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Abstract

In network analysis, centrality measures identify the most important vertices within
a graph. In a connected graph, the transmission of a vertex u is the sum of the lengths
of the shortest paths between the node and all other nodes in the graph. In this paper,
we discuss a method to uniquely identify a vertex in a plane nanosheet. Using this
approach, we compute the transmission of every vertex in H-naphtalenic nanosheets.

Keywords: vertex transmission; nano-network; H-naphtalenic nonosheet; coordinatiza-
tion; edge cut

AMS Subj. Class. (2020): 05C09, 05C12, 05C92

∗ To whom correspondence should be addressed.

1



1 Introduction

The advent of social networks, big data, and e-commerce has emphasized the importance
of analyzing a unique type of data structure called a graph or a network, which depicts
relationships among its entities. In network analysis, centrality measures identify the most
important vertices within a graph. Applications include identifying the most influential
person in a social network, key infrastructure nodes in the internet or urban networks,
and super-spreaders of a disease [9].

The transmission of a vertex u in a graph G, also called the total distance, farness,
and the vertex Wiener value in the literature, is the sum of the lengths of shortest paths
between u and all other vertices in G [1, 18, 24, 27, 31, 26, 34]. Using transmission, the
celebrated Wiener index can be described as one half of the sum of the transmissions
of its vertices. Moreover, the Wiener complexity is defined as the number of different
transmissions of its vertices, [2, 3, 17].

The transmission is also closely related to other topological indices [32], describes
median vertices, and characterizes the distance-balanced property and the opportunity
index, see [7, 10]. In a connected graph, closeness centrality of a node is a measure of
centrality, calculated as the reciprocal of the sum of the lengths of the shortest paths
between the node and all other nodes in the graph. Graphs in which all its vertices have
pairwise different transmissions are called transmission irregular graphs [3]. This class of
graphs received a lot of attention, see [4, 14, 15, 16].

A nano-network is a set of inter-connected nanomachines, which are able to perform
simple tasks such as computing, data storing, sensing and actuation. Two-dimensional
nanosheets have shown great potential for separation applications because of their ex-
ceptional molecular transport properties. Nanosheet materials such as graphene oxides,
metal-organic frameworks, and covalent organic frameworks display unique, precise, and
fast molecular transport through nanopores and nanochannels [21].

Among two-dimensional nanosheets, naphtalenic nanosheets play an important role,
cf. [29] and references therein. In this paper we are interested in the H-naphtalenic
nanosheets, whose mathematical properties have been earlier studied in [6, 19, 20]. Here
we compute the transmission of every vertex in a H-naphtalenic nanosheet and proceed as
follows. In the next section we give necessary definitions, discuss a general framework for
coordinatizations of graph vertices, and introduce the two-parametric family HN(m,n)
of H-naphtalenic nanosheets. In Section 3 we make a closer look to the structure of these
nanosheets and prove a couple of preliminary counting results. In Section 4 we define
a coordinatization of H-naphtalenic nanosheets and, using it, derive expressions for the
transmission of each of its vertices.
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2 Preliminaries

If G = (V (G), E(G)) is a graph, then the usual shortest-path distance between vertices
u, v ∈ V (G) is denoted by d(u, v). The transmission T (u) of u ∈ V (G) is defined as
T (u) = Σv∈V (G)d(u, v). A subgraph H of G is convex if given any two vertices u and v
in H, every (u, v)-shortest path in G lies lies entirely in H. A convex cut of G is a set
of edges F ⊆ E(G) such that G − F consists of two components, each of them being a
convex subgraph of G. If a partition of the edge set of G is such that every member of
the partition is convex, then we speak of a convex edge partition of G.

If a graph G admits a convex edge partition, then it can be used to determine distance
based topological indices of G. The seminal paper on this important approach [23] led to
wide developments. The progress up to 2015 is surveyed in [25], to check the up-to-date
investigations the reader can start with [28, 33] and references therein.

A weaker version of the convex edge partition was introduced in [31] as follows. Let
G be a graph and u ∈ V (G). Then a partition {S1, . . . , Sk} of E(G) into edge cuts Si,
i ∈ [k] = {1, . . . , k}, is a u-transmission partition if for every i, every shortest path from
u to any other vertex passes through at most one edge of Si. In our computations of the
transmission of H-naphtalenic nanosheets, the following result from [31] will be useful.

Theorem 2.1. (Transmission Lemma) Let G be a graph, u ∈ V (G), and let {S1, . . . , Sk}
be a u-transmission partition. If Gi, i ∈ [k], is the component of G\Si which contains u,
then T (u) = Σk

i=1(|V (G)| − |V (Gi)|).

2.1 Coordinatizations

In euclidean geometry, we fix the frames of references as the X-axis and the Y -axis and
uniquely determine the location of any point in the plane with respect to these coordinate
axes. Extending this idea, we define a k-tuple coordinate to every point in the plane
of a nanosheet which uniquely determines the location of every vertex in the nanosheet.
This will simplify the computation of transmission distances of vertices. Moreover, it
can also aid us in computing certain centrality measures in social networks and distance
based topological indices in chemical graphs. We next present a general frame for such
coordinatizations.

Let G be a (connected) graph and let {F1, . . . , Fk} be a partition of E(G) into edge
sets Fi, where Fi is a union of one or more edge cuts, satisfying the property that if xy ∈ Fi

then x and y lie in different components of G − Fi. Let ji be the number of components
of G − Fi. Labeling these components by the first ji positive integers, we can define a
mapping

` : V (G)→ [j1]× · · · × [jk]

by setting `(x) = (x1, . . . , xk), where xi is the component of G−Fi in which u lies. Such a
labeling is a coordinatization, if the function ` is injective. In a coordinatization, vertices
of G thus receive unique labels.
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There are several useful coordinatizations known from the literature. Hypercubes of
dimension n and their (isometric) subgraphs can be naturally coordinatized by binary
n-tuples, which was in [13] used for the first time to compute the Wiener index of partial
cubes without computing the distances between pairs of vertices. Using coordinatization
with three coordinates, the Wiener index of benzenoid systems can be computed in linear
time [12, 23]. For a general framework where coordinatizations with respect to canonical
metric representations are used see [22]. In this paper we introduce a coordinatization of
H-naphtalenic nanosheets and demonstrate how to use it to compute the transmissions of
of its vertices.

2.2 H-naphtalenic nanosheets

Metal Organic Framework (MOF) nanosheets are being used extensively due to their
mechanical flexibility and optical transparency. Its edges can be partitioned into obtuse
and acute cuts, see Fig. 1(a). Whereas the edge set of the triangular benzenoid nanosheet
can be partitioned into horizontal, acute and obtuse cuts, see Fig. 1(b). As a further
example consider a Type II C4 C8 (R) nanosheet, which is a trivalent decoration made by
alternating squares C4 and octagons C8, its edge set can be partitioned into horizontal,
vertical, acute, and obtuse cuts, see Fig. 1(c).

We define a subgraph induced by the set of vertices between two consecutive cuts of the
same type α as an α-channel, where α may be horizontal, vertical, acute or obtuse. Any
vertex v in the nanosheet, is assigned the coordinate tuple whose first entry i represents
the ith horizontal-channel, the second entry j represents the jth vertical-channel, the third
entry k represents the kth acute-channel, and the fourth entry l represents the lth obtuse-
channel in which v lies. This uniquely determines the location of v in the nanosheet.

The H-naphtalenic nanosheet HN(m,n) is constructed with the basic block B of two
hexagons sharing an edge. HN(m,n) has m row-blocks, each row-block comprising of
n number of B-blocks bound sequentially by two horizontal edges called column-binding
edges between two B-blocks and n column-blocks, each column-block comprising of m
number of B-blocks bound sequentially by vertical edges called row-binding edges as shown
in Fig. 2(a). HN(m,n) has 10mn vertices and 15mn− 2m− 2n edges.

3 Channels in HN(m,n)

We now proceed to give a partition of the edge set of HN(m,n) as follows:

• horizontal cuts H1, . . . ,H2m−1 as in Fig. 2(a).

• vertical cuts C1, . . . , Cn−1 as in Fig. 2(a).

• acute cuts A1, . . . , Am+2n−1 as in Fig. 2(b).

• obtuse cuts O1, . . . , Om+2n−1 as in Fig. 2(a).
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Figure 1: a) Metal Organic Framework, b) Triangular benzenoid, c) Type II C4C8(R) -
T 2[p, q]

We note that {A1, . . . , Am+2n−1, O1, . . . , Om+2n−1, H1, . . . ,H2m−1, C1, . . . , Cn−1} is
an edge partition of HN(m,n), such that each set is an edge cut whose removal partitions
HN(m,n) into two components and for any vertex u in HN(m,n), the condition of the
Transmission Lemma is satisfied.

We define channels arising out of acute cuts, denoted by a-channel as follows. The acute
cut A1 partitions HN(m,n) into two components with one of the components inducing a
path of length 2. We call this subgraph a-channel 1. The subgraph induced by vertices that
fall between cuts Ak−1 and Ak is called a-channel k, 2 ≤ k ≤ m+ 2n− 1. The acute cut
Am+2n−1 partitions HN(m,n) into two components with one of the components inducing
a path of length 2, which we call a-channel (m + 2n). We note that a-channel k and a-
channel (m+ 2n− (k− 1)) are isomorphic for k ∈ [dm+2n

2 e]. Similarly, we define channels
arising out of obtuse cuts and call then o-channel l, l ∈ [m+ 2n].

Lemma 3.1. In HN(m,n), let sak be the number of vertices in a-channel k, k ∈ [dm+2n
2 e].
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Figure 2: (a) Horizontal, vertical and obtuse cuts (b) Acute cuts

If k ∈ [m], then

sak =

{
5k − 2; k odd,

5k − 3; k even,

and if m+ 1 ≤ k ≤ dm+2n
2 e, then

sak =


5m; m even,

5m− 1; m odd, k even,

5m+ 1; m odd, k odd.

Proof. For k ∈ [m], the a-channel k contains k terms in the summation beginning with 3,
followed by an alternating sequence of numbers 4 and 6. This readily gives

sak =

{
3 + k−1

2 (4 + 6); k odd,

3 + k−2
2 (4 + 6) + 4; k even.

For m + 1 ≤ k ≤ dm+2n
2 e, the a-channel k contains m terms in the summation with an

alternating sequence of numbers 4 and 6, beginning with 4 if k = m + j, j odd; and
beginning with 6 if k = m+ j, j even. Therefore,

sak =


m
2 × 10 = 5m; m even,
m−1
2 × 10 + 4 = 5m− 1; m odd, k even,

m−1
2 × 10 + 6 = 5m+ 1; m odd, k odd,
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and we are done.

Lemma 3.2. In HN(m,n), let Sa
k = sa1 + · · ·+ sak, k ∈ [dm+2n

2 e]. If k ∈ [m], then

Sa
k =

{
5k2

2 ; k even,
5k2

2 + 1
2 ; k odd,

and if m+ 1 ≤ k ≤ dm+2n
2 e, then

Sa
k =


5mk − 5m2

2 ; m even,

5mk − 5m2−1
2 ; m odd, k odd,

5mk − 5m2+1
2 ; m odd, k even.

Proof. If k ∈ [m] is even, then

Sa
k = 3 + (3 + 4) + (3 + 4 + 6) + · · ·+ (3 +

k − 2

2
(4 + 6) + 4) =

5k2

2

and if k is odd, then

Sa
k = 3 + (3 + 4) + (3 + 4 + 6) + · · ·+ (3 +

k − 1

2
(4 + 6)) =

5k2

2
+

1

2
.

Let m be even. Then for m + 1 ≤ k ≤ dm+2n
2 e, every a-channel k consists of 5m

vertices and hence sak = 5m2

2 + 5m(k −m) = 5mk − 5m2

2 .
Let m be odd. Then alternate a-channels beginning with a-channel (m+ 1) consist of

5m− 1 and 5m+ 1 vertices, respectively. For m+ 1 ≤ k ≤ dm+2n
2 e, k odd implies (k−m)

is even. Then sak = 5m2

2 + 1
2 + 5m(k −m) = 5mk − (5m

2−1
2 ). On the other hand, k even

implies (k−m) is odd. Then sak = 5m2

2 + 1
2 +5m(k−m−1)+(5m−1) = 5mk−(5m

2+1
2 ).

4 Coordinatization of vertices in HN(m,n) and their trans-
missions

A unique 4-tuple representation for any vertex u in HN(m,n) helps to locate the position
of u in the nanosheet. In order to achieve this representation, every row-block is split
into 2 rows. The horizontal cut H2i−1 splits the ith row-block into two horizontal paths.
The rows, the column-blocks, the a-channels and the o-channels determine the 4-tuple
representation of any vertex in the nanosheet. In this way every vertex u of HN(m,n)
is uniquely represented as u ≡ (i, j, k, l), where, i represents the row, j represents the
column-block, k represents the a-channel, and l represents the o-channel in which u lies.
See Fig. 3.

The following lemmas determine the contribution of the horizontal, vertical, acute and
obtuse cuts to the transmission T (u) of vertices u of HN(m,n). If u is represented as
(i, j, k, l), then the coordinates are from the ranges i ∈ [2m], j ∈ [n], and k, l ∈ [m+ 2n].
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Figure 3: In HN(4, 3), u ≡ (4, 2, 5, 5)

Lemma 4.1. If u ≡ (i, j, k, l) is a vertex of HN(m,n), then the contribution to T (u) by
the horizontal cuts is given by

Th(u) = 5n(i2 + (2m+ 1)(m− i)).

Proof. Each row in HN(m,n) contains 5n vertices. Therefore, by the Transmission
Lemma,

Th(u) = ((1× 5n) + (2× 5n) + · · ·+ (i− 1)5n)

+ ((2m− i)5n+ (2m− (i+ 1))5n+ · · ·+ (2m− (2m− 1))5n)

= 5n

(
(i− 1)i

2
+

(2m− i)(2m− i+ 1)

2

)
= 5n(i2 + (2m+ 1)(m− i)).

Lemma 4.2. If u ≡ (i, j, k, l) is a vertex of HN(m,n), then the contribution to T (u) by
the vertical cuts is given by

TV (u) = 10m

(
n(n+ 1)

2
+ j(j − 1− n)

)
.
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Proof. Each column-block in HN(m,n) contains 10m vertices. Therefore, by the Trans-
mission Lemma,

TV (u) = ((1× 10m) + (2× 10m) + · · ·+ (j − 1)10m) + ((n− j)10m

+ (n− (j + 1))10m+ · · ·+ (n− (n− 1))10m)

= 10m

(
n(n+ 1)

2
+ j(j − 1− n)

)
.

Lemma 4.3. Let Ra
k = Σk

i=1S
a
i , k ∈ [dm+2n

2 e]. If k ∈ [m], then

Ra
k =

{
5
12 k (k + 1)(2k + 1) + k+1

4 ; k odd,
5
12 k (k + 1)(2k + 1) + k

4 ; k even,

and if m+ 1 ≤ k ≤ dm+2n
2 e, then

Ra
k =

{
Ra

m + 5m(k−m)(k+1)
2 ; m even or m odd and k even,

Ra
m + 5m(k−m)(k+1)+1

2 ; m odd and k even.

Proof. If k ≤ m, then by Lemma 3.2,

Ra
k =

{
Σk
i=1

5i2

2 + (k+1
2 ) 1

2 ; k odd,

Σk
i=1

5i2

2 + (k2 ) 1
2 ; k even,

and the result follows.
Let next m+ 1 ≤ k ≤ dm+2n

2 e. If m is even, or if both m and k are odd, then

Ra
k −Ra

m = Σk
i=m+1(5mi−

5m2

2
)

= 5m((k −m)m+
(k −m)(k −m+ 1)

2
)− (k −m)

5m2

2

=
5m(k −m)(k + 1)

2
.

And if m is odd and k is even, then

Ra
k −Ra

m =
5m(k −m)(k + 1) + 1

2
.
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Lemma 4.4. If u ≡ (i, j, k, l) is a vertex of HN(m,n), then the contribution Ta(u) to
T (u) by the acute cuts is given by

Ta(u) =



5
6 (k − 1)k(2k − 1) + bk2c+ 5mn(m+ 2n+ 1− 2k);

k ≤ m+ 1,
5
6 (m+ 1)m(2m+ 1) + bm2 c+ 5m(k −m− 1)k + 5mn(m+ 2n+ 1− 2k);

k > m+ 1, m even or m odd and k odd,
5
6 (m+ 1)m(2m+ 1) + dm2 e+ 5m(k −m− 1)k + 5mn(m+ 2n+ 1− 2k);

k > m+ 1, m odd and k even.

Proof. For convenience, we drop the superfix a in the following derivation, as we are
dealing only with acute cuts. Further, the Transmission Lemma is used for every acute
cut Ak, 1 ≤ k ≤ dm+2n

2 e.

Case 1: m even.
In this case we compute as follows:

Ta(u) = Rk−1 + (Sm+2n
2
− Sk) + (Sm+2n

2
− Sk+1) + · · ·+

(Sm+2n
2
− Sm+2n

2
−1) + (

m+ 2n

2
− k) Sm+2n

2
+Rm+2n

2

= Rk−1 + 2(
m+ 2n

2
− k) Sm+2n

2
+Rm+2n

2
− (Sk + Sk+1 + · · ·+ Sm+2n

2
−1)

= Rk−1 + 2(
m+ 2n

2
− k) Sm+2n

2
+Rm+2n

2

− (Rm+2n
2
− (S1 + S2 + · · ·+ Sk−1)− Sm+2n

2
)

= 2Rk−1 + 2(
m+ 2n

2
− k) Sm+2n

2
+ Sm+2n

2

= 2Rk−1 + (m+ 2n− 2k + 1)Sm+2n
2

By Lemma 4.3, if k − 1 ≤ m, then

2Rk−1 =
5

6
(k − 1)k(2k − 1) + bk

2
c

and if k − 1 ≥ m+ 1, then

2Rk−1 = 2Rm + 5m(k −m− 1)k

=
5

6
(m+ 1)m(2m+ 1) +

m

2
+ 5m(k −m− 1)k

By Lemma 3.2, Sm+2n
2

= 5m (m+2n
2 )− 5m2

2 = 5mn.
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Therefore

Ta(u) =


5
6 (k − 1)k(2k − 1) + bk2c+ 5mn(m+ 2n+ 1− 2k);

k ≤ m+ 1,
5
6 (m+ 1)m(2m+ 1) + bm2 c+ 5m(k −m− 1)k + 5mn(m+ 2n+ 1− 2k);

k > m+ 1.

Case 2: m odd.
Now we compute as follows:

Ta(u) = Rk−1 + (Sdm+2n
2
e − Sk) + (Sdm+2n

2
e − Sk+1) + · · ·+

(Sdm+2n
2
e − Sdm+2n

2
e−1) + (dm+ 2n

2
e − k) Sdm+2n

2
e +Rdm+2n

2
e−1

= Rk−1 + (dm+ 2n

2
e − k) (Sdm+2n

2
e−1 + Sdm+2n

2
e) +Rdm+2n

2
e−1

− (Sk + Sk+1 + · · ·+ Sdm+2n
2
e−1)

= 2Rk−1 + (dm+ 2n

2
e − k) (Sdm+2n

2
e−1 + Sdm+2n

2
e)

= 2Rk−1 + (
m+ 2n+ 1

2
− k) (Sdm+2n

2
e−1 + Sdm+2n

2
e).

By Lemma 4.3, if k − 1 ≤ m, then

2Rk−1 =
5

6
(k − 1)k(2k − 1) +

⌊
k

2

⌋
,

and if k − 1 ≥ m+ 1, then

2Rk−1 = 2Rm + 2Rk−m−1.

Hence

Ta(u) =


5
6 (m+ 1)m(2m+ 1) + bm2 c+ 5m(k −m− 1)k;

m even, or m odd and k odd,
5
6 (m+ 1)m(2m+ 1) + dm2 e+ 5m(k −m− 1)k;

m odd and k even.

Note that Sdm+2n
2
e−1 + Sdm+2n

2
e = Sm+2n−1

2
+ Sm+2n+1

2
. If m+2n−1

2 is even, then m+2n+1
2 is

odd. Therefore,

Sm+2n−1
2

+ Sm+2n+1
2

= 5m(
m+ 2n− 1

2
)− (

5m2 + 1

2
) + 5m(

m+ 2n+ 1

2
)− (

5m2 − 1

2
)

= 5m(m+ 2n)− 5m2 = 10mn.
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On the other hand, if m+2n−1
2 is odd, then m+2n+1

2 is even and therefore,

Sm+2n−1
2

+ Sm+2n+1
2

= 5m(
m+ 2n− 1

2
)− (

5m2 − 1

2
) + 5m(

m+ 2n+ 1

2
)− (

5m2 + 1

2
)

= 5m(m+ 2n)− 5m2 = 10mn.

In either case, Sdm+2n
2
e−1 + Sdm+2n

2
e = 10mn.

Thus,

Ta(u) =



5
6 (k − 1)k(2k − 1) + bk2c+ 5mn(m+ 2n+ 1− 2k);

k ≤ m+ 1,
5
6 (m+ 1)m(2m+ 1) + bm2 c+ 5m(k −m− 1)k + 5mn(m+ 2n+ 1− 2k);

m+ 1 < k ≤ dm+2n
2 e, m even, or m odd and k odd,

5
6 (m+ 1)m(2m+ 1) + dm2 e+ 5m(k −m− 1)k + 5mn(m+ 2n+ 1− 2k);

m+ 1 < k ≤ dm+2n
2 e, m odd and k even.

The symmetric nature of the structure of HN(m,n) implies that the role played by
the acute cuts is the same as those of the obtuse cuts. Hence the contribution To(u) of
the obtuse cuts to T (u) is obtained by replacing k by l in Ta(u). All is now prepared to
formulate the main result of this paper.

Theorem 4.5. If u ≡ (i, j, k, l) is a vertex of HN(m,n), then the transmission of u in
HN(m,n) is given by

T (u) = Th(u) + TV (u) + Ta(u) + To(u),

where,
Th(u) = 5n(i2 + (2m+ 1)(m− i)), i ∈ [2m],

TV (u) = 10m(
n(n+ 1)

2
+ j(j − 1− n)), j ∈ [n],

Ta(u) =



5
6 (k − 1)k(2k − 1) + bk2c+ 5mn(m+ 2n+ 1− 2k);

k ≤ m+ 1,
5
6 (m+ 1)m(2m+ 1) + bm2 c+ 5m(k −m− 1)k + 5mn(m+ 2n+ 1− 2k);

m+ 1 < k ≤ dm+2n
2 e, m even, or m odd and k odd,

5
6 (m+ 1)m(2m+ 1) + dm2 e+ 5m(k −m− 1)k + 5mn(m+ 2n+ 1− 2k);

m+ 1 < k ≤ dm+2n
2 e, m odd and k even,
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and

To(u) =



5
6 (l − 1)l(2l − 1) + b l2c+ 5mn(m+ 2n+ 1− 2l);

l ≤ m+ 1,
5
6 (m+ 1)m(2m+ 1) + bm2 c+ 5m(l −m− 1)l + 5mn(m+ 2n+ 1− 2l);

m+ 1 < l ≤ dm+2n
2 e, m even, or m odd and l odd,

5
6 (m+ 1)m(2m+ 1) + dm2 e+ 5m(l −m− 1)l + 5mn(m+ 2n+ 1− 2l);

m+ 1 < l ≤ dm+2n
2 e, m odd and l even.

In Theorem 4.5, the transmission of the vertices u ≡ (i, j, k, l), where i ∈ [2m], j ∈ [n],
and k, l ∈ [d(m + 2n)/2e] have been determined. Hence the vertices u ≡ (i, j, k, l) for
which dm+2n

2 e < k, l ≤ m+ 2n have not been considered. But the symmetric nature of
HN(m,n) implies that

T (2m+ 1− i, n+ 1− j,m+ 2n+ 1− k,m+ 2n+ 1− l) = T (i, j, k, l).

For example, T (2m,n, 2n + 1,m + 2n) = T (1, 1,m, 1). Thus Theorem 4.5 is sufficient to
determine T (u) of every vertex u in HN(m,n).

5 Conclusions

In this paper, a coordinate system has been defined to uniquely identify the location of
a vertex in HN(m,n). This coordinate system together with the Transmission Lemma
has led to a challenging computational procedure to arrive at the transmission of every
vertex in HN(m,n). Closeness centrality measure is an easy consequence of the study on
transmission of vertices. This paper throws light on determining transmission of vertices
in several other nanosheets.
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