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Relations between Wiener numbers of benzenoid hydrocarbons
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Using the method of elementary cuts [5], we deduce relations between the Wiener number of a
phenylens (PH) and the catacondensed benzenoid hydrocarbon associated in a namral way to PH, called
the hexagonal squecze (HS). Similar relations are found also for the Szeged numbers of PH and HS.

Introduction

Although the research of the Wiener number (W) of benzenoid and other
polycyclic hydrocarbons has a long history (for review and further references see
[1-3]). the remarkably simple algorithm |4, 5] for the calculation of W, based on
elementary edge-cuts, was not recognized until quite recently. Not only that this
method of elementary cuts makes the evaluation of W quite easy, but it sheds light on
the perplexed dependence of Won molecular structure [6].

By means of the method of elementary cuts we now establish relations between
the Wiener numbers of two distinct, yet structurally related classes of polycyclic
molecules: benzenoid hydrocarbons and phenylenes,

The name "phenylene" was coined by Vollhardt to specify conjugated molecules
consisting of condensed 4-membered (cyclobutadiene) and 6-membered (benzene)
rings, in which each cyclobutadiene unit is adjacent to two benzene rings, whereas
benzene rings are not adjacent to each other. The structure of phenylenes should be
evident from the examples depicted in Fig. 1. The chemistry of phenylenes is
nowadays in great expansion, thanks to a recently discovered procedure for their
synthesis (see [7-10] and the references quoted therein).
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Fig. 1. Two phenylenes (PH, and PH,), the corresponding hexagonal squeezes (M5, and H5;) and the
corresponding inner duals (70 and /0y); the construction of the inner duals is indicated

A catacondensed benzenoid hydrocarbon [11] is associated to a phenylene in a
natural manner, as illustrated in Fig. 1. This benzenoid system was named the
“hexagonal squeeze” of the respective phenylene [12]. Evidently, there is a one-to-one
correspondence between a phenylene (PH) and its hexagonal squeeze (HS), ie., PH
uniquely determines HS and vice versa [13].
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GUTMAN, KLAVEAR: Wiener numbers of benzenoid hydrocarbons and phenyvlenes 47

The connection between phenylenes and their hexagonal squeezes is far from
being formal, Numerous deep-lying parallelisms between the m-electron properties of
phenylenes and the associated benzenoid hydrocarbons have been discovered. The first
such result is the equality of the alpebraic structure count of PH and the Kekulé
structure count of HS [12]; a survey of the hitherto established relations together with
a complete list of references is found in [14, 15].

Elementary cuts in phenylenes and their hexagonal squeezes

Because notation and terminology used in this paper is same as in our previous
articles [3, 6], we do not repeat the definition of an elementary cut and the notions
related to it. These will anyway become clear from the examples given below.
Exceptionally, the elementary cuts of the phenylene are labeled by Py, Py, - - -,
Py i1 O O, ¢ - -,Qy_y while the elementary cuts of the hexagonal squeeze are §;,
8. . . .. 83,1, see Fig. 2. Here and later h stands for the number of hexagons in
both the phenylene and its hexagonal squeeze.

The number of edges intersected by an elementary cut C is denoted by #{C).

The elementary cuts of a phenylene PH are divided into two groups: those
intersecting hexagons and those intersecting just one cyclobutadiene unit. The former
are denoted by P;, i = 1,2,..., the latter by Qj,j=],2,_.__ An illustrative example is
given in Fig, 2. Notice that r{Q}} = 2 for all phenylenes and for all values of j.

It is easy to prove, e.g., by mathematical induction, that a phenylene PH with h
hexagons possesses 24+ 1 elementary cuts of type P and -1 elementary cuts of type @,

The hexagonal squeeze HS of PH possesses also h hexagons. It has 2h+1
elementary cuts, denoted by §;, i = 1,2,..., 2h+1, see Fig. 2.

The complete sets of elementary cuts of PH and HS are thus

C (PH) = {Py, Py,.., Pyyyp1, @1y @a,-os Oy}
and
C (HS) = {81, Sy..s Sppe1}s

respectively.
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48 GUTMAN, KLAVZAR: Wiener numbers of benzenoid hydrocarbons and phenylenes

Fig. 2. The elementary cuts of the phenylene PH, and its hexagonal squeeze H5,, of. Fig. |; note the
correspondence between the cuts Py and 5, § =1,2,..., 15, as well as berween O, O,..., Q; and
the edges gy, @..... g5 Of the inner dual [}

From the considerations in [5] it follows that the edge-cut formula for the
calculation of the Wiener number (namely formula (5) in [3]), is applicable to both the
phenylenes and their hexagonal squeezes. Thus, if € is an elementary cut of a
phenylene PH, Ce C(PH), dissecting PH into fragments PH'(C) and PH"(C), then

2h+] h=1
W(PH)= 3, n(PH')(E))n(PH"(P))+ X n(PH'(Q,)n(PH"(Q;)), (1)
i=l =1
where n{PH'(C)) and n(PH"(C)) are the number of vertices of PH'(C) and PH"(C),
respectively.

In a fully analogous manner, if C is an elementary cut of the hexagonal squeeze

HS, Ce CiHS), dissecting HS into fragments HS'(C) and H5"(C), then
2h+1

W(HS)= ¥ n(HS'(C;))n(HS"(C,)), (2)
i=1

|0

where n(HS(C)) and m(HS"(C)) coumt the wvertices of HS(C) and HS"(C),
respectively.
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GUTMAN, KLAVZAR: Wiener numbers of benzenoid hydrocarbons and phenylenes 449

Mow, there is an obvious one-to-one correspondence between the elementary
cuts Py, Py,..., Py, of a phenylene and the elementary cuts §;, §,,..., Sy, of the
respective hexagonal squeeze. This is illustrated in Fig. 2, where the cuts of PH; and
HS, are labeled so that P; corresponds to §; for i =1, 2,...,15.

At this point it would be purposeful to look at the example given in Fig. 3,
which is aimed at making easier to follow the proof of Lemma ! and the subsequent
considerations,

Lemma [

Let £ be an elementary cut of a phenylene PH and § the corresponding
elementary cut of the hexagonal squeeze HS. The cut P intersects #(P) edges of PH
and divides PH into fragments PH' and PH" with n{PH"} and n(PH") vertices and
hiPH" and h{PH") hexagons, respectively. The cut § intersects r(S) edges of HS and
divides 45 into fragments HS' and HS" with n(HS') and n(HS") vertices and h(HS")
and A(HS") hexagons, respectively. Then

r(P) = 2r(5)-2, (3)

n(PH") = 6hi{PH') + 3/2 Py, n(PH") = 6h(PH") + 3/2 r(P), (4)
n(HS"Y = 4h(HS") + 2r(5)-1;, n(HS") = 4h(HS") + 2r(5)-1, (3}
n{PH") = 3/2 [n(HS"}-1]; n(PH") = 3/2 [n{HS")-1]. i6)

For an example illustrating the notation used in the above equations see Fig, 3.

ol
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Fig. 3. An elementary cut P of PH = PH, and the corresponding elementary cut § of H5 = HS;; the cuts P
and § intersect P = 6 and #(5) = 4 edges of PH and HS, respectively; note that & and 5 intersect equal
number (=3} of hexagons, and that F™ =6 =23, A5 =4 =3+1; by deleting from PH the edges
intersected by P we obtain the fragments PA' and PH" with niPH"} = 27 and m{PH") = 15 vertices, and
with #(PH =3 and A PH") = | hexagons, respectively; by deleting from HS the edges intersected by §
we obtain the fragments 5" and A5 with n(H5") = 19 and w(H5") = 11 vertices, and with #{H5) = 3
and  MH5"y =1 hexagons, respectively; note  that it necessarily must be APH) = BHS
and PH ") = hHHS")

"‘I’" - MADDELS I CHEMISTRY [15, To08

10



a0 GUTMAN, KLAVZAR: Wiener numbers of benzenoid hydrocarbons and phenylenes

Proaf

The cut P intersects H(FP)/2 hexagons of PH. The cut § intersects r(S)-1
hexagons of HS. Since P and § intersect equal number of hexagons, Eq. (3) follows.

In order to count the vertices of PH' consider the phenylene PH*, consisting of
the hexagons of PH' and the hexagons intersected by P. Because PH* has
h(PH ")+ P)/2 hexagons, it has 6[4{PH ")+ P)/2] vertices. Three vertices from each
intersected hexagon do not belong to PH', therefore PH' has 6[h(PH")+r(P)/2]
-3[r(P)/2] vertices, This yields Eq. (4).

Formula (5) is deduced in a fully analogous manner, bearing in mind that a
catacondensed benzenoid system with £* hexagons has 4h*+2 vertices.

In order to deduce Eq. (6) observe that A(PH") = h(HS") and h(PH") = h{HS").
Then Eq. (6) is obtained by substituting relation (3) into (4), and combining this with
Eq. (5).

A noteworthy property of Eq. (6) is that it is independent of n(P) and HS). This
implies that the size of the fragment PH' is completely determined (in a linear manner)
by the size of the fragment HS' and vice versa. As a consequence, one arrives at
remarkable relations between the Wiener and Szeged numbers of PH and HS. These
are outlined in the subsequent section.

Relations between the Wiener and Szeged numbers of phenylenes and their
hexagonal squeezes

The main results deduced in this section are summarized in the following:

Theorem 1

Let PH be a phenylene with # hexagons, HS its hexagonal squeeze and 1D its
inner dual. Then the Wiener (W) and Szeged numbers (Sz) of PH, HS and ID are
related as

W(PH) = 9/4 [WIHS)-(2h+1){4h+ 1)+ 16W(IDY], (T
Sz(PH) = 9/2 [Sz(HS)-WHS)-3h{dh+ 1)+ 16 WD) (8)

and
Sz(PH)-2W(PH) = 9/2 [Sz(HS)-2W(HS)}-(h-1)(4h+1)]. (9)

The definition of the inner dual is given below,

ol i — MO0 1 CHEMISTRY 155, 7998



GUTMAN, KLAVZAR: Wiener numbers of benzencid hydrocarbons and phenylenss 51

Proof of identity (7)

Using the relations from Lemma ] we can straightforwardly deduce a connection
between the first summation on the right-hand side of Eq. (1) and the Wiener number
of HS, Eq. (2). Indeed, assuming that the elementary cuts of PH and HS are labeled so
that P; corresponds to §; for alli =1, 2,..., 2h+1, and by means of Eq. (6),

2h+] 2h=1 3 3
Y n(PH'(P))n(PH"(F))= ¥ [E[H{HS'(S,-}}-1]][5[!’-‘(33'(5.-]}—1]]=
i=1 i=1

9 2h=1

—2- Z [n(HS'(5;))n(HS"(S;))—n(HS(5;))-n(HS"(5;))+1] =

=]

9 2h+1 : 2
;{ . n(HS)S,)n(HS"(5)) - (2h+1)(4h + 1)} .

i=1
Above we employed the fact that for any cut C of the hexagonal squeeze,
HS'({C)+HS"(C) = number of vertices of HS = 4h+2. Taking into account Eq. (2) we

then obtain
2h+1

2, n(PH'(Byn(PH"(P))= %[W{HS}— (2h+1)4h+1)]. (10)
i=1

It remains to find an appropriate expression for the second summation on the
right-hand side of Eq. (1). For this notice a one-to-one correspondence berween the
elementary cuts @y, Os...., Oy_; of PH and the edges g, g5...., g,_; of the inner dual
of PH. (For a self explanatory illustration see Fig. 2.)

The inner dual /D of a phenylene PH is a tree (=connected acyclic graph}
whose vertices represent benzene rings of PH, such that neighboring benzene rings
{i.e., those separated by one cyclobutadiene unit) correspond to adjacent vertices of
ID. Consequently, /D has h vertices and k-1 edges. Two examples of how inner duals
are construcied are found in Fig. 1.

The number of edges of ID is equal to the number of cyclobutadiene units of
PH. The elementary cuts @y, (,..., @;_; of PH can be labeled so that ; corresponds
totheedge g;of IDfori=1,2,..., h-l.

Let 7 be an arbitrary tree and g its arbitrary edge. Denote by ny(glT) and
ny(g|T) the number of vertices of T, lying on the two sides of the edge g. Then,
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52 GUTMAN, KLAVEAR: Wiener numbers of benzenoid hydrocarbons and phenylenes

according to a classical result found in the very first paper [16] on {what we nowadays
call) the Wiener number,
W(T)y=% m(g|T)ny(q|T), (11)
g

with summation going over all edges of T.
Mow, bearing in mind the above described correspondence between the edges of
the inner dual and the elementary cuts of the phenylene, we see that

n(PH'(Q;) = 6m(g;|ID) ; n(PH"(Q))) = 6ny(g;|ID),

which combined with Eq. (11} yields
h-1
2. n(PH'(Q;))n(PH"(Q;)) =36 W(ID) . (12)
j=1

Substituting relations (10) and (12) back into Eq. (1) we arriwa:;al Eq. (7).

Formula (7) was recently noticed [15] within a systematic empirical study [17]
of the correlation between physico-chemical propertics of phenylenes and their
hexagonal squeezes. An inductive proof of Eqg. (7) was designed [18], different and
much more complicated than what we presented above.

Proaf of identity (8)

A consideration similar to what was used in the previous proof leads to a
connection between the Szeged numbers of phenylenes and their hexagonal squeezes,
It has been shown [19] that the Szeged number of phenylenes and their hexagonal

squeezes conforms to relations fully analogous to Eqs (1) and (2), namely,

1h+l |
Sz(PH)= 2, r(R)n(PH'(R)n(PH"(B))+ %, HQ)n(PH'(Q,))n(PH"(Q;))
el J=l

2h+1
Sz(HS)= 3 r(5;)n(HS'(C;))n(HS"(C})), (13)
i=1
where, as before, n{C) is the number of edges intersected by the cut C. (More details
on the theory of the Szeged numbers can be found in [19] and the references cited therein.)
Substituting the identities (3) and (6) back into Eg. (13) and repeating the
reasoning used in connection with the derivation of Eqs (10) and (12) we get:

2h+1
Y F(B(PH (EYn(PH"(P)) = %[SE{HS}I -W(HS)-3h{4h+1}], (14)

=1
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GUTMAN, KLAYVZAR: Wiener numbers of benzenoid hydrocarbons and phenylenes 53

where we used the fact that the sum of the r-values of all elementary cuts of HS is just
the number of edges of HS, which is known [11] to be equal to 5h+1, and
h=1
2 r(Q@)n(PH(Q,))n(PH"(Q;)) = T2W(ID), (15)
=
where we used the fact that HQ;) = 2. Combining Eqs (14) and (15) with Eq. (13) we
arrive at formula (8).
The identity (9) is an immediate consequence of Eqs (7) and (8). By this the
proof of Thearem [ has been completed.

More relations for the Wiener number

Another relation between the Wiener numbers of phenylenes and their hexagonal
squeezes was recently established [20]. To formulate it we have to introduce the
concept of weighted graphs.

The degree of a vertex is the number of the first neighbors of this vertex. Recall
that in graphs representing phenylenes and their hexagonal squeezes all vertices have
degrees two or three,

Let G be an arbitrary graph and let Glu] be the weighted graph, obtained from
( by associating to its vertices certain weights. The weight of the vertex u is denoted
by wu). Here w(w) is set to be equal to the degree of the vertex 1 minus one. Hence,
in the graphs considered in this paper, the vertex weights are either 1 or 2. Now the
identity obtained in [20] reads:

W(PH) = W{HS[w]) + 36 WD), (16)

a result that should be compared with those stated in Theorem [. Recall that in
WiG[u]) the distance between the vertices w and v s counted (2 eo(v) times.
Combining Eqgs (7) and (16) we get

WIHS) = 4/9 W(HS[u]) + (2h+1)(4h+1)

a relation which does not contain terms depending on the inner dual.
Since any catacondensed benzenoid molecule [11] can be viewed as the
hexagonal squeeze of some phenylene, the above result can be re-stated as follows:

Theorem 2.

If H is the molecular graph of a catacondensed benzenoid hydrocarbon with A
hexagons, and if H[«] is its weighted variant (as specified above), then
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54 GUTMAN, KLAVZAR: Wiener numbers of benzenoid hydrocarbons and phenylenes

WIH) = 4/9 WH[w]) + (Zh+1)(dh+1). (7
Let, as usual [2]-[5], d(u, v|G) denote the distance between the vertices u and ¢
of the graph G. Then we define
D,;(G) =¥ d(u,v|G),
with the summation going over all vertices « of degree i and all vertices v of degree j.
In the case of phenylenes and their hexagonal squeezes, i.e., if G=PH or G = HS,

the vertex degrees are either 2 or 3, and we have the following decompositions of the
Wiener number [21]

W(G) = 1/2 [Dy3(G) +2Dy3(G)+D33(G)]. (18)

The analogous relation for the graph G with vertices weighted in the above described
manner reads

W(G[w]) = 1/2 (Dy)(G) +4Dy3(G) +4D43(G)). (19)
Formulas (18).and (19), combined with Eq. (17}, imply:
Corollary 2.1
Let H and h have the same meaning as in Theorem 2. Then

W(H) = 4D33(H)-2D5o(H)+9(2h+ 1)(4h+1) (20)

and

,aI=%[Jzu£}n{m+EDM(H}—ZBD33{H}+9—9]- @1

Proaf
Choose ¢ = H and insert the relations (18) and (19) into Eq. (17). This yields

from which Dy, can be expressed and substituted back into Eq. (17), resulting in Eq. (20).
Identity Eq. (22) can be viewed as a quadratic equation in the variable k. By
solving this equation we get Eq. (21).

This research was supported in part by the Mathematical Institute in Belgrade (1.G.) and by the
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