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A method is elaborated for the calculation of the Wiener number W of benzenoid hydrocarbons,
based on the examination of their elementary cuts. It requires the finding of all elementary cuts of a
benzenoid system and counting the vertices lying on each side of these cuts. This is much easier than
finding the distances between all pairs of vertices of the same system. By means of our approach is it quite
simple to find combinatorial expressions for W of compact pericondensed benzenoid hydrocarbons, a task
which hardly could have been accomplished by the hitherto existing calculation techniques.

Introduction

The topological index W, conceived by Wiener [1] almost half a century ago, is
one of the most thoroughly studied, best understood and most frequently used
molecular-shape descriptors in chemicajgraph theory. It found numerous applications
in the modelling of a variety of physico-chemical, pharmacological and biological
properties of organic molecules, and its theory is equally well developed; for recent
reviews see [2, 3]. To illustrate the versatility of the practical applications of the Wiener
number, we mention its use for predicting of ultrasonic sound velocities in alkanes and
alcohols [4], of rates of electroreduction of chlorobenzenes (5], of cytostatic and
antihistaminic activities of certain drugs [6], of protonation constants of derivatives of
salicylhydroxamic acid and (in connection with this) of their fungicidal activities {7],
and for distinguishing between fullerene isomers [8]. The success of W was long time
sought in its (putative) capability of measuring molecular van der Waals volumes,
surfaces and/or surface-to-volume ratios. It was shown quite recently [9] that, indeed,
W is proportional to molecular surfaces. On the other hand, contrary to earlier
expectations, no relation between W and molecular volumes could be established [9].

The Wiener number (or Wiener index) is defined as follows [2, 3].
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Let 7 and v be two vertices of the molecular graph G [10]. The distance [10, 11]
between 1 and v is equal to the length of a shortest path that connects # and v, i.e., to
the number of edges in such a path. The distance between the vertices u and v in the
graph G is denoted by d(u, v| G).

The Wiener number is equal to the sum of the distances between all pairs of
vertices of the respective molecular graph G,

W=W(G) = Yd(1,1|G). 1

Hey

Recall that if G has n vertices, then the summation on the right-hand side of
Eq. (1) embraces n(n-1)/2 terms.

Calculating the Wiener number

In view of the importance of the Wiener number, several methods have been
developed for its efficient calculation. There exist fast algorithms for computer-aided
numerical evaluation of W(G) of a given molecular graph G [12-14]. Other methods
enable the calculation of W by using its dependence on molecular structure (i.e.,
dependence on the structure of the molecular graph G) [1, 15-21]. Procedures of this
kind were developed for atkanes [1, 15-19] and catacondensed benzenoid
hydrocarbons [20, 21], resulting in combinatorial expressions for W for a large
number of classes of such molecules. For other polycyclic systems of interest in
chemistry, especially for compact pericondensed benzenoid molecules, no generally
applicable structural method seems to have been reported in the literature.

In the present paper we offer a contribution towards filling this gap. We,
namely, describe a structure-based algorithm which is applicable to all benzenoid
systems (both cata- and pericondensed [22]), which is remarkably simple and,
consequently, which is usable also in the case of very large molecules.

The mathematical background of our method was presented elsewhere [23],
where it was demonstrated that the molecular graphs of benzenoid hydrocarbons are
binary Hamming graphs [24, 25]. The readers interested in details of this kind should
consult the works [23-25] and the references cited therein. For the present algorithm
especially relevant is Proposition 3.1 of [23]. Note, however, that the algorithm itself
is described in this paper for the first time.

The algorithm, in the form outlined in this paper, applies to benzenoid
molecules, but its extension to other types of polycyclic systems would easily be
possible.
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Benzenoid systems and their normal cuts

Benzenoid systems (or benzenoid graphs) are graphs constructed in the
following manner [22]. Let H be the hexagonal (graphite) lattice and let Z be a circuit
on it. Then a benzenoid system is formed by the vertices and edges of H, lying on Z
and in the interior of Z. The vertices and edges belonging to Z form the perimeter of
the respective benzenoid system. The vertices of the benzenoid system (if any), not
belonging to the perimeter are said to be the internal vertices.

The number of vertices, internal vertices, edges and hexagons of a benzenoid
system B will be denoted by [22] n=n(B), n;=n;(B), m=m(B) and h=~h(B),
respectively. These parameters are known to be related as follows [22]:

n=4h + 2 -n;, )
m=5h+1-n;. 3)

In Fig. 1 the above definition is illustrated on the example of the pericondensed
benzenoid molecule B, for which =8, n;=6, n=28, m=35.

If a benzenoid system B is viewed as a geometric figure in the plane [22] then
an elementary cut is defined as follows. Choose an edge e of B and draw a straight
line through the center of e, orthogonal on e. This line intersects the perimeter of B in
two points P; and P,. The straight line segment C, the end-points of which are P and
P,, is the elementary cut pertaining to the edge e. Clearly, C intersects not only the
edge e, but all edges lying between P; and P, (inclusive the two edges on the
perimeter to which the points P; and P, belong).

() (b)

Fig. 1. a) The hexagonal lattice and a circuit Z on it; b) The benzenoid system B, determined
by the circuit Z; BO has six internal vertices and its perimeter is of size 22
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Fig. 2. The elementary cut C corresponding to an edge of the benzenoid system By ,
indicated by. a heavy line; observe that C is an elementary cut intersecting
the edges of B, marked by asterisk, hence r(C) =4

It may, exceptionally, happen that the above specified straight line intersects the
perimeter in more than two points. Then we choose as P, and P, the intersection
points lying on opposite sides of, and being nearest to, the edge e.

Figure 2 provides an example-of an elementary cut.

Elementary cuts are important concepts and are often encountered in the theory
of benzenoid systems [22, 23, 26, 271.

The set of elementary cuts of a benzenoid system B, that involves all the edges
of B is called ‘the complete set of elementary cuts (CSEC) of B and is denoted by
C = C(B). The number of elementary cuts in the CSEC is denoted by y=y(B). It
should be noticed ‘that y is always much smaller than the number of vertex pairs in B.
For instance, By has 378 vertex pairs, but y(By) =11 (see Fig. 3).

c, G
c
c, s C,
C2
C
’ Cll
¢, C GC,

Fig. 3. All the 13 distinct elementary cuts of the benzenoid system B ; C(By) = {C,. G, ... Cyy hy=11
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The algorithm

Let C be an elementary cut of the benzenoid system B. Then C divides B into
two parts, denoted by B' and B” (see Fig. 4). The subgraphs B’ and B" may, but need
not, be benzenoid systems themselves.

Let n(B') and n(B") denote the number of vertices of the fragments B’ and B",
respectively. Of course,

n(B'y + n(B") = n(B) . 4)

We are now prepared to formulate our method for calculating W(B):
Let C be an elementary cut that divides the benzenoid system B into components
B'(C) and B"(C). Then
W(B) =3 n(B'(C)) n(B"(C)). &)
c

The summation in Eq. (5) goes over the CSEC of B.

When applying formula (5) we need to count only the vertices of the smaller
fragment, say B’', because the number of vertices of B” is determined via Eq. (4).

As an illustration of our algorithm we calculate W(B,) using the CSEC from
Fig. 3. Recall that n(By") =n(By) - n(By') = 28-n(By").

Elementary cut C  n (Bo') n (BO") n(B'yxn(B")
C, 5 23 115=5x23
(0} 13 15 195
Gy 7 21 147
Cy 3 25 75
Cs 10 18 180
G 11 17 187
c 5 23 115
G 3 25 75
C, 10 18 180
Cho 10 18 180
Cy 3 25 75

Total: 1524

Hence, W(Bp) = 1524.

In large pericondensed benzenoid systems the counting of the vertices of the
fragments B’ and B" may become somewhat tedious and error prone. In view of this,
we further simplify formula (5): instead of counting the vertices of B’ and B" we may
find it easier to count the hexagons and the internal vertices of B, lying in B' and B".
This is achieved by means of the following reasoning.
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B

Fig. 4. Structural features used in the formulation of Eq. (5)

Denote the number of hexagons of B' and B” by A(B') and A(B"), respectively.
Let n;(B') and n;(B") be the number of internal vertices of the benzenoid system B
that belong to B' and B", respectively. Then

h(B') + h(B") +1-1=h, (6)
nt(B') + ni(B") =n;. (7)
In the above formulas & and n; refer to the benzenoid system B and r =r(C) is the

number of edges intersected by the elementary cut C, i.e., the number of edges
connecting B’ and B". Bearing in mind Eq. (2), we arrive at

n(B') = 4h(B") +2r-1-n(B"), )
n(B") = 4h(B") +2r-1- n;(B"). )

In order to deduce Eq. (8) consider the (true) benzenoid system which embraces the
hexagons of B' and the r-1 hexagons intersected by C. This benzenoid system has
h(B")+r-1 hexagons, n;(B") internal vertices and 2r-1 vertices more than B'. Eq. (2)
has to be applied to it, and then the number of vertices has to be diminished by 2r-1
in order to obtain n(B").

Equation (9) is obtained in a fully analogous manner.

By substituting Egs (8) and (9) back into Eq. (5), and by using Eqs (6) and (7),
one obtains
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W(B) = 3 [4h(B') - n,(B')] [4h(B") - n.(B")] - (4h —n+3)y +
+2(4dh+4-n) Y r-43 2, (10)

All the three summations on the right-hand side of Eq. (10) go over the CSEC
of the benzenoid system B. Observing that Tr = m, and using Eq. (3), we get

W(B) =3 [4h(B')- n;(B')1[4h(B") - n,(B")] - (4h - n, +3)y +
+2(4h+4—n,.)(5h+1—n‘.)—42r2. (11)
Now, although Egs (10) and (11) look more complicated than Egq. (5), the
finding of A(B') and n;(B') is a much easier task than the counting of the vertices of
B'. As before, it is not necessary to independently search for h(B") and n;(B"),
because these quantities are immediately calculated from Eqs (6) and (7).
Catacondensed benzenoid systems are characterized by the absence of internal
vertices [22], i.e., they satisfy the condition n; =0. Bearing this in mind, formulas
(10) and (11) are significantly simplified:

W(B) =16 Zh(B’)h(B")—(4h+3)y +8h+1) X r—-4%r2 =
=16 Zh(B’)h(B")—(4h+3)y +8(h+1)(Sh+1)-4>r2 .

Two more examples

To further illustrate the efficiency of our algorithm, we determine the general
mathematical expressions for the Wiener numbers of the polyacenes (L,) and of the
members of the coronene/circumcoronene series (Hy). The respective structures and
elementary cuts are depicted in Fig. 5.

Polyacenes

Using the notation from Fig. 5 we immediately see that the CSEC of the
polyacenes is given by
Cy ={C, Gy, Cip | i=1,2, ..., ).
For C,
nB'y =nm(B"Y=2h+1,

For both C;, and Cpi=1,2, .. .h:

nB'Y=4(i-1)+3=4i-1,
nB") =4h +2-4i-1)=4h-4i-3 .
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Ch Clb
0080SOFSSS “SCH
Lh
Hl H2 H3

H,; k=4
- Fig. 5. The polyacene (L,) and the coronene / circumcoronene (H,) series and their elementary cuts

Substituting these relations back into Eq. (5) we get

W(Lh)=(2h+1)2 +2i(4i—1)(4h——4i+3) . (12)
i=1

Equation (12) yields by direct calculation:

1
W(L,) =—(16h% + 36h2 +26h+3), (13)
3
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which is a previously known result [20]. Of course, formula (13) was formerly
obtained by a completely different way of reasoning, applicable only to unbranched
catacondensed benzenoid molecules.

The coronene/circumcoronene series

These species represent the most compact pericondensed benzenoid molecules.
They are also characterized by the highest possible symmetry (Dgy,) that a benzenoid
hydrocarbon can possess [22]. The finding of a general expression for W(H,) is, for a
long time, considered as a special challenge in the theory of the Wiener number,

In Fig. 5 are indicated only the 2k+1 horizontal elementary cuts of H,. There
exist two additional groups of 2k-+1 symmetry-equivalent elementary cuts, obtained
by rotating the former group by +60° and by -60°. Therefore, if one applies Eq. (5)
to only the horizontal elementary cuts, the result will be just one third of the Wiener
number of H.

It is also evident that, because of symmetry, the elementary cuts C; and C,, ;
have equal contributions to the right-hand side of Eq. (5). The same is true for the
cuts C, and Cy; ,, for C3 and Cyy 3, ... for C;_y and C; . The only elementary cut
which is not paired in the above sense is C,; its contribution to the right-hand side of
Eq. (5) is equal to [1/2n(H)]?.

It has been previously established [27] that n(H,)= 6k%, and that for the
elementary cut C;

nBY=iQRk+1,i=12,..,k.

Taking into account all these properties of the elementary cuts of H, and using
Eq. (5) we obtain

1 k=1
—W(H,) = [3k2)? + 22 i(2k +i)[6k? —i(2k +1)],
3 i=1

which after an elementary, but quite tedious calculation is reduced to

1
W(H,) = —(164k —30k> +k) .
5

Formula (14) has, so far, not been reported in the chemical literature.

A note on the Szeged index

The Szeged index is another, recently introduced, distance-based topological
index [28, 291. It is defined as follows.
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Let e be an edge of the molecular graph G, connecting the vertices x and y. Let
ny(e| G) be the number of vertices of the graph G, having the property
d(u,x, | G)<d(uy,|G,). Let ny(e| G) be the number of vertices of the graph G,
having the property d(u,x, | G,) > d(w,y, | G,). In other words, n;(e | G) counts the
vertices of G, lying closer to one end (namely x) of the edge e than to its other end
(namely y). The meaning of n, (e | G) is analogous.

The Szeged index of the graph G is

Sz2(G) = Y.n(e|G) ny(e|G), (15)

e
where the summation goes over all edges of G.

By comparing the definitions (1) and (15), little resemblance can be envisaged
between the Wiener and the Szeged indices. Yet, these two quantities are intimately
related [28, 29]. In particular, for benzenoid systems the following formula has been
shown to be satisfied [27]:

Sz(B) = 2, r(C) n(B'(C)) n(B"(C)) . (16)
C

The analogy between Eqs (5) and (16) is evident. As before, r(C) denotes the
number of edges intersected by the elementary cut C.

In benzenoid systems every elementary cut intersects at least two edges,
r(C)=2. Therefore, Egs (5) and (16) imply that the following inequality

SZ(B)22W(B) an

is obeyed by all benzenoid molecules. Equality in (17) occurs only if B is benzene.
For the members of the coronene/circumcoronene series (see Fig. 5),

r(CY>k+1. For these benzenoid systems the inequality (17) can be improved as:

SZ(H,)=(k+1) W(H,) . Again, equality will occur only in the case of benzene.

*
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