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Abstract

The packing chromatic number χρ(G) of a graphG is the smallest integer k such
that the vertex set of G can be partitioned into sets Vi, i ∈ [k], where each Vi is an
i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers
whether there exists a graph G such that ω(G) = a, χ(G) = b, and χρ(G) = c.
If so, we say that (a, b, c) is realizable. It is proved that b = c ≥ 3 implies a = b,
and that triples (2, k, k + 1) and (2, k, k + 2) are not realizable as soon as k ≥ 4.
Some of the obtained results are deduced from the bounds proved on the packing
chromatic number of the Mycielskian. Moreover, a formula for the independence
number of the Mycielskian is given. A lower bound on χρ(G) in terms of ∆(G)
and α(G) is also proved.
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dence number; Mycielskian

AMS Subj. Class: 05C70, 05C15, 05C12

1 Introduction

A fundamental problem in graph coloring is the relation between the chromatic num-
ber χ(G) of a graph G and its clique number ω(G). The construction of Mycielski
provided examples of graphs that are triangle-free and have arbitrarily large chromatic
number [26]. Hence graphs with arbitrary clique number k and chromatic number of
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an arbitrary size greater than k could be constructed. In this paper, we ask similar
questions involving the packing chromatic number by studying the existence of graphs
G with given ω(G), χ(G) and χρ(G).

Given a graph G and a positive integer i, an i-packing in G is a subset W of the
vertex set of G such that the distance between any two distinct vertices from W is
greater than i. This generalizes the notion of an independent set, which is equivalent
to a 1-packing. The packing chromatic number of G is the smallest integer k such that
the vertex set of G can be partitioned into sets V1, . . . , Vk, where Vi is an i-packing
for each i ∈ [k] = {1, . . . , k}. This invariant is well defined on any graph G and
is denoted χρ(G). More generally, for a nondecreasing sequence S = (s1, . . . , sk) of
positive integers, the mapping c : V (G) −→ [k] is an S-packing coloring if for any i in
[k] the set c−1(i) is an si-packing [18].

In particular, if S = (1, . . . , k), then c : V (G) −→ [k] is called a k-packing coloring,
which is the main concept in this paper. The packing chromatic number was introduced
in [17] under the name broadcast chromatic number, and subsequently studied under
the current name, see [1, 2, 4–8, 10–13, 21–23, 27–29].

Clearly, in any graph G, ω(G) ≤ χ(G) ≤ χρ(G), and the main question we are
interested in is for which triples (a, b, c), where 2 ≤ a ≤ b ≤ c, there exists a graph G
such that ω(G) = a, χ(G) = b and χρ(G) = c. In this paper, we use the name realizable
triple for a triple (a, b, c) whose values are realized by some graph. As it turns out, the
Mycielski construction is useful also in this study. Recall that the Mycielskian M(G) of
a graph G is the graph with the vertex set V (G)∪V ′∪{w}, where V ′ = {x′ : x ∈ V (G)},
and the edge set E(G) ∪ {xy′ : xy ∈ E(G)} ∪ {wx′ : x′ ∈ V ′}. Well-known properties
of this construction are that χ(M(G)) = χ(G) + 1 and ω(M(G)) = ω(G).

In studying realizable triples the following result from the seminal paper will be
used several times.

Proposition 1.1 ([17, Proposition 2.1]) If G is a graph with order n(G), then χρ(G) ≤
n(G)− α(G) + 1, with equality if diam(G) = 2.

In view of Proposition 1.1 and the usefulness of the Mycielskian in chromatic graph
theory, in Section 2 we investigate the packing chromatic number and the independence
number of the Mycielskian. We present a formula for establishing α(M(G)) in an
arbitrary graph G; to the best of our knowledge, this has not yet been established in
full generality, cf. [25]. The obtained formula is then applied to obtain various bounds
on χρ(M(G)). We also show that the packing chromatic number of the Mycielskian
M(G) is at least two more than that of G.

In Section 3 we first prove our main result asserting that χ(G) = χρ(G) implies that
ω(G) = χ(G). (It was proven in [17] that χ(G) = χρ(G) implies that ω(G) ≥ χ(G)−2.)
In other words, (a, b, b) is realizable only if a = b. Next, we prove that if (a, b, c) is
realizable, then (a, b, d) is also realizable for any d that is greater than c. If k ≥ 4, we
show that the triple (2, k, k + 2) is not realizable. On the other hand, by applying the
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Mycielskian operation several times, we infer that triples (n, n+ k, 2k−1(n+1)+1) are
realizable for any n ≥ 2 and any k ≥ 1.

In the final section we present the following lower bound on the packing chromatic
number of an arbitrary graph:

χρ(G) ≥ ∆(G)− α(G) + 2,

which in a nice way complements the bound from Proposition 1.1 (here, ∆(G) stands
for the maximum degree of vertices in G). Some of the graphs that attain this bound
are used in presenting families of graphs, which realize (a, a, a) for a ≥ 2.

2 Independence and packing chromatic number of the

Mycielskian

In view of Proposition 1.1 it is important to know the independence number of a
graph while studying its packing chromatic number. In this section we also consider
the independence number of the Mycielskian. Although the Mycielskian has been
investigated by now from many points of view [3, 9, 19, 20, 24], it seems that for the
independence number only sporadic results were obtained.

Setting I(G) to denote the set of independent sets of a graph G (including the
empty set), the independence number of the Mycielskian can be described as follows.

Theorem 2.1 If G is a connected graph, then

α(M(G)) = max
S∈I(G)

{2|S| + |V (G) \N [S]|} .

Proof. Let V (G) = {v1, . . . , vn}, so that the vertex set of M(G) is V (G) ∪ V ′ ∪ {w},
where V ′ = {v′1, . . . , v

′
n}. Let M = maxS∈I(G){2|S|+ |V (G) \N [S]|}.

Let S ∈ I(G). Set S′ = {x′ : x ∈ S} and X ′ = {y′ : y ∈ V (G) \ N [S]}. Since
S ∈ I(G) we also have that S ∈ I(M(G)). Since S′ ∪ X ′ ⊆ V ′, we clearly have
S′ ∪ X ′ ∈ I(M(G)). It is also clear (since S is independent) that there are no edges
between S and S′. Finally, since x ∈ S has no neighbor in V (G) \N [S], there are also
no edges between S and X ′. It follows that S ∪ S′ ∪ X ′ ∈ I(M(G)). Consequently,
α(M(G)) ≥ M .

To prove the reverse inequality, let S be an arbitrary independent set of M(G) with
|S| = α(M(G)). Let SG = S ∩ V (G) and note that it is possible that SG = ∅. By the
definition of S, the vertices of V (G) \SG do not lie in S. Moreover, if x ∈ V (G) \SG is
adjacent to a vertex from SG, then also x′ ∈ V ′ is not in S. But all the other vertices
from V ′ can lie in S and since S is a largest independent set, all these vertices do lie
in S. Setting Y ′ = {y′ : y ∈ V (G) \ N [S]} we thus have that |S| = 2|SG| + |Y ′| =
2|SG|+ |V (G) \N [SG]|. We conclude that α(M(G)) ≤ M . �
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The following consequence to Theorem 2.1 was first proven in [25]. More precisely,
it can be deduced from Theorems 4.1 and 4.2 of [25] by specializing to the case m = 1
and by replacing the vertex cover number with the independence number.

Corollary 2.2 [25] If G is a connected graph, then

2α(G) ≤ α(M(G)) ≤ n(G) + α(G) − 1 .

Proof. Let S ∈ I(G) and let |S| = k. Then |V (G) \N [S]| ≤ n(G) − k − 1 and hence
2|S|+ |V (G) \N [S]| ≤ 2k + (n(G)− k − 1) = n(G) + k − 1. Since k ≤ α(G) it follows
that 2|S| + |V (G) \ N [S]| ≤ n(G) + α(G) − 1. The upper bound now follows from
Theorem 2.1.

For the lower bound select S ∈ I(G) with |S| = α(G). �

The upper bound of Corollary 2.2 can be improved as follows.

Proposition 2.3 If G is a connected graph which is neither a complete graph nor a

star, then α(M(G)) ≤ n(G) + α(G) − 2.

Proof. As usual, let V (M(G)) = V (G) ∪ V ′ ∪ {w}. Let S ∈ I(M(G)) with |S| =
α(M(G)), and let S′ = S ∩ V ′. If w ∈ S, then S′ = ∅ and consequently |S| ≤
1+α(G) ≤ n(G)+α(G)− 2, where the last inequality holds because G is not complete
and thus n(G) ≥ 3. Hence we may assume in the rest that w /∈ S.

If |S′| = n(G), then necessarily S′ = S and hence the conclusion of the proposition
holds because G is not complete and thus α(G) ≥ 2.

Suppose next that |S′| ≤ n(G) − 2. Since |S ∩ V (G)| ≤ α(G), we immediately get
that α(M(G)) = |S| ≤ n(G)− 2 + α(G).

In the last case to be considered assume that |S′| = n(G)−1. If |S∩V (G)| ≤ α(G)−
1, then the conclusion is clear (since w /∈ S). Hence suppose that |S ∩ V (G)| = α(G).
Let x′ be the unique vertex of V ′ that is not in S′. Since G is connected and x has
a neighbor in S′, it follows that x /∈ S. Moreover, a vertex y ∈ V (G) \ S, y 6= x,
would imply that S is not independent. It follows that |S ∩ V (G)| = n(G)− 1, that is,
α(G) = |V (G)| − 1. But this means that G is a star. �

Next, we turn our attention to the packing colorings of the Mycielskian.

Theorem 2.4 If G is a connected graph with n(G) ≥ 2, then χρ(M(G)) ≥ χρ(G) + 2,
with equality if G is complete.

Proof. Let V (G) = {v1, . . . , vn}, so that the vertex set of M(G) is V (G) ∪ V ′ ∪ {w},
where V ′ = {v′1, . . . , v

′
n}.

Consider first the case G = Kn. Since diam(M(Kn)) = 2 and α(M(Kn)) = n,
Proposition 1.1 implies that χρ(M(Kn)) = n(M(Kn))−α(M(Kn))+ 1 = n+2. Hence
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the result holds (with equality) for complete graphs. We may assume in the rest of the
proof that G is not complete, in particular, n(G) ≥ 3.

Let χρ(M(G)) = k and let c be a k-packing coloring of M(G). Note that M(G)
contains an induced C5, hence k ≥ 4. We distinguish the following cases.

Case 1: c(w) = 1.
In this case c(v′i) 6= 1 for i ∈ [n]. Moreover, |c(V ′)| = |V ′| = n(G). It follows that
χρ(M(G)) ≥ 1 + |V (G)|. Since G is not complete we have χρ(G) ≤ |V (G)| − 1.
Consequently χρ(M(G)) ≥ 1 + |V (G)| ≥ χρ(G) + 2.

Case 2: c(w) = k.
Let c̃ be a coloring defined on V (G) as follows:

c̃(vi) =

{
c(v′i); c(vi) = k − 1 ,
c(vi); otherwise.

Note first that c̃ : V (G) → [k − 2]. Indeed, since c(w) = k and ecc(w) = 2, the color
k is not used by c̃. In addition, since dM(G)(vi, v

′
i) = 2 we have that c(v′i) ≤ k − 2

for any vertex vi with c(vi) = k − 1. We next claim that c̃ is a packing coloring.
Since the restriction of c to V (G) is a packing coloring, it suffices to show that setting
c̃(vi) = c(v′i) = ℓ if c(vi) = k − 1, preserves the property of being packing coloring.

Assume that c̃(vj) = ℓ holds for some j 6= i. This holds because either (i) c(vj) = ℓ
or (ii) c(vj) = k − 1 and c(v′j) = ℓ. Suppose first that (i) happened. Let P be a
shortest vi, vj-path in G, and let x be the neighbor of vi on P . (It is possible that
x = vj .) Since v′i is in M(G) adjacent to x, we have dM(G)(v

′
i, vj) ≤ dG(vi, vj). Since

c(v′i) = c(vj) = ℓ, we have dM(G)(v
′
i, vj) > ℓ, which implies that dG(vi, vj) > ℓ as

required. Suppose next that (ii) holds, that is, c(vj) = k − 1 and c(v′j) = ℓ. Since
we also have c(v′i) = ℓ and as dM(G)(v

′
i, v

′
j) = 2, we must have ℓ = 1. But since

c(vi) = c(vj) = k − 1, we clearly have dG(vi, vj) > 1. We conclude that c̃ is a packing
coloring. Hence χρ(G) ≤ k − 2 = χρ(M(G)) − 2.

Case 3: 2 ≤ c(w) ≤ k − 1.
First let c̃ be a coloring defined on V (G) as follows:

c̃(vi) =

{
c(v′i); c(vi) = k ,
c(vi); otherwise.

Since for i ∈ [n] we have dM(G)(vi, v
′
i) = 2, we get that c̃ : V (G) → [k − 1]. Because

2 ≤ c(w) ≤ k−1 and ecc(w) = 2, the color c(w) is used only on vertex w. If c(w) = k−1,
then c̃ : V (G) → [k− 2] and as in Case 2 we see that c̃ is a packing coloring. Otherwise
c̃ : V (G) → [k−1]\{c(w)}. Now let ĉ be the coloring of G obtained from c̃ by recoloring
each vertex of color k−1 with color c(w). Then ĉ : V (G) → [k−2] is a required packing
coloring. �

The stars K1,n, n ≥ 2, form another family for which the equality is achieved
in Theorem 2.4. Indeed, it is easy to verify that χρ(K1,n) = 2 and χρ(M(K1,n)) =
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4. Another example is provided by the path P4 for which we have χρ(P4) = 3 and
χρ(M(P4)) = 5.

On the other hand, the difference χρ(M(G)) − χρ(G) can be arbitrarily large. For
example, consider Kt,t, t ≥ 2. The graph M(Kt,t) has diameter 2, hence having in
mind Proposition 1.1 and Theorem 2.1,

χρ(M(Kt,t))− χρ(Kt,t) = n(M(Kt,t))− α(M(Kt,t)) + 1− (t+ 1)

= 2n(Kt,t) + 1− 2t+ 1− t− 1

= t+ 1 .

But we can bound χρ(M(G)) from the above as follows.

Proposition 2.5 If G is a connected graph with n(G) ≥ 2, then

χρ(M(G)) ≤ min{n(G) + 2, 2(n(G) − α(G) + 1)} .

Proof. Again let the vertex set of M(G) be V (G) ∪ V ′ ∪ {w}, where V ′ = {v′ : v ∈
V (G)}. Then V ′ is an independent set of M(G). Coloring vertices from V ′ with color
1 and every other vertex with a unique color greater than 1 is a packing coloring using
n(G) + 2 colors. Similarly, if X is an independent set of G with |X| = α(G), then
X ∪ {x′ : x ∈ X} is an independent set of M(G) of order 2α(G), cf. Theorem 2.1.
Proceeding as in the first case we find a packing coloring using 1+ 2(n(G)−α(G)) + 1
colors. �

The lower bound of Theorem 2.4 coincides with the upper bound of Proposition 1.1
on complete graphs and on stars. We note that if diam(G) = 2, then diam(M(G)) = 2
as well. Hence Proposition 1.1 implies:

Corollary 2.6 If diam(G) = 2, then χρ(M(G)) = 2n(G)− α(M(G)) + 2.

Consider the following example. Let Gk,ℓ, k, ℓ ≥ 3, be the graph obtained from the
complete graph Kk by selecting a vertex x of Kk and attaching ℓ pendant vertices to
x. The diameter of Gk,ℓ is 2. Using Theorem 2.1 or directly we see that α(M(Gk,ℓ)) =
2ℓ+ k − 1. Hence Corollary 2.6 implies that χρ(Gk,ℓ) = k + 3.

We point out that the fact α(M(Gk,ℓ)) = 2ℓ + k − 1 demonstrates that there are
graphs G for which α(M(G)) is arbitrarily far away from the lower bound given in
Corollary 2.2.

3 Realizing graphs of given clique, chromatic, and packing

chromatic numbers

Given a sequence (a, b, c) of positive integers, we say that (a, b, c) is realizable if there
exists a graph G such that ω(G) = a, χ(G) = b, and χρ(G) = c, in which case we
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say G realizes (a, b, c) and that G is an (a, b, c) graph. We know that for any graph
G, ω(G) ≤ χ(G) ≤ χρ(G). Thus, (a, b, c) must be a nondecreasing sequence in order
for (a, b, c) to be realizable. Furthermore, ω(G) ≥ 2 for any nontrivial graph so we
only consider sequences where a ≥ 2. For example, the only triangle-free 2-chromatic
graphs with packing chromatic number 2 are stars. Therefore, the only graphs that
realize (2, 2, 2) are stars. A natural question to ask is whether a realizable sequence
(a, b, c) implies (a, b, d) is realizable for any d > c. The following result answers this
question in the affirmative.

Lemma 3.1 If (a, b, c) is realizable, then (a, b, d) is realizable for every d, where d > c.

Proof. Let G be a graph that realizes (a, b, c). We first show that there exists a graph
G′ which realizes (a, b, d) for some d > c and contains G as a subgraph. Construct G′

by appending c leaves to each vertex of G. Note that G′ has the same clique size and
chromatic number as G. We claim that χρ(G

′) = r > c. To see this, let f : V (G′) → [r]
be a packing coloring of G′. Since G is a subgraph of G′, we know that the restriction of
f to V (G) is a packing coloring of G so r ≥ c. Moreover, if no vertex of V (G) receives
color 1, then some vertex of V (G) is assigned a color larger than c, for otherwise
(by decreasing each color used on V (G) by 1) it follows that χρ(G) < c, which is a
contradiction. Hence, if no vertex of V (G) receives color 1, we have r > c. On the
other hand, if there exists a vertex v of G such that f(v) = 1, then the leaves appended
to v receive pairwise different colors. Thus, some leaf of G′ is given a color greater than
c. It follows that r > c and (a, b, r) is realizable for some r > c.

Finally, to see that (a, b, d) is realizable for all d, where d > c, we only need to show
that (a, b, c + 1) is realizable. Indeed, pick a vertex v of G and append a leaf w to v.
Either χρ(G + w) = χρ(G) or χρ(G + w) = χρ(G) + 1. If χρ(G + w) = χρ(G), then
continue appending leaves to w until either the resulting graph has packing chromatic
number χρ(G) + 1 or c leaves were attached to w. In the latter case, continue by
adding at most c leaves to a new vertex. Proceeding in this way we find a graph that
has packing chromatic number χρ(G) + 1. �

From Lemma 3.1, we can now approach the question of determining if (a, b, c) is
realizable from a slightly different angle. Given positive integers a and b, we define
m(a, b) to be the smallest integer such that (a, b,m(a, b)) is realizable. (Hence, (a, b, c)
is realizable if and only if c ≥ m(a, b).) We have already observed that m(2, 2) = 2 and
it is easy to see that m(a, a) = a for any a ≥ 2. Indeed, this follows from the values of
the invariants in complete graphs Ka, i.e., ω(Ka) = χ(Ka) = χρ(Ka) = a.

Next, we would like to study the relationship between χ(G) and χρ(G) given an
arbitrary graph G. As shown above, for any b ≥ 2, we can find a graph where χ(G) =
χρ(G) = b. Is it possible that (a, b, b) is realizable if a < b? This question was first
considered in the seminal paper [17] where the following was shown.

Proposition 3.2 ([17, Proposition 2.6]) For every graph G, if χρ(G) = χ(G), then

ω(G) ≥ χ(G)− 2.

7



Thus, if (a, b, b) is realizable, then a ≥ b− 2. We further improve this, by showing
that realizability of (a, b, b) implies that a = b.

In the following proofs, we will be using the concept of chromatic number criticality.
Recall that a graph G is k-critical if χ(G) = k and for any proper subgraph H of G,
χ(H) < k. It is well known that k-critical graphs are k-edge connected, and so the
minimum degree δ(G) is at least k − 1, cf. [30].

Theorem 3.3 If χ(G) = χρ(G) ≥ 3, then ω(G) = χ(G).

Proof. Let k = χ(G) = χρ(G). If k = 3, then by [17, Proposition 3.2], G contains
the join of K2 and an independent set as a subgraph. As the latter graph contains
triangles, ω(G) = 3.

Now, let G be a graph such that χ(G) = k = χρ(G), where k ≥ 4. For the purpose
of getting a contradiction, suppose that ω(G) < k. We may assume that G is a k-
critical graph with respect to chromatic number. Indeed, if G is not k-critical then it
contains a proper subgraph G′, which is a k-critical graph. In particular, χ(G′) = k,
which in turn implies χρ(G

′) = k. Since ω(G′) ≤ ω(G) < k, the non-existence of such
a (k-critical) graph G′ would imply that also G does not exist. Hence, we may assume
that already G is k-critical, and so δ(G) ≥ k − 1. It suffices to show the result is true
for any connected graph G, hence we may, in addition, assume that G is connected.

Let c : V (G) → [k] be a packing coloring of G with color classes V1, . . . , Vk. Since Vi

is an i-packing for each i ∈ [k], the set Vi is independent. This means that (V1, . . . , Vk)
is a proper coloring with k(= χ(G)) colors. Therefore, there exists a vertex in each
color class that is adjacent to a vertex of every other color. Furthermore, since every
x ∈ V1 has degree at most k − 1 (otherwise x would be adjacent to two vertices from
some Vi, i ≥ 2, which would then be at distance 2) and yet δ(G) ≥ k− 1, we know that
x is adjacent to exactly one vertex of colors 2, . . . , k. Let vk ∈ Vk be a vertex of color
k that has a neighbor in every other color class. We let vi, for each 3 ≤ i ≤ k − 1, be
the neighbor of vk with color i.

Claim. Vertex vk is the only vertex of G with color k.

Proof. To see this, suppose that there exists another vertex y ∈ Vk of color k. Since
G is connected, there exists a shortest vk, y-path P in G of length at least k + 1. We
select P = vkw1w2w3w4 · · · y such that c(w1) is smallest possible among all shortest
vk, y-paths.

Suppose first that c(w1) = 1. As mentioned above, w1 is adjacent to exactly one
vertex of color i for each i, 2 ≤ i ≤ k. Thus, w1 is adjacent to each vi for 3 ≤ i ≤ k− 1
as d(w1, vi) ≤ 2 for each 3 ≤ i ≤ k − 1. Indeed, otherwise a neighbor x 6= vi of w1 of
color i, 3 ≤ i ≤ k− 1, would be at distance at most 3 from vi. It follows that c(w2) = 2
and c(w3) = 1 since d(w3, vi) = 3 for each 3 ≤ i ≤ k. This implies that w3 is adjacent
to vk since k ≥ 4, which contradicts our choice of P . Thus, c(w1) > 1.

Next, assume that c(w1) = 2. Thus, c(w2) = 1 as d(w2, vi) ≤ 3 for each 3 ≤ i ≤ k,
which also contradicts our choice of P as w2 is adjacent to vk. Therefore, w1 = vℓ,
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ℓ > 2, and we know that c(w2) ∈ {1, 2} as d(w2, vi) ≤ 3 for each 3 ≤ i ≤ k. If c(w2) = 1,
then w2 is adjacent to vk as d(vk, w2) = 2. However, this contradicts our choice of P .
Thus, we may assume c(w2) = 2. Since δ(G) ≥ k − 1, every vertex of color s, where
s > 1, has a neighbor of color 1. In particular, w2 has a neighbor of color 1, call it x. It
follows that x is adjacent to vk, meaning that P ′ = vkxw2w3w4 · · · y is a shortest path
where c(x) < c(w1), contradicting our choice of P . Therefore, we may conclude that
vk is the only vertex of color k. (�)

Next, we claim that for each ℓ, 3 ≤ ℓ ≤ k − 1, vℓ is the only vertex of G of color ℓ.
Indeed, fix ℓ and suppose there exists a vertex y different from vℓ of color ℓ. Since G
is connected, there exists a shortest vℓ, y-path P in G. Among all such paths we select
P = vℓw1w2w3 · · · y such that c(w1) is as small as possible. Note that for each i, where
3 ≤ i ≤ k, d(w1, vi) ≤ 3, since vℓ is adjacent to vk and vk is adjacent to vi. Thus,
c(w1) ∈ {1, 2}. If c(w1) = 1, then w1 is adjacent to vk, meaning that d(vi, w1) ≤ 2 so
w1 is adjacent to each vi for 3 ≤ i ≤ k. Therefore, c(w2) = 2 and since d(w3, vi) ≤ 3,
for each 3 ≤ i ≤ k, c(w3) = 1. Notice that d(w3, vk) ≤ 4 and since k ≥ 4, w3 is
adjacent to vk. However, this contradicts our choice of P as P ′ = vℓvkw3 · · · y is a
shorter vℓ, y-path. Thus, vℓ is the only vertex of color ℓ for each ℓ ∈ {3, . . . , k − 1}.

Finally, we know that the graph induced by {v3, . . . , vk} is a clique in G since there
exists a vertex of each color that is adjacent to all other colors. Furthermore, there
exists a vertex v2 ∈ V2 that is adjacent to a vertex of every other color class. Let v1 be
a vertex of color 1 that is adjacent to v2. Thus, the graph induced by {v2, . . . , vk} is a
clique and since d(v1, vi) ≤ 2 for each 3 ≤ i ≤ k, v1 is adjacent to vi for each 2 ≤ i ≤ k.
It follows that G contains a clique of size k, which is the final contradiction, implying
that graphs G with ω(G) < χ(G) = χρ(G) = k do not exist. �

By Theorem 3.3, (2, 3, 3) is not realizable, and so m(2, 3) > 3. In fact, Theorem 3.3
says that (2, k, k) is not realizable for any k ≥ 3 so we would like to compute m(2, b)
for any b ≥ 3. An example of a graph G that realizes (2, 3, 4) is C5, which is the
Mycielskian of K2. However, computing m(2, b) becomes difficult rather quickly as b
gets larger. What we can say is that m(2, b) ≥ b+ 2 for b ≥ 4, as shown below.

Theorem 3.4 If k ≥ 4, then (2, k, k + 1) is not realizable.

Proof. Suppose there exists a graph G of the form (2, k, k + 1) for some k ≥ 4. Let
c : V (G) → [k + 1] be a (k + 1)-packing coloring with color classes V1, . . . , Vk+1. Let
H be the graph induced by Vk−2 ∪ Vk−1 ∪ Vk ∪ Vk+1 and suppose H is bipartite. This
means we can properly color the vertices of H using only two colors and in turn implies
that χ(G) < k, which is a contradiction. Therefore, H is a triangle-free graph that
contains odd cycles. Let C = x1x2 · · · xn be an odd cycle in H of shortest length and
note that in G, each vertex of H is colored k − 2, k − 1, k, or k + 1. Thus, C must be
(2, 3, 4, 5)-packing colorable (i.e., S-packing colorable for the sequence S = (2, 3, 4, 5)),
which is not possible if C ∼= C5. Hence C ∼= Cn, where n ≥ 7 is an odd integer. As C

9



is (2, 3, 4, 5)-packing colorable, at most ⌊n/(i+ 1)⌋ vertices can be assigned the color i
for each 2 ≤ i ≤ 5. Let (W2,W3,W4,W5) be a (2, 3, 4, 5)-packing coloring of C. Now

n =

5∑

i=2

|Wi| ≤
5∑

i=2

⌊n/(i+ 1)⌋ ≤
57

60
n,

which is a contradiction. Hence, C is not (2, 3, 4, 5)-packing colorable, which also
implies that it is not (k − 2, k − 1, k, k + 1)-packing colorable, for any k ≥ 4, and thus
no such graph G exists. �

Next, we improve Theorem 3.4 by proving that (2, k, k+2) is not realizable for any
k ≥ 4. We start with the case k = 4.

Lemma 3.5 Triple (2, 4, 6) is not realizable.

Proof. Suppose that there exists a graph G such that ω(G) = 2, χ(G) = 4 and χρ(G) =
6. Clearly, G contains as a subgraph a 4-critical graph (with respect to chromatic
number), say H, and we claim that χρ(H) = 6. Indeed, since H is triangle-free,
ω(H) = 2, and by Theorem 3.3, χρ(H) > χ(H) = 4. By Theorem 3.4, H cannot be
a (2, 4, 5) graph, hence χρ(H) = 6. This implies that under the assumption that a
(2, 4, 6) graph exists, there are (2, 4, 6) graphs that are 4-critical. This in turn implies
that there exists a (2, 4, 6) graph, say G, with δ(G) ≥ 3.

Consider a packing coloring c of G inducing a partition (V1, . . . , V6) into the color
classes, where Vi consists of the vertices that are assigned color i. As χ(G) = 4,
the graph G \ V1 cannot be bipartite, therefore it contains an odd cycle C. Clearly,
|V (C)| ≥ 5.

First, assume that there exist adjacent vertices u, v ∈ V (C) such that c(u) = 2 and
c(v) = 3. Let x 6= u be the neighbor of v in C, y 6= v the neighbor of u in C, and z the
other neighbor of y in C. It is easy to see that {c(x), c(y), c(z)} = {4, 5, 6}. Now, as
δ(G) ≥ 3, vertex u has another neighbor in G, let it be w. By the distribution of the
colors in C, we find that c(w)=1. Note that w has at least two other neighbors in G,
and they cannot be v or y, since G has no triangles. If one of these two neighbors is
also different from x and z, then we get a contradiction, because this vertex is then at
distance at most i from a vertex of color i for every i ∈ [6]. Hence the only remaining
possibility is that w is adjacent to both x and z. This implies that |V (C)| > 5 because
G has no triangles. Consider the neighbor x′ of x in C, and its neighbor x′′ in C that
is not x. Note that the only possibility for the color of x′ is that c(x′) = 2. In addition,
the only possibility for the color of x′′ is that c(x′′) = 4, which is possible only in the
case when also c(y) = 4. Now, consider the neighbor z′ of z, distinct from y in C, and
the neighbor z′′ of z′ in C that is distinct from z. There are two possibilities. Either
c(z′) = 3 and c(z′′) = 2 , or c(z′) = 2 and c(z′′) = 3. In the first case note that vertices
z′′ and z′ are in an analogous setting as vertices u and v. Since we deduced above that
the neighbor of the neighbor of v on C, which is vertex x′, must receive color 2, we
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also infer that the neighbor of the neighbor of z′ on C, which is vertex y, must receive
color 2. This is a contradiction, because we already established that c(y) = 4. Finally,
if c(z′) = 2 and c(z′′) = 3, then as in the case of u and v, we infer that z′ must have a
neighbor w′ such that c(w′) = 1 and w is adjacent to y and also to the neighbor of z′′

in C different from z′; let it be called t. Now, t is at distance at most i from a vertex of
color i for every i ∈ [6], which is the final contradiction, implying that no two adjacent
vertices in C can receive colors 2 and 3.

So the second case is that no two neighboring vertices in C can receive colors 2
and 3. Therefore, as we pass along C, vertices with colors from {4, 5, 6} appear one
right after the other with possible gaps of at most one vertex (with color 2 or 3) in
between. The longest possible pattern that vertices with colors from {4, 5, 6} can form
while passing along C is 4−5−6−4−5, where we did not write the vertices with color
2 and 3 that lie between them (we cannot continue the pattern with color 6, because
the next vertex is at distance 6 from the vertex with color 6 in the pattern). This
implies that |V (C)| ≤ 9, hence C can only be of length 5, 7 or 9. It is easy to see that
C cannot have 9 or 7 vertices, since one can use only one vertex of each of the colors
from {4, 5, 6} (because the diameters of these two cycles are at most 4) and we get in
a contradiction with how the colors 2 and 3 are distributed in C.

Finally, we are left with the case that |V (C)| = 5 and vertices with colors 2 and 3
are not adjacent in C. Clearly, the remaining vertices in C receive colors 4, 5, and 6.
Now, as δ(G) ≥ 3, the vertex x with color 2 has a neighbor s in G, which is not in
C, and it is obvious that c(s) = 1. Vertex s has at least two neighbors in G besides
x. Not both of these neighbors of vertex s can be in C because G is triangle-free. A
neighbor of s that is not in C can only receive color 3, hence there can be only one
such neighbor. The other neighbor of vertex s must thus lie in C and is not adjacent
to a neighbor of x on C. Noting that two vertices with color 3 are at distance at most
3 we derive the final contradiction, by which the proof is complete. �

Theorem 3.6 Triple (2, k, k + 2) is not realizable for any k, k ≥ 4.

Proof. The case k = 4 was proven in Lemma 3.5, hence we may assume that k ≥ 5.
Suppose that there exists a graph G such that ω(G) = 2, χ(G) = k and χρ(G) = k+2.
Clearly, G contains as a subgraph a k-critical graph (with respect to chromatic number),
say H, and we claim that χρ(H) = k + 2. Indeed, since H is triangle-free, ω(H) = 2,
and by Theorem 3.3, χρ(H) > χ(H) = k. By Theorem 3.4, H cannot be a (2, k, k + 1)
graph, hence χρ(H) = k+2. This implies that under the assumption that a (2, k, k+2)
graph exists, there are (2, k, k+2) graphs that are k-critical. This in turn implies that
there exists a (2, k, k + 2) graph, say G, with δ(G) ≥ k − 1.

Consider a packing coloring c of G inducing a partition (V1, . . . , Vk+2) into the color
classes, where Vi consists of the vertices that are assigned color i. As χ(G) = k, the
graph G \ (V1 ∪ · · · ∪ Vk−3) cannot be bipartite, therefore it contains an odd cycle C.
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Clearly, |V (C)| ≥ 5. Suppose n = |V (C)| > 5. By the pigeon-hole principle, using
also that the vertices with color i must be more than distance i apart, we infer that
the number of vertices in C having color i is at most max{1, ⌊ n

i+1⌋}. Altogether the
number of vertices in C, by taking into account the available colors, is at most

k+2∑

i=k−2

max{1, ⌊
n

i + 1
⌋}.

As it turns out, this sum is strictly less than n, when n ≥ 7. In particular, in the
smallest case, where k = 5 and n = 7, we have

∑7
i=3max{1, ⌊ 7

i+1⌋} = 5.
Finally, suppose that all odd cycles C in G \ (V1 ∪ · · · ∪ Vk−3) have length 5. We

restrict to the case when k = 5. (As will be clear from the proof, the proof when k > 5
follows similar lines only that a contradiction may appear even earlier.) Hence, since
k = 5, we are considering G \ (V1 ∪ V2), and so the vertices in C must get all colors
from 3 to 7, each vertex a distinct color. Now, consider G\V1 and note that it need not
be connected. If a component of G \ V1 is isomorphic to C5 in which vertices receive
colors from 3 to 7, then this component is clearly 3-colorable. The same conclusion
holds for a component of G \ V1 whose subgraph induced by the vertices with colors
from 3 to 7 is bipartite; such a component of G \ V1 is also 3-colorable. In either case
this implies that G is 4-colorable, which is a contradiction. Hence there must be a
component in G\V1 such that to a 5-cycle C, in which vertices receive colors from 3 to
7, a vertex x with color 2 is attached as a neighbor of some vertex in C. Consider now
this subgraph in G, and recall that δ(G) ≥ 4. Hence, x has three more neighbors in G,
at least two of which are not in C, because G is triangle-free. In any case, regardless
of how many neighbors x has in C, we infer that two neighbors x1, x2 of x (which are
not in C) receive color 1. Clearly, x1 can have at most two neighbors in C because
G is triangle-free. But if x1 has two neighbors in C, then a neighbor x′ of x1, which
is not in C, is at most 3 apart from the vertex in C with color 3; as vertices with all
other available colors are also too close to x′, we get a contradiction. Thus, x1 can
have at most one neighbor in C. Now, if x1 has a neighbor in C, then only color 3
is possible for the other (at least two) neighbors of x1, which gives us a contradiction.
If on the other hand, x1 is not adjacent to a vertex of C, then it has at least three
neighbors, for which only colors 3 and 4 are available, which is the final contradiction.
(Note that if k > 5, available colors are bigger while distances in the subgraph are the
same, therefore the last subcase involving x1 gives an immediate contradiction.) �

Summarizing the results concerning the function m, we first note that m(2, 3) = 4
can be extended to an arbitrary k, k ≥ 2, as follows. First, m(k, k + 1) > k + 1 by
Theorem 3.3. On the other hand, ω(M(Kk)) = k, χ(M(Kk)) = k+1, and χρ(M(Kk)) =
k+2 (by Theorem 2.4), which implies that (k, k+1, k+2) is realizable for any k, k ≥ 2.
Combining both observations, we get m(k, k + 1) = k + 2.

Table 1 summarizes the results on m(a, b) presented so far. It can be complemented
by the upper bound on the packing chromatic number of a graph obtained from the

12



a\b 2 3 4 5 6 7 8 9 10

2 2 4 7
3 - 3 5 6/9
4 - - 4 6 7/11
5 - - - 5 7 8/13
6 - - - - 6 8 9/15
7 - - - - - 7 9 10/17
8 - - - - - - 8 10 11/19

Table 1: The entry in row a and column b presents the known value of m(a, b), while
the entry separated by ’/’ present currently known lower and upper bound on m(a, b).

complete graphs by applying the Mycielskian operation several times. Let us induc-
tively define Mk(G) as M(Mk−1(G)), where M1(G) is just the Mycielskian M(G) of
a graph G. Applying Corollary 2.6 inductively, starting from a complete graph, and
using the fact that α(M(G)) ≥ |V (G)| for any graph G, we can prove by induction that

χρ(M
k(Kn)) ≤ 2k−1(n+ 1) + 1,

for any k ≥ 1. This implies that m(n, n + k) ≤ 2k−1(n + 1) + 1 for any k ≥ 1. In
particular, m(n, n+ 2) ≤ 2n + 3, which is used in Table 1 as the upper bound values.

We suspect that the lower bound values in Table 1 could be improved. After a
close examination of the smallest case concerning the (3, 5, 6) realizability, we pose the
following conjecture.

Conjecture 3.7 There exists no graph G with ω(G) = 3, χ(G) = 5 and χρ(G) = 6. In

other words, (3, 5, 6) is not realizable.

In fact, we suspect that (k, k + 2, k + 3) might not be realizable for any k ≥ 3.

4 A lower bound on the packing chromatic number

Proposition 4.1 If G is a graph of maximum degree ∆(G), then

χρ(G) ≥ ∆(G)− α(G) + 2 .

Equality is achieved if ∆(G) = n(G)− 1.

Proof. Let r = χρ(G) and suppose that (V1, . . . , Vr) is an r-packing coloring of G. Let
x be any vertex in G. If x ∈ V1, then x is adjacent to at most one vertex in Vj for
each j ∈ [r] − {1}. Indeed if x had two neighbors, say y1 and y2, that both belong
to Vj for some j ≥ 2, then dG(y1, y2) = 2, which contradicts the fact that Vj is a
j-packing. This implies that deg(x) ≤ r − 1. If x ∈ Vi for some i ≥ 2, then x has

13



at most |V1| neighbors in V1 and at most one neighbor in Vj for each j ∈ [r] − {1, i}.
Hence, degG(x) ≤ |V1|+ r − 2 ≤ α(G) + r − 2. In both cases degG(x) ≤ α(G) + r − 2,
and it follows that χρ(G) ≥ ∆− α(G) + 2.

Suppose that G is a graph that has a vertex of degree n(G)−1. If G is complete, the
result is clear. Otherwise such a graph has diameter 2 and thus from Proposition 1.1
we get χρ(G) = n(G)− α(G) + 1 = ∆− α(G) + 2. �

Let H be the class of graphs H constructed in the following way. Let r ≥ 3 and
s ≥ 2 be positive integers. Let A be a complete graph of order r with three specified
vertices a1, a2 and a. Let B be a complete graph of order s with two specified vertices
b and b1. Then let H be any graph of order r + s constructed from the disjoint union
of A and B together with a new vertex z as follows. Add an edge between z and every
vertex of B \{b} and then identify the vertices a and b, call this vertex w. Any missing
edge, other than a1b1, can be added if it is not incident to z or to a2.

Note that in a graph H ∈ H as constructed above, the vertex w is adjacent to
every other vertex except z. Let V1 = {a1, b1}, V2 = {z, a2} and for each j such that
3 ≤ j ≤ r+ s− 2, let Vj be a single vertex. It is easy to verify that (V1, V2, . . . , Vr+s−2)
is a packing coloring, and indeed that χρ(H) = r + s− 2.

Theorem 4.2 If G is a graph with α(G) = 2, then χρ(G) = ∆(G) − α(G) + 2 if and

only if ∆(G) = n(G)− 1 or G ∈ H.

Proof. Let G be a graph such that α(G) = 2. If ∆(G) = n(G)− 1, then the diameter
of G is 2 and from Proposition 1.1 it follows that χρ(G) = n(G)− α(G) + 1 = ∆(G)−
α(G) + 2. If G ∈ H, then by the paragraph just before the theorem we see that
χρ(G) = ∆(G)− α(G) + 2.

For the converse let r = χρ(G) and suppose c : V (G) → [r] is a packing coloring with
color classes V1, . . . , Vr. Let w be a vertex of G with degree ∆(G) = χρ(G)+α(G)−2 =
χρ(G). If w ∈ V1, then w has at most one neighbor in Vi for each i ≥ 2, which implies
that deg(w) ≤ r − 1 and contradicts the assumption that ∆(G) = r. Thus, we may
assume that w 6∈ V1. Since deg(w) = χρ(G), we know that w is adjacent to exactly
one vertex in Vj for each j 6∈ {1, c(w)} and to two vertices in V1. Moreover, V1 is a
maximum independent set, meaning that every vertex of V (G) \V1 is adjacent to some
vertex in V1. We write V1 = {v1, v2} and let yi ∈ Vi be the vertex adjacent to w for
each i 6∈ {1, c(w)}. Note that if V (G) = N [w], then ∆(G) = n(G)− 1 and we are done.
So we shall assume that N [w] 6= V (G).

Let z ∈ V (G) \N [w] and observe that z 6∈ Vc(w) and z 6∈ V1. Thus, z ∈ Vc(z) where
c(z) 6∈ {1, c(w)}. As stated above, z is adjacent to some vi in V1. Without loss of
generality, we may assume that z is adjacent to v1. It follows that zv1wyc(z) is a path
of length 3 in G which cannot exist if c(z) > 2. Hence, c(z) = 2 and V2 = {z, y2} since
α(G) = 2. Finally, we point out that |Vi| = 1 for all i 6∈ {1, 2} and χρ(G) = n(G)− 2.

Note that z and y2 are not adjacent but every other vertex of G is adjacent to
exactly one of z or y2. Therefore, the two sets N [y2] and N [z] partition V (G). We
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claim that N [z] and N [y2] are both complete subgraphs. Let u and v be any two
vertices of N [y2]. The vertex z is adjacent to neither u nor v, and since α(G) = 2,
it follows that uv ∈ E(G) and hence N [y2] is complete. Similarly, N [z] is a complete
subgraph. Referring to the description in the paragraph before the statement of the
theorem, we can now complete the proof by letting A = N [y2] with specified vertices
a1 = v2, a2 = y2 and a = w. Let B = N(z) with specified vertices b1 = v1 and b = w.
Hence G ∈ H. �

We conclude the paper by noting that a family of graphs G from H, which are
obtained from the complete graph Kn by removing the edges of a subgraph isomorphic
to K1,r, where r+1 < n, has the property that ω(G) = χ(G) = χρ(G) = ∆(G) = n−1.
Thus this is another infinite family of graphs that realizes the triple (n−1, n−1, n−1)
for any n, for n ≥ 3.
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