) =
∑

v∈V (G)

deg(v)2 and M2(G) =
∑

uv∈E(G)

deg(u)deg(v) .

The first Zagreb index can be equivalently written as

M1(G) =
∑

uv∈E(G)

(deg(u) + deg(v)) . (1)

For some recent results on the Zagreb indices see [21, 29, 30].

The first Zagreb coindex and the second Zagreb coindex of G are defined as follows [4]:

M1(G) =
∑
u �=v

uv/∈E(G)

(deg(u) + deg(v)) and M2(G) =
∑
u �=v

uv/∈E(G)

deg(u)deg(v) .

We continue with some useful lemmas which will play an important role in the proofs

of our main results in the subsequent sections. In the following lemma two relations

between the Zagreb indices and coindices are recalled.
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Lemma 2.1 [5] If G ∈ Gn,m, then

(1) M1(G) = 2m(n− 1)−M1(G);

(2) M2(G) = 2m2 −M2(G)− 1
2
M1(G).

For any (connected) graph G we now introduce the following new invariants:

M∗(G) =
∑

xy∈E(G)

(2deg(x)deg(y)− deg(x)− deg(y)) ,

N∗(G) =
∑

xy∈E(G)

(deg(x)deg(y) + deg(x) + deg(y)) .

Note that N∗(G) = M1(G) + M2(G) holds by (1) and by the definition of the second

Zagreb index. The next lemma is important for a characterization of the (n,m)-graphs

with maximal M∗(G). For any n ≥ 4 and p, q ≥ 1, let Gn(p, q) denote the class of graphs

G of order n defined as follows. G contains a subgraph G′ of order n − p − q with two

vertices u and v of degree n− p− q − 1 in G′, and G is obtained from G′ by connecting

u and v to p and q new leaves, respectively, so that u and v are in G of degree n− q − 1

and n− p− 1, respectively.

Lemma 2.2 Let n ≥ 4 and let G be a graph from Gn,m with largest M∗(G). If G /∈ Gn(p, q)

(p, q ≥ 1), then Δ(G) = n− 1.

Proof. Suppose on the contrary that Δ(G) < n − 1. Let u be a vertex of G of degree

Δ(G). By the degree assumption and because G is connected, there exists a vertex w such

that d(u, w) = 2. Let v be a common neighbor of u and w. Now, {w} ⊆ N(v)\N(u) �= ∅,
hence setting N(v) \ (N(u) ∪ {u}) = {v1, . . . , vs} we have s ≥ 1 (due to w).

Let G′ be the graph obtained from G in the following way:

G′ = G− {vv1, . . . , vvs}+ {uv1, . . . , uvs} .
(This construction was named the neighbor-change transformation in [30].) Let Ai =

Mi(G
′)−Mi(G) for i = 1, 2. From the structures of G and G′, we have

A1 =
∑

x∈N(u)\N(v)

(deg(u) + s+ deg(x)) +
s∑

i=1

(deg(u) + s+ deg(vi))

+
∑

y∈N(u)∩N(v)

(deg(u) + s+ deg(v)− s+ 2deg(y))−
∑

x∈N(u)\N(v)

(deg(u) + deg(x))

−
s∑

i=1

(deg(v) + deg(vi))−
∑

y∈N(u)∩N(v)

(deg(u) + deg(v) + 2deg(y))

= s
∑

x∈N(u)\(N(v)∪{v})
1 + s2 + s(deg(u)− deg(v)),
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A2 =
∑

x∈N(u)\(N(v)∪{v})
(deg(u) + s)deg(x)

+
s∑

i=1

(deg(u) + s)deg(vi) + (deg(u) + s)(deg(v)− s)

+
∑

y∈N(u)∩N(v)

(deg(u) + s+ deg(v)− s)deg(y)−
∑

x∈N(u)\(N(v)∪{v})
deg(u)deg(x)

−
s∑

i=1

deg(v)deg(vi)− deg(u)deg(v)−
∑

y∈N(u)∩N(v)

(deg(u) + deg(v))deg(y)

= s
∑

x∈N(u)\(N(v)∪{v})
deg(x) + s

s∑
i=1

deg(vi) + (deg(u)− deg(v))(
s∑

i=1

deg(vi)− s)− s2.

Setting X = M∗(G′)−M∗(G) and having in mind that deg(u) ≥ deg(v) holds by the way

the vertex u was selected, we get:

X = 2A2 − A1

= s
∑

x∈N(u)\(N(v)∪{v})
(2deg(x)− 1) + (s+ deg(u)− deg(v))(2

s∑
i=1

deg(vi)− 3s)

≥ 0 .

with equality holding if and only if every vertex x in N(u) \ (N(v) ∪ {v}) and vi for

i = 1, 2, . . . , s are pendent vertices in G, i.e., G ∈ Gn(p, q), contradicting the choice of G.

Thus we have X > 0.

Hence we have constructed an (n,m)-graph G′ with M∗(G′) > M∗(G) which contra-

dicts the choice of G. �

Using a very similar reasoning as that in the proof of Lemma 2.2 we can obtain the

following lemma; hence we omit its proof.

Lemma 2.3 If n ≥ 4 and G is a graph from Gn,m with largest N∗(G), then Δ(G) = n−1.

For n ≥ 3 and 3 ≤ n ≤ m ≤ 2n − 4 let Gn,m ∈ Gn,m be the graph shown in Fig. 1.

Note that Gn,n is the graph obtained by adding a new edge between two pendent vertices

of the star of order n.

To recall the next lemma, we also need the graph G′
n,n+2 ∈ Gn,n+2, n ≥ 4, which is

shown in Fig. 2.
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· · ·

· · ·

2n−m− 3︷ ︸︸ ︷
m− n︷ ︸︸ ︷

Figure 1: The graph Gn,m

︷ ︸︸ ︷n− 4

· · ·

Figure 2: The graph G′
n,n+2

Lemma 2.4 [30] If G ∈ Gn,m, 4 ≤ n ≤ m ≤ 2n− 4, then

M1(G) ≤ n(n− 1) + (m− n+ 1)(m− n+ 6)

with equality holding if and only if G ∼= Gn,m for n ≤ m ≤ n+ 1 or n+ 3 ≤ m ≤ 2n− 4;

and G ∼= Gn,m or G′
n, n+2 for m = n+ 2.

3 Degree distance index and additive Harary index

The first main result of this section bounds from the above the HA index as follows:

Theorem 3.1 If G ∈ Gn,m, 4 ≤ n ≤ m ≤ 2n− 4, then

HA(G) ≤ m(m+ 5) + 2(n− 1)(n− 3)

2
,

where the equality holds if and only if G ∼= Gn,m for n ≤ m ≤ n+1 or n+3 ≤ m ≤ 2n−4;

and G ∼= Gn,m or G′
n, n+2 for m = n+ 2.
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Proof. By the definition of HA, Eq. (1), Lemma 2.1 (1), and Lemma 2.4, we have

HA(G) =
∑

uv∈E(G)

[deg(u) + deg(v)] +
∑

uv/∈E(G),u �=v

deg(u) + deg(v)

d(u, v)

≤ M1(G) +
1

2
M1(G)

= m(n− 1) +
1

2
M1(G)

≤ (2m+ n)(n− 1)

2
+

(m− n+ 1)(m− n+ 6)

2

=
m(m+ 5) + 2(n− 1)(n− 3)

2
,

where both equalities hold if and only if any two nonadjacent vertices are at distance 2,

and G is as stated in Lemma 2.4. �

The case m = n of Theorem 3.1 was independently solved in [24] using a significantly

more involved approach.

We next characterize the extremal graphs from Gn,m minimizing the degree distance.

Theorem 3.2 If G ∈ Gn,m, 4 ≤ n ≤ m ≤ 2n− 4, then

DD(G) ≥ (4m− n)(n− 1)− (m− n+ 1)(m− n+ 6) ,

where the equality holds if and only if G ∼= Gn,m for n ≤ m ≤ n+1 or n+3 ≤ m ≤ 2n−4;

and G ∼= Gn,m or G′
n, n+2 for m = n+ 2.

Proof. We apply the definition of the DD index, Eq. (1), Lemma 2.1 (1), and Lemma 2.4,

to obtain:

DD(G) =
∑

uv∈E(G)

[deg(u) + deg(v)] +
∑

uv/∈E(G)

(deg(u) + deg(v))d(u, v)

≥ M1(G) + 2M1(G)

= 4m(n− 1)−M1(G)

≥ (4m− n)(n− 1)− (m− n+ 1)(m− n+ 6) .

Both equalities hold if and only if any two nonadjacent vertices are at distance 2, and G

is as stated in Lemma 2.4. �

By selecting m = n or m = n + 1 in Theorem 3.2 we get the following two earlier

results.
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Corollary 3.3 [18, 26] If G is a unicyclic graph of order n ≥ 3, then

DD(G) ≥ 3n2 − 3n− 6 ,

with equality holding if and only if G ∼= Gn,n.

Corollary 3.4 [26] If G is a bicyclic graph of order n ≥ 4, then

DD(G) ≥ 3n2 + n− 18 ,

with equality holding if and only if G ∼= Gn,n+1.

To conclude the section we recall that the structure of extremal graphs minimizing

DD for n− 1 ≤ m ≤ n+ 4 was determined, by other means, by Tomescu in [27].

4 HM and Gutman index in Gn,m, n−1 ≤ m ≤ n+1

We now turn to the maximal graphs from Gn,m with respect to the multiplicatively Harary

index and the minimal graphs with respect to the Gutman index. In this section we

restrict to the case Gn,m, n − 1 ≤ m ≤ n + 1, and follow with a more general case in

the next section. We begin with a lemma on the structure of extremal graphs from Gn,m

maximizing the value of HM .

Lemma 4.1 If G is a graph from Gn,m with largest HM(G), then Δ(G) = n− 1.

Proof. From the definitions of HM and M∗(G), and by Lemma 2.1 (2), we have

HM(G) ≤
∑

xy∈E(G)

deg(x)deg(y) +
∑

xy/∈E(G)

deg(x)deg(y)

2

= M2(G) +
1

2
M2(G)

= m2 +
1

4
M∗(G).

Hence HM(G) attains its maximum only if, in G, any two nonadjacent vertices are at

distance 2 and M∗(G) reaches its maximal value. Then our result follows immediately

from Lemma 2.2. �

From Lemma 4.1, the following corollary can be easily deduced.
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Corollary 4.2 [7] For any tree of order n, the star Sn has uniquely the maximal HM

with HM(Sn) = (n − 1)(5n − 6)/4; for any (n, n)-graph, the graph Gn,n has uniquely the

maximal HM with HM(Gn,n) = (5n2 + n)/4.

Using Lemma 4.1 we can extend Corollary 4.2 to bicyclic graphs as follows.

Theorem 4.3 If G ∈ Gn,n+1, n ≥ 4, then

HM(G) ≤ 5n2 + 13n+ 8

4

with equality holding if and only if G ∼= Gn,n+1.

Proof. From Lemma 4.1, the maximal value of HM(G) for any (n, n + 1)-graph G is

possibly attained at Gn,n+1 or another graph, denoted by G′
n,n+1, which is obtained by

adding two independent edges into the star Sn. By the definition of HM , we have

HM(Gn,n+1) = M2(Gn,n+1) +
1

2
M2(Gn,n+1)

= n2 + 2n+ 9 +
1

2

[(
n− 4

2

)
+ 3(n− 4) + 4(n− 4) + 4

]
,

and

HM(G′
n,n+1) = M2(G

′
n,n+1) +

1

2
M2(G

′
n,n+1)

= n2 + 2n+ 5 +
1

2

[(
n− 5

2

)
+ 8(n− 5) + 16

]
.

Clearly, HM(Gn,n+1) > HM(G′
n,n+1). �

From the definitions of the Gutman index and N∗(G), and using Lemma 2.1 (2), we

infer:

Gut(G) ≥
∑

xy∈E(G)

deg(x)deg(y) +
∑

xy/∈E(G)

2 deg(x)deg(y)

= M2(G) + 2M2(G)

= 4m2 −N∗(G).

Thus, for any graph G ∈ Gn,m, we have

Gut(G) ≥ 4m2 −N∗(G). (2)

Moreover, the above equality holds if and only if any two non-adjacent vertices in G are

at distance 2. In view of Lemma 2.3, we conclude that a graph G ∈ Gn,m has the minimal

Gutman index only if Δ(G) = n− 1. Then the following result can be easily deduced.
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Corollary 4.4 [10, 14] For any tree of order n, the star Sn has uniquely the minimal

Gutman index with Gut(Sn) = 2n2 − 5n + 3; for any unicyclic graph of order n ≥ 3, the

graph Gn,n has uniquely the minimal Gutman index with Gut(Gn,n) = 2n2 + n− 9.

By a similar reasoning as that in the proof of Theorem 4.3, we can obtain the following

result that we state without a proof.

Theorem 4.5 If G ∈ Gn,n+1, n ≥ 4, then

Gut(G) ≥ 2n2 + 7n− 19

with equality holding if and only if G ∼= Gn,n+1.

5 The cases m = n +
(k
2

)− k, 4 ≤ k ≤ n − 1

In this section we will determine the maximal and the minimal graphs from Gn,m, where

m = n +
(
k
2

)
− k, 4 ≤ k ≤ n − 1, with respect to the multiplicatively weighted Harary

index and the Gutman index, respectively. For this sake we first introduce a family of

graphs and a certain function as follows.

Let Kn−k
k be the graph obtained from the complete graph Kk by attaching n − k

pendent vertices to one vertex of Kk. Clearly, K
n−2
2 is the star Sn of order n and Kn−3

3 is

the graph obtained by inserting a new edge between two pendent vertices of Sn. Moreover,

from Fig. 2 we find out that Kn−4
4

∼= G′
n,n+2.

If a and b are positive numbers and G is a graph, then set

fa,b(G) =
∑

xy∈E(G)

[a deg(x)deg(y) + b (deg(x) + deg(y))] .

Lemma 5.1 If G is an (n,
(
k
2

)
)-graph, 4 ≤ k ≤ n− 1, then

fa,b(G) ≤ ak − a+ 2b

2
k(k − 1)2

with equality holding if and only if G ∼= Kk ∪ (n− k)K1.

Proof. By the definition of fa,b(G) and the expression (1) for the first Zagreb index,

fa,b(G) =
∑

uv∈E(G)

[a deg(u)deg(v) + b (deg(u) + deg(v))]

≤
∑

uv∈E(G)

[a
2

(
deg(u)2 + deg(v)2

)
+ b(deg(u) + deg(v))

]
(3)

=
∑

u∈V (G)

[a
2
deg(u)3 + b deg(u)2

]
.
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The equality in (3) holds if and only if deg(u) = deg(v) for any edge uv ∈ E(G). Setting

h(G) =
∑

u∈V (G)

[
a
2
deg(u)3 + b deg(u)2

]
it suffices to determine the maximum of h(G). We

distinguish the following two cases.

Case 1. The
(
k
2

)
edges of G induce a single connected component.

In this case the equality in (3) holds if and only if G ∼= G∗ ∪ (n − s)K1 where G∗ is a

connected regular graph of order s. Moreover, fa,b(G
∗) = fa,b(G). Then the degree of G∗

is k(k − 1)/s, and

fa,b(G
∗) = s

[
a

2

(
k(k − 1)

s

)3

+ b

(
k(k − 1)

s

)2
]

=
a

2

k3(k − 1)3

s2
+ b

k2(k − 1)2

s
.

Clearly, fa,b(G
∗) will reach its maximum when s is as small as possible. Taking into

account that G∗ is a regular graph with
(
k
2

)
edges, we find that the minimum value of s

is k. Thus we have

fa,b(G
∗) =

a

2

k3(k − 1)3

s2
+ b

k2(k − 1)2

s

≤ a

2

k3(k − 1)3

k2
+ b

k2(k − 1)2

k

=
ak − a+ 2b

2
k(k − 1)2.

The above equality holds if and only if s = k, that is, if and only if G∗ ∼= Kk ∪ (n− k)K1.

This finishes the proof of the “only if” part in this case.

Case 2. The
(
k
2

)
edges of G induce at least two non-trivial connected components.

By the argument above Case 1, when fa,b(G) reaches its maximum, the
(
k
2

)
edges induce a

regular subgraph with t ≥ 2 nontrivial connected components. Hence G = G0∪(n−s)K1,

where G0 = ∪t
i=1Gi is the disjoint union of connected non-trivial regular graphs. Let Gi,

1 ≤ i ≤ t, be a pi-regular graph of order si and size mi, such that
∑t

i=1 mi =
(
k
2

)
. Then

we have si = 2mi/pi. Therefore, in this case it suffices to prove the following inequality:

t∑
i=1

2mi

pi

(a
2
p3i + b p2i

)
<

ak − a+ 2b

2
k(k − 1)2,

that is,
t∑

i=1

(a
2
p2i + b pi

)
mi <

ak − a+ 2b

2
(k − 1)

t∑
i=1

mi . (4)
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Since pi < k − 1 for 1 ≤ i ≤ t with 2 ≤ t ≤ k − 2, we have the following inequality:

a

2
p2i + b pi <

ak − a+ 2b

2
(k − 1).

Thus the inequality (4) holds immediately. This finishes the proof of the “only if” part

in this case.

To complete the proof we can easily check that fa,b(G) = ak−a+2b
2

k(k − 1)2 when

G ∼= Kk ∪ (n− k)K1, which completes the proof of this lemma. �

We are now ready for the first main result of this section.

Theorem 5.2 If G is an (n, n+
(
k
2

)
− k)-graph, n ≥ 5, 4 ≤ k ≤ n− 1, then

HM(G) ≤ (2n+ k2 − 3k)(n+ k2 − 3k + 1)

2
+

(n− k)(n+ k − 3)

4

with equality holding if and only if G ∼= Kn−k
k .

Proof. By Lemma 4.1 and its proof, it suffices to find an (n,m)-graphG with Δ(G) = n−1

and maximum value of M∗(G). Therefore G = K1 ⊕ G∗, where G∗ is an (n − 1,
(
k−1
2

)
)-

graph. Let d1 ≥ · · · ≥ dn be the degree sequence of G and let d∗1 ≥ · · · ≥ d∗n−1 be the

degree sequence of G∗. Clearly, d1 = n − 1 and di = d∗i−1 + 1 for 2 ≤ i ≤ n. Thus, by

Lemma 5.1 (for a = 2 and b = 1),

M∗(G) =
∑

vivj∈E(G)

(2di dj − di − dj)

=
∑

v1vj∈E(G)

(2d1 dj − d1 − dj) +
∑

vivj∈E(G), 2≤i<j≤n

(2di dj − di − dj)

= (2n− 3)
n∑

i=2

di − (n− 1)2 +
∑

vivj∈E(G∗)

[
2(d∗i + 1) (d∗j + 1)− d∗i − d∗j − 2

]
= (2n− 3)

(
k2 + n− 3k + 1

)
− (n− 1)2 + f2,1(G

∗)

≤ (2n− 3)
(
k2 + n− 3k + 1

)
− (n− 1)2 + (k − 1)2(k − 2)2

= [2n− 3 + (k − 1)(k − 2)](k − 1)(k − 2) + (n− 2)(n− 1)
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with equality holding if and only if G∗ ∼= Kk−1 ∪ (n− k)K1. Thus we have

HM(G) ≤
[
n+

(
k

2

)
− k

]2
+

1

4
M∗(G)

≤ [2n+ k(k − 3)]2

4
+

[2n− 3 + (k − 1)(k − 2)] (k − 1)(k − 2)

4
+

(n− 2)(n− 1)

4

=
(2n+ k2 − 3k)(n+ k2 − 3k + 1)

2
+

(n− 2)(n− 1)− (k − 1)(k − 2)

4

=
(2n+ k2 − 3k)(n+ k2 − 3k + 1)

2
+

(n− k)(n+ k − 3)

4
.

Both the above equalities hold if and only if G ∼= K1 ⊕ (Kk−1 ∪ (n − k)K1) = Kn−k
k ,

finishing the proof of this theorem. �

Using Corollary 4.2 we can extend Theorem 5.2 from k ≥ 4 to k ≥ 2:

Theorem 5.3 If G is an (n, n+
(
k
2

)
− k)-graph, n ≥ 5, 2 ≤ k ≤ n− 1, then

HM(G) ≤ (2n+ k2 − 3k)(n+ k2 − 3k + 1)

2
+

(n− k)(n+ k − 3)

4

with equality holding if and only if G ∼= Kn−k
k .

We now turn to the Gutman index and prove the following result in parallel to Theo-

rem 5.2.

Theorem 5.4 If G is an (n, n+
(
k
2

)
− k)-graph, n ≥ 5, 4 ≤ k ≤ n− 1, then

Gut(G) ≥ 2n2 + n− 1 + (3n+ k2 − 3k)(k2 − 3k)− k + 1

2
(k − 1)2(k − 2)

with equality holding if and only if G ∼= Kn−k
k .

Proof. In view of the inequality (2) and Lemma 2.3, we find that the minimum Gutman

index of the graphs from Gn,m is attained at a graph G ∈ Gn,m with Δ(G) = n − 1 and

maximum N∗(G). By an analogous argument as that in the proof of Theorem 5.2, G

must be of the form K1 ⊕ G∗ where G∗ is an (n − 1,
(
k−1
2

)
)-graph. Let d1 ≥ · · · ≥ dn be

the degree sequence of G, and let d∗1 ≥ · · · ≥ d∗n−1 be the degree sequence of G∗. Then

d1 = n− 1 and di = d∗i−1 + 1, 2 ≤ i ≤ n. Applying Lemma 5.1 (for a = 1 and b = 2), we
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get:

Gut(G) ≥ 4m2 −N∗(G)

= 4m2 −
∑

vivj∈E(G)

(di dj + di + dj)

= 4m2 −
∑

v1vj∈E(G)

(d1 dj + d1 + dj)−
∑

vivj∈E(G), 2≤i<j≤n

(di dj + di + dj)

= 4m2 − n

n∑
i=2

di − (n− 1)2 −
∑

vivj∈E(G∗)

[
(d∗i + 1) (d∗j + 1) + d∗i + d∗j + 2

]
= 4m2 − n

[
2m− (n− 1)

]
− 3

[
m− (n− 1)

]
− (n− 1)2 − f1,2(G

∗)

= 4m2 − n
(
k2 − 3k + n+ 1

)
− 3

2
(k2 − 3k + 2)− (n− 1)2 − f1,2(G

∗)

≥ (2n+ k2 − 3k)2 − n
(
k2 − 3k + n+ 1

)
− 3

2
(k2 − 3k + 2)− (n− 1)2

−k + 2

2
(k − 1)(k − 2)2

= 2n2 + n− 1 + (3n+ k2 − 3k)(k2 − 3k)− k + 1

2
(k − 1)2(k − 2) .

The above equalities hold if and only if any two non-adjacent vertices in G have the

distance 2 and G∗ ∼= Kk−1 ∪ (n− k)K1, i.e., G ∼= K1⊕ (Kk−1 ∪ (n− k)K1) = Kn−k
k , which

completes the proof of this theorem. �

Theorem 5.3 can also be extended from k ≥ 4 to k ≥ 2 after using Corollary 4.4:

Theorem 5.5 If G is an (n, n+
(
k
2

)
− k)-graph, n ≥ 5, 4 ≤ k ≤ n− 1, then

Gut(G) ≥ 2n2 + n− 1 + (3n+ k2 − 3k)(k2 − 3k)− k + 1

2
(k − 1)2(k − 2)

with equality holding if and only if G ∼= Kn−k
k .

Setting k = 3 in Theorem 5.5 (and checking the cases n = 3, 4 separately) we obtain:

Corollary 5.6 [7, Theorem 8] If G is a unicyclic graph of order n ≥ 3, then

HM(G) ≤ n(5n+ 1)

4

with equality holding if and only if G ∼= Kn−3
3 .
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