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Abstract

The resonance graph of a benzenoid graph G has the 1-factors of G as vertices,
two 1-factors being adjacent if their symmetric difference forms the edge set of
a hexagon of G. It is proved that the smallest number of elementary cuts that
cover a catacondensed benzenoid graph equals the dimension of a largest induced
hypercube of its resonance graph.
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1 Introduction

Benzenoid graphs (in the mathematical literature also called hezagonal systems) are 2-
connected subgraphs of the hexagonal lattice so that every bounded face is a hexagon.
If all vertices of a benzenoid graph G lie on its perimeter, then G is said to be cat-
acondensed; otherwise it is pericondensed. For more information on these graphs, in
particular for their chemical meaning as benzenoid hydrocarbons, see the book of Gut-
man and Cyvin [6].

A matching of a graph G is a set of pairwise independent edges. A matching is
perfect or a 1-factor, if it covers all the vertices of G. Let G be a benzenoid graph.
Then the vertex set of the resonance graph R(G) of G consists of all 1-factors of G,
and two 1-factors are adjacent whenever their symmetric difference is the edge set of a
hexagon of G.

The concept of the resonance graph is very natural, hence it is not surprising that it
was independently introduced several times. In the chemical literature, the first known
references are due to Griindler [4, 5]. The concept was later reinvented by El-Basil in
[2, 3], and Randi¢ with co-workers in [14, 13]. In the mathematical literature, again
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independently, Zhang, Guo, and Chen introduced resonance graphs under the name of
Z-transformation graphs [15]. They proved among others that the resonance graph of a
benzenoid graph with at least one 1-factor is connected, bipartite, and is either a path
or has girth 4. Chen and Zhang [1] proved that the resonance graph of a catacondensed
benzenoid graph has a Hamilton path.

In [10] it is proved that the resonance graphs of the catacondensed benzenoid graphs
possess much of a structure, namely, they belong to the class of median graphs. (For
more information on the well developed theory of median graphs see [7, 8, 12].) This
result was in [11] extended to a larger class of planar graphs—to the so-called even
ring systems. The structure of the resonance graphs of the catacondensed benzenoid
graphs as described in [10] (or in [11]) led to an algorithm that assigns a unique and
quite short binary code to every 1-factor of a catacondensed benzenoid graph [9)].

Let e be an edge of a benzenoid graph G lying on its perimeter. Then the elementary
cut Ce corresponding to e is the set of edges so that e € C, and with every edge f of
C. also the opposite edge with respect to a hexagon containing f belongs to C.. Note
that the set of elementary cuts partitions the edge set of G. For instance, in G = Cg
there are three elementary cuts, each consisting of two opposite edges of Cs. We say
that a subset C of elementary cuts covers G if for any hexagon A of G, thereisa C € C
that meets A in two opposite edges. The above definitions can be extended to larger
classes of graphs (just replacing hexagons with any even cycles), in particular to the
so-called even ring systems to be mentioned at the end of this note.

The Cartesian product GOH of graphs G and H is the graph with the vertex set
V(G) x V(H) and (a,x)(b,y) € E(GOH) whenever ab € E(G) and x =y, or,if a = b
and xy € E(H). The Cartesian product of n copies of the complete graph on two
vertices Ky is the n-cube . In other words, the vertex set of (Q,, consists of all n-
tuples biby...b, with b; € {0,1}, and two vertices are adjacent if the corresponding
tuples differ in precisely one place.

In this note we prove the following result:

Theorem 1 Let G be a catacondensed benzenoid graph. Then the smallest number of
elementary cuts that cover G equals the dimension of a largest induced hypercube of

R(G).

Let H be a fixed subgraph of a graph G, H C G. Then the local Cartesian product
GOy H is the graph obtained from the disjoint union of G and H, in which every vertex
of H is joined by an edge with the corresponding vertex of H C G. Finally, the notation
G[X] is used to denote the subgraph of G induced by the set X.

2 Proof of the theorem

Let G be a catacondensed benzenoid graph. An edge of GG that lies on its perimeter
will be called a b-edge and an edge with end vertices of degree three that belongs to
a pendant hexagon will be called a join edge. If A and B are incident hexagons of G,



then the two edges on the boundary of A that have exactly one vertex on the boundary
of B are called the link of A to B.

Let e be a join edge of G. Denote by F.(G) the set of 1-factors of G that contain
e and by F&(G) the set of those 1-factors of G that do not contain e. Let A be the
pendant hexagon of G containing e. Then the 1-factors of Fz(G) either contain the link
of A to its neighboring hexagon or not. We denote the corresponding sets of 1-factors
with F£(G) and F£(G), respectively. Thus, the 1-factors of G can be partitioned as

V(R(G)) = F.(G) UFL(G) U FL(G).

The following lemma is (implicitly) contained in [10], cf. also [11]. For the sake of
completeness we include its proof.

Lemma 2 Let e be a join edge of a catacondensed benzenoid graph G and let H be the
benzenoid graph obtained from G by removing the pendant hexagon containing e. Then
R(G)[Fe(@)] is isomorphic with R(G)[FL(G)]. Moreover,

R(G) = R(H)O,R(G)[F.(G)]  (ct. Fig. 1).

Proof. Note first that R(H) = R(G)[F.(G) U FL(G)]. Indeed, the 1-factors of F.(H)
one-to-one correspond to the 1-factors of F.(G) and the remaining 1-factors of H to
FE(G).

Consider now a 1-factor F of F£(G). In R(G) it is adjacent to a unique 1-factor F
from the set R(G)[F.(G)]. Moreover, two 1-factors Fy and Fy of F4(G) are adjacent

if and only if the corresponding 1-factors Fy and F» of F.(G) are adjacent. Therefore
R(Q)[Fe(@)] and R(G)[FE(G)] are isomorphic and R(G) = R(H)O,R(G)[F.(G)]. N

C (@) [ Fe(G) )R(H)

(:\'j\\

Figure 1: The structure of R(G).

Let e be a join edge of a catacondensed benzenoid graph G and let f and f’ be the
b-edges of the elementary cut C., where f’ belongs to the pendant hexagon containing
e. Let H be the graph obtained from G by removing all hexagons (their edges and
vertices) intersected by Ce, except the two edges, that are incident with f. We call
these two edges the turn-edges of e. Then H consists of two connected components, we
will denote them by G and G2, see Fig. 2.

Note that if a turn-edge is a b-edge, then the corresponding component of H is Ko,
otherwise it is a benzenoid graph. We define R(K3) = K.



Figure 2: A benzenoid graph G and components G, G2.

Lemma 3 Let e be a join edge of a catacondensed benzenoid graph G. Then
R(G)[FH@)] = R(GHOR(GY),

Proof. Let F be a 1-factor from F£(G) and let e; and e be the turn-edges of e. Then
F is fixed on all the hexagons intersected by C. except on the last one, that is the one
containing e; and eg. If e; or eg is also a b-edge, then it lies in F. Let f be the edge
incident with e; and es, cf. Fig. 2. Then f does not belong to F', for otherwise F'
cannot be extended to a 1-factor of G since we would need to cover an odd number of
vertices. Thus, selecting a 1-factor F} of G} and a 1-factor I, of G?, there is a unique
way to extend it to a 1-factor from F£(G). Therefore, the 1-factors of F£(G) are in
one-to-one correspondence with the pairs (Fy, Fy), where F} is a 1-factor of Gé and Fy
a 1-factor of G2. But then the conclusion of the lemma follows immediately from the
definition of the Cartesian product. |

We are now ready for the proof of Theorem 1. Let n be the number of hexagons of
G. We proceed by induction on n. For n = 1 we have G = Cg and R(Cs) = Ko = Q1.

Let n > 1. Let A be a pendant hexagon of G and H the benzenoid graph obtained
from G by removing A. Let k be the smallest number of elementary cuts that cover H.
Then, by the induction assumption, R(H) contains a k-cube, but not an r-cube with
r > k. We distinguish two cases.

Case 1. k£ + 1 elementary cuts are needed to cover G.

In this case, C, intersects precisely 2 hexagons. We need to show that Q.11 is a largest
subcube of G. Let k1 be the smallest number of elementary cuts that cover Gé and ko
be the smallest number of elementary cuts that cover G2. In the case that G! or G2
is isomorphic to Ky, we set k1 = 0 or ko = 0. Then k1 + ko = k. By the induction



assumption, R(GL) contains Qr, and R(G?) contains Q,. By Lemma 3 we thus infer
that R(G)[FL(G)] contains Qj (and no larger hypercube) and from Lemma 2 we infer
that Q41 is an induced subgraph of G.

Case 2. k elementary cuts suffice to cover G.

Let C be a cover of G containing k elementary cuts. Then C. € C, for otherwise C,
would cover only the hexagon A and hence C \ C. would be a cover of H with k — 1
elementary cuts. Since R(H) is a subgraph of R(G), and R(H) contains Q, we need to
show that there is no larger hypercube in R(G). C\ C, is a cover of R(G.) and R(G?),
say with kj elementary cuts in R(G!) and with ky elementary cuts in R(G?). Note
that k1 + ko = k — 1. Thus, by the induction assumption, the dimension of a largest
hypercube of R(G}) and R(G?) is bounded by k; and ky, respectively. By Lemma 3 we
thus infer that the dimension of a largest hypercube of R(G)[F4(G)] is at most k — 1
and so Lemma 2 implies that in R(G) the dimension of a largest hypercube is bounded
by k. On the other hand, in R(H) we have an induced Qf, thus we have an induced
Qr in R(G). Case 2 is settled, and the proof of the theorem is complete.

3 Concluding remark

Theorem 1 cannot be extended to the catacondensed even ring systems (see [11] for the
definition), consider, for instance, the example from Fig. 3.

e | R(G)
Figure 3: A catacondensed even ring system G and its resonance graph.
The graph G from the figure is a catacondensed even ring system that can be covered

by two elementary cuts. However, in its resonance graph (also shown in Fig. 3) we find
an induced Qs.
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