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Abstract--The resonance graph of a benzenoid graph G has the 1-factors of G as vertices, two 
1-factors being adjacent if their symmetric difference forms the edge set of a hexagon of G. It is 
proved that the smallest number of elementary cuts that cover a catacondensed bensenoid graph 
equals the dimension of a largest induced hypercube of its resonance graph. (~) 2002 Elsevier Science 
Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Benzenoid graphs (in the mathematical  li terature also called hexagonal systems) are 2-connected 
subgraphs of the hexagonal lattice so tha t  every bounded face is a hexagon. I f  all vertices of 
a benzenoid graph G lie on its perimeter, then G is said to be catacondensed; otherwise it is 
pericondensed. For more information on these graphs, in particular for their chemical meaning 
as benzenoid hydrocarbons,  see the book of Gu tman  and Cyvin [1]. 

A matching of a graph G is a set of pairwise independent edges. A matching is perfect or a 
1-factor, if it covers all the vertices of G. Let G be a benzenoid graph. Then the vertex set of the 
resonance graph R(G) of G consists of all 1-factors of G, and two 1-factors are adjacent whenever 
their symmetr ic  difference is the edge set of a hexagon of G. 

The  concept of the resonance graph is very natural,  hence it is not surprising tha t  it was 
independently introduced several times. In the chemical literature, the first known references are 
due to Grfindler [2,3]. The concept was later reinvented by El-Basil in [4,5] and Randid with 
co-workers in [6,7]. In the mathemat ical  literature, again independently, Zhang, Guo and Chen 
introduced resonance graphs under the name of Z-transformation graphs [8]. They  proved among 
others tha t  the resonance graph of a benzenoid graph with at least one 1-factor is connected, 
biparti te,  and is either a pa th  or has girth 4. Chen and Zhang [9] proved tha t  the resonance 
graph of a catacondensed benzenoid graph has a Hamilton path. 
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In [10], it is proved that  the resonance graphs of the catacondensed benzenoid graphs possess 
much of a structure, namely, they belong to the class of median graphs. (For more information 
on the well-developed theory of median graphs, see [11-13].) This result was extended in [14] to a 
larger class of planar graphs-- to  the so-called even ring systems. The structure of the resonance 
graphs of the catacondensed benzenoid graphs as described in [10] (or in [14]) led to an algorithm 
that  assigns a unique and quite short binary code to every 1-factor of a catacondensed benzenoid 
graph [15]. 

Let e be an edge of a benzenoid graph G lying on its perimeter. Then the elementary cut Ce 
corresponding to e is the set of edges so that  e E Ce and with every edge f of Ce also the opposite 
edge with respect to a hexagon containing I belongs to Ce. Note that  the set of elementary cuts 
partitions the edge set of G. For instance, in G = C6 there are three elementary cuts, each 
consisting of two opposite edges of C~. We say that  a subset C of elementary cuts covers G if for 
any hexagon A of G, there is a C E C that  meets A in two opposite edges. The above definitions 
can be extended to larger classes of graphs (just replacing hexagons with any even cycles), in 
particular to the so-called even ring systems to be mentioned at the end of this note. 

The Cartesian product G [] H of graphs G and H is the graph with the vertex set V(G) x V(H)  
and (a,x)(b,y) E E(G[]H)  whenever ab E E(G) and x = y, or, i f a  = b and xy E E(H).  The 
Cartesian product  of n copies of the complete graph on two vertices K2 is the n-cube Qn. In 
other words, the vertex set of Q~ consists of all n-tuples bib2.., bn with bi E {0, 1}, and two 
vertices are adjacent if the corresponding tuples differ in precisely one place. 

In this note, we prove the following result. 

THEOREM 1. Let G be a catacondensed benzenoid graph. Then the smallest number of  elemen- 
taxy cuts that cover G equals the dimension of a largest induced hypercube of R(G). 

Let H be a fixed subgraph of a graph G, H C_ G. Then the local Cartesian product G EJt H is 
the graph obtained from the disjoint union of G and H,  in which every vertex of H is joined by 
an edge with the corresponding vertex of H C G. Finally, the notation G[X] is used to denote 
the subgraph of G induced by the set X. 

2. P R O O F  O F  T H E  T H E O R E M  

Let G be a catacondensed benzenoid graph. An edge of G that  lies on its perimeter will be 
called a b-edge and an edge with end vertices of degree three that  belongs to a pendant hexagon 
will be called a join edge. If A and B are incident hexagons of G, then the two edges on the 
boundary of A that  have exactly one vertex on the boundary of B are called the link of A to B.  

Let e be a join edge of G. Denote by We (G) the set of 1-factors of G that  contain e and by 
9re(G) the set of those 1-factors of G that  do not contain e. Let A be the pendant hexagon of G 
containing e. Then the 1-factors of W,(G) either contain the link of A to its neighboring hexagon 
or not. We denote the corresponding sets of 1-factors with ~'~(G) and W~(G), respectively. Thus, 
the 1-factors of G can be partitioned as 

V(R(G)) = JS(a) u W~(G) u w~(a). 

The following lemma is (implicitly) contained in [10], cf. also [14]. For the sake of completeness, 
we include its proof. 

LEMMA 2. Let e be a join edge ofa  catacondensed benzenoid graph G and let H be the benzenoid 
graph obtained from G by removing the pendant hexagon containing e. Then R(G)[We(G)] is 
isomorphic with R( G)[W[( G)]. Moreover, 

R(G) = R(H) [3t R(G)[We(G)] (cf. Figure 1). 
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Figure 1. The structure of R(G). 

PROOF. Note first tha t  R(H) = R(G)[~e(G)U~r~(G)]. Indeed, the 1-factors ofhre(H) one-to-one 
correspond to the 1-factors of 5re(G) and the remaining 1-factors of H to ~'~(G). 

Consider now a 1-factor F of ~'~(G). In R(G), it is adjacent to a unique 1-factor F from 
the set R(G)[Ye(G)]. Moreover, two 1-factors F1 and F2 of 9r~(G) are adjacent if and only 
if the corresponding 1-factors $'1 and F2 of ~-e(G) are adjacent. Therefore, R(G)[Ue(G)] and 
R(G) [~'~ (G)] are isomorphic and R(G) = R(H) De R(G)[Ye (G)]. | 

Let e be a join edge of a catacondensed benzenoid graph G and let f and f t  be the b-edges 
of the elementary cut Ce, where fr  belongs to the pendant  hexagon containing e. Let H be the 
graph obtained from G by removing all hexagons (their edges and vertices) intersected by Ce, 
except the two edges, tha t  are incident with f .  We call these two edges the turn-edges of e. 
Then  H consists of two connected components; we will denote them by Ge 1 and Ge 2, see Figure 2. 

~ C~ 

G 

Figure 2. A benzenoid graph G and components Ge,G e . 1  2 

Note tha t  if a turn-edge is a b-edge, then the corresponding component  of H i s / (2 ,  otherwise 
it is a benzenoid graph. We define R(K~) = K1. 

LEMMA 3. Let e be a join edge o[ a catacondensed benzenoid graph G. Then 

R(C) = R(a ) DR(C ). 

PROOF. Let F be a 1-factor from ~'~(G) and let el and e2 be the turn-edges of e. Then F is 
fixed on all the hexagons intersected by Ce except on the last one, that  is, the one containing el 
and e2. I f  el or e2 is also a b-edge, then it lies in F.  Let f be the edge incident with el and e2, 
cf. Figure 2. Then f does not belong to F,  for otherwise F cannot be extended to a 1-factor 
of G since we would need to cover an odd number of vertices. Thus, selecting a 1-factor F1 of G~ 
and a 1-factor F2 of G~, there is a unique way to extend it to a 1-factor from 9r~(G). Therefore, 
the 1-factors of ~'~(G) are in one-to-one correspondence with the pairs (F1, F2), where FI is a 
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1-factor of G~ and F2 a 1-factor of. Ge 2. But then the conclusion of the lemma follows immediately 
from the definition of the Cartesian product. | 

We are now ready for the proof of Theorem 1. Let n be the number of hexagons of G. We 
proceed by induction on n. For n = 1, we have G = C6 and R(C6) = K2 = Q1. 

Let n > 1. Let A be a pendant hexagon of G and H the benzenoid graph obtained from G 
by removing A. Let k be the smallest number of elementary cuts tha t  cover H.  Then, by the 
induction assumption, R(H) contains a k-cube, but not an r-cube with r > k. We distinguish 
two cases. 

CASE 1. k -I- 1 ELEMENTARY CUTS ARE NEEDED TO COVER G. In this case, Ce intersects 
precisely two hexagons. We need to show that  Qk+l is a largest subcube of G. Let kl be the 
smallest number of. elementary cuts that  cover G.  1 and k2 be the smallest number of elementary 
cuts tha t  cover Ge 2. In the case that  Ge ~ or Ge 2 is isomorphic t o / ( 2 ,  we set kl = 0 or k2 = 0. 
Then kt + k2 = k. By the induction assumption, R(G~) contains Qkl and R(G 2) contains Qk2. 
By Lemma 3, we thus infer that  R(G)[.~(G)] contains Qk (and no larger hypercube) and from 
Lemma 2, we infer that  Qk+t is an induced subgraph of G. 

CASE 2. k ELEMENTARY CUTS SUFFICE TO COVER G. Let g be a cover of G containing k 
elementary cuts. Then Ce E C, for otherwise Ce would cover only the hexagon A and hence 
C \ .Ce would be a cover of H with k - 1 elementary cuts. Since R(H) is a subgraph of R(G), 
and R(H) contains Qk, we need to show that  there is no larger hypercube in R(G). C \ Ce is a 
cover of R(G~) and R(G2e), say with kl elementary cuts in R(G~) and with k2 elementary cuts 
in R(G2). Note that  kl + k2 = k - 1. Thus, by the induction assumption, the dimension of a 
largest hypercube of R(Gle) and R(G 2) is bounded by kl and k2, respectively. By Lemma 3, we 
thus infer tha t  the dimension of a largest hypercube of R(G)[.T'~(G)] is at most k - 1, and so 
Lemma 2 implies that  in R(G) the dimension of a largest hypercube is bounded by k. On the 
other hand, in R(H) we have an induced Qk, thus we have an induced Qk in R(G). Case 2 is 
settled, and the proof of the theorem is complete. 

3 .  C O N C L U D I N G  R E M A R K  

Theorem 1 cannot be extended to the catacondensed even ring systems (see [14] for the defi- 
nition). Consider, for instance, the example from Figure 3. 

The graph G from the figure is a catacondensed even ring system that  can be covered by two 
elementary cuts. However, in its resonance graph (also shown in Figure 3) we find an induced Q3. 

I 

I 

c I R(G) 

Figure 3. A catacondensed even ring system G and its resonance graph. 



A Min-Max Result 283 

R E F E R E N C E S  

1. I. Gutman and S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer-Verlag, Berlin, 
(1989). 

2. W. Gr/indler, Signifikante Elektronenstrukturen f/ir benzenoide Kohlenwasserstoffe, Wiss. Z. Univ. Halle 
31, 97-116 (1982). 

3. W. Gr/indler, Mesomerie und Quantenmechanik, Z. Chem. (Leipzig) 23, 157-167 (1983). 
4. S. El-Basil, Kekuld structures as graph generators, J. Math. Chem. 14, 305-318 (1993). 
5. S. El-Basil, Generation of lattice graphs. An equivalence relation on Kekuld counts of catacondensed ben- 

zenoid hydrocarbons, J. Mol. Struct. (Theochem.) 288, 67-84 (1993). 
6. M. Randid, D.J. Klein, S. El-Basil and P. Calkins, Resonance in large benzenoid hydrocarbons, Croat. Chem. 

Acta 69, 1639-1660 (1996). 
7. M. Randid, Resonance in catacondensed benzenoid hydrocarbons, Int. J. Quantum Chem. 63, 585-600 

(1997). 
8. F. Zhang, X. Guo and R. Chen, Z-transformation graphs of perfect matchings of hexagonal systems, Discrete 

Math. 72, 405-415 (1988). 
9. R. Chen and F. Zhang, Hamilton paths in Z-transformation graphs of perfect matchings of hexagonal 

systems, Discrete Appl. Math. 74, 191-196 (1997). 
10. S. Klav~ar and P. 7,igert, Resonance graphs of catacondensed benzenoid graphs are median, Preprint Set. 

Univ. Ljubljana IMFM 38 (694), 1-9 (2000). 
11. W. Imrich and S. Klav~ar, Product Graphs: Structure and Recognition, John Wiley & Sons, New York, 

(2000). 
12. S. Klav~ar and H.M. Mulder, Median graphs: Characterizations, location theory and related structures, 

J. Combin. Math. Combin. Comp. 30, 103-127 (1999). 
13. H.M. Mulder, The Interval Function of a Graph, Mathematisch Centrum, Amsterdam, (1980). 
14. S. Klav~.ar, P. Zigert and G. Brinkmann, Resonance graphs of catacondensed even ring systems are median, 

Discrete Appl. Math. (to appear). 
15. S. Klav~ar, A. Vesel, P. Zigert and I. Gutman, Binary coding of Kekuld structures of catacondensed benzenoid 

hydrocarbons, Comput. ~ Chem. (to appear). 


